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Abstract. This paper reviews the multi-modern sensors for multimodal (Face ad 

Fingerprint) of a biometric system by using a depth camera. The use of face authentication 

in biometric data allows this innovation to expand and be used in a variety of fields. 

Recently, attendance monitoring systems depending on biometric identification for higher 

education are underutilization, presenting an excellent chance to do fascinating 

experiments. The installation of biometric attendance systems necessitates the use of both 

hardware and software components. The first deep CNN (Convolutional Neural Network) 

method for light source-oriented Face Recognition (FR) takes advantage of the more 

detailed data given in a lens let display technology picture and that has been used in 

different borders such as airports, seaports, and land ports. In addition, the use of 3D 

camera technology for measuring medical outcomes in the healthcare marketplace is 

growing. The Intel® RealSense TM is one of the top 3D thermal imaging cameras systems 

on the market today, and it is well-suited for usage in a variety of areas such as medical 

systems, automation, and medical. Advances in in-depth sensor cameras technology have 

led to a considerable rise in the incorporation of these innovations into moveable systems, 

implying the great future potential for widespread in clinic and sector medical screening 

systems. Furthermore, initially, the use of dispersion maps in conjunction with depth maps 

and Two-Dimensional Red Green Blue (2D-RGB) pictures has been examined in terms of 

a fusion strategy to increase FR performance. The suggested approach employs the 2D-

RGB crucial radiations emitted viewpoint, and depth maps and dispersion derived from 

the whole collection of radiations emitted pictures connected with a lens let light source. 

Following that, feature separation was carried out with the use of a VGG- deep sighs 

description for texturing and individually well their representations for depth maps and 

dispersion. The collected characteristics are then combined and supplied into a 

classification model. 

Keywords: Face Recognition (FR), Fingerprint, Sensor, Intel RealSense Camera, 2D-

RGB, 3D-RGB, Feature Extraction, Depth maps, VGG-Face, and Facial Tracking. 

1   Introduction 

       One most popular accepted, collectible, and ubiquitous biometric modalities are Face 

Detection or Face Recognition (FD/FR), attracting considerable interest from both the research 

IMDC-IST 2021, September 07-09, Sakarya, Turkey
Copyright © 2022 EAI
DOI 10.4108/eai.7-9-2021.2314977

mailto:M.Abdul.Al@bradford.ac.uk
mailto:R.S.R.Qahwaji@bradford.ac.uk
mailto:R.A.A.Abd@bradford.ac.uk


 

 

 

 

world and the industry [1] [2]. Significant gains in FR systems have been achieved in recent 

decades due to the advent of deep learning technologies and the accessibility before training 

of deep learning systems [3]. Unsurprisingly, deep CNN (Convolutional Neural Network) 

approaches lead to the presence of modern technology in FR/FD. Face photos are known to pose 

hurdles for precise recognition including for individuals, particularly in unsupervised scenarios 

with substantial variability in age, mood, stance, light, occlusion, and so on [4], and hence even 

deep learning systems might fail when faced with this obstacles. Concurrent with advancements 

in feature representation and classification for face identification, great strides have been made 

in the creation of richer image sensors, such as lens let light field cameras, stereo, depth, NIR 

(Near Infrared), and thermal. Industrial lens let light field cameras, including Lytro [5], have 

lately brought light intensity imaging technology to the forefront. These camera sensors not just 

the brightness of light on a single 2D (Two-Dimensional) level point, as well as the brightness 

of visible light originating from other directions [6] [7]. Furthermore, lens let light field cameras 

are gaining popularity in the forensic and biometric fields for facial identification and 

verification [8] [9] [10] [11] [12] [13]. 

In the current marketplace, there are a rising number of 3D (Three-Dimensional) camera 

sensors technologies, resulting in an extensive region of technical uses in a variety of industries. 

Identifying a one-of-a-kind solution in healthcare research, 3D gaming, scanning, motion 

capture, wellness applications, and clinical is thus becoming increasingly challenging. One 

among the most popular notable 3D depth-sensing camera is the Intel RealSense, 

particularly with the recent revelation that production of the Microsoft Kinect Sensor V2/2.0 

has already ended, likely signalling the end of Microsoft's engagement in this equipment field 

[14]. While Kinect assistance for the dynamic responses will keep going in the meantime, the 

restricted availability of this innovation for purchasing decisions will most likely herald a shift 

in the acceptance and usage of this specific objective device for innovation projects. 

The depth sensor generates pictures in the same way as a standard camera does. Rather than 

colour, the brightness of every image pixel shows the range to the associated point. This is where 

these devices truly shine in areas such as computer vision technology. Therefore, depth sensors 

are often referred to as 3D cameras at times. PrimeSense [15] owns the patent for the depth 

detecting system used in the Kinect sensor system. Depth sensors are used in a multitude of 

scenarios other than gaming, such as reconstructing the forms of observed things [16] 

[17], indication language interpretation systems [18] [19], touching systems [20] [21], 

rehabilitation and ergonomics [16] [17] and interacting with Google Earth [16] [22]. According 

to M. Andersen et al. [23] investigated many features of the Kinect sensor that are significant in 

the development of real-world FR systems.  

2   Biometric Sensor 

      To capture an individual's biometric characteristics, biometric sensors are used.  The sensors 

serve two functions in the biometric presence monitoring system. Detectors are employed first 

to collect biometric information that will be used in models. Following that, each framework is 

labelled with a named person or roll number. These models, including the participants' data, are 

then saved in a server as a guide for future contrast by newly gathered biometric information. 

This stage is just completed once at the beginning of each school semester. Whenever a lecture 

is held, the sensors' next goal is to collect a fresh set of biometric information from every learner. 

The identity of each learner must always be memorized to identify the class's involvement. The 



 

 

 

 

newly gathered biometric information can be compared to the models to track the proper 

time, name, and date of the pupils participating in the lecture. The next subtypes will cover the 

different sensors, as well as the circumstance or situation required to record failure biometric 

information, also to examining the role and relevance of detectors in the biometric-based 

presence scheme. 

 

2.1   Fingerprint (FP) Sensor 

 

The fingerprint image is captured using various types of sensors. Essentially, there are different 

categories of FP image sensors [24]: 

a) State of matter 

b) Visual 

c) Ultrasound 

Optical sensors may be used in a range of methods to acquire fingerprint images. The first and 

most extensively utilized biosensors are dependent on the flawed proposed design of total 

interior contemplation (FTIR). An optical system dependent on FTIR includes CMOS 

(Complementary Metal-Oxide-Semiconductor) camera, a CCD (Charge-Coupled Device) or a 

light source, a glass/plastic prism, and a lens. As the viewer contacted the prism's highest place, 

the CCD or mirrored illumination from the lenses was caught by the CMOS camera via the 

concentrating lens. An FP classifies diverse patterns of the valley and ridge characteristics [25]. 

There are numerous benefits when utilizing an optic detector. Because the device only identifies 

the finger with a 3D (Three-Dimensional) form, replicated FP magic cannot readily fool it. 

Furthermore, it can capture multiple pictures resolutions and generate top-notch photos. 

Although these benefits, the sensor module dependent on FTIR is vulnerable to a wet or dry and 

warm or cold finger, resulting in a bad impression or a saturated [26]. Furthermore, it cannot be 

built and tested because of the lack of flexibility of lowering the optical length, which might 

produce optical error in a picture. 

Semiconductor device detectors often described as silicon detectors, are intended to utilise small 

detectors that constitute pixels of the array. Semiconductor device detectors are classified into 

4 categories: i) piezoelectric, ii) capacitive, iii) thermal and iv) electric field [24]. Perhaps the 

most prevalent is the capacitive kind. A capacitive detector is made up of 2 panels. The first 

panel is made up of a 2D (Two-Dimensional) array of capacitors positioned under the finger 

photoactive layer, while another panel is the epithelium of the finger. Semiconductor devises 

detectors can alleviate issues involved with sensing devices, including a smaller footprint and 

tuneable electrical parameters, when resolving a wet or dry and warm or cold FP picture. 

Moreover, because a 3D finger layer is detected based on distance calculation, these detectors 

cannot be readily replicated by a copy or fraudulent FP picture. While their advantages, 

Semiconductor devices detectors are susceptible to ESD (Electro-Static Discharges). 

Furthermore, after several applications of the detector [27], white blobs are apparent in the 

FP image. Additionally, clean-up is essential to create a nice and clear FP image. 

Ultrasound devices are utilized to distinguish between valleys and the sound reflection depths 

of hills [26]. The detector is made up of a transmitter that creates an audio signal and a receiver 

that receives the associated revealed or resonance signal from the FP layer. Ultrasound detectors 

can seizure a high-quality picture deprived of existence influenced by oil, soil, or new impurities 

on the finger [24]. These detectors, on the other hand, are large, costly, and need an extra period 

to acquire FP images [25].  



 

 

 

 

When selecting an FP reader, consider the collection area, resulting in picture quality, and 

structural accuracy [24]. The optimal FP detection region is 1 x 1 inch2 (25 4 x 25 4 mm2). 

Nevertheless, the bulk of industrial readers are shorter to decrease cost and size. Furthermore, 

the lowest photo quality is roughly 500 dpi (pixels per inch). The structural deformation caused 

by the FP reader is used to determine the correctness of the geometry. Other characteristics to 

choose include the supporting OS (Operating System) version, I/O connection, FPS (Frames 

Per Second), automated finger identification, and encryption. 

 

2.2   Sensor Face 

 

FR capabilities provided or detectors are cameras utilized to record video frames or capture 

photos. Face information obtained can be 2D intensity picture shape, 3D brightness, and depth 

data displays, or IR (Infrared) [1]. A camera's crucial elements are lenses and image sensors 

[28]. Typically, the camera module converts light into electrical ions via the lens of the camera 

and then to a digital signal. The electrical signal in an input photo is equal to the intensity of the 

bright, with brighter pictures having more charges than dull ones. CCD and CMOS image 

sensors are classified as one of two categories. The cumulative energy is equal to the 

illumination that reaches every pixel, which is the basis for these detectors. For voltage 

conversion in a CCD detector, the voltage by 1 pixel is transmitted successively to the next pixel 

till a constant voltage receives. Furthermore, the CCD sensor has an analogy signal. Every pixel 

in a CMOS sensor converts ions to energy immediately [29]. 

The photodetector is connected with several attributes including pixel sensitivity, frame 
rate, and spatial resolution [1]. The film was mainly composed of photos taken in 

sequential order, commonly defined as frames. As a result, the edge level is described 
as the number of pictures taken every moment [30]. The sharpness of a picture is 
similarly proportional to its quality. A video picture's resolution is clear as the whole 
quantity of pixels in the picture, or by the number of lines and pixels in the vertical 
and horizontal aspects [31]. Furthermore, pixel sensitivity denotes the sensor's visual 
disturbances. A back-illuminated detector was created to improve depth perception by 
utilizing the contralateral silicon layer for a more efficient visible region [28]. 
 

3   Face Identification with Modern Image Sensors  

 
      New image detectors, including stereo cameras, depth, NIR, and thermal, have been 

typically adopted for diverse facial biometric purposes [32] [33] [34]. The richer descriptions 

gained from the environment, as well as their resilience versus specific fluctuations in facial 

features, inspired the decision to utilise current image detectors. Depth pictures, for instance, 

could be more resistant to illumination changes [35], but several views of pictures are less 

susceptible to alterations [36]. Fig 1 summarises a variety of current, comprehensive, and 

acceptable FR systems dependent on developing image detectors, organised by release date. Fig 

1 contains data on the photodetector utilised, the kind of technique for extracting characteristics, 

a categorizer, and the level of fusion if needed. FR solutions that integrate, it is not uncommon 

to have many characteristics derived from different image sensors or extracting 

characteristics algorithms [37]. Learning algorithms control the modern technology in FR based 

on novel detectors, as shown in Fig 1. In the case of fusion FR solutions, fusion is generally 

conducted at the different scales since it contains more rich FR data. 

 



 

 

 

 

 
Fig 1. A look at some of the developing – anti-field detectors that are being used for FR. The following 

abbreviations have been utilized in this Figure: AHE stands for (Adaptive Histogram Equalization). DLBP 

stands for (Depth Local Binary Patterns); DNM stands for (Discriminant Normal Maps); DSF stands for 

(Down Sampling Feature); FHOG stands for (Felzenszwalb's HOG); HAOG stands for (Histogram of 

Averaged Oriented Gradients); HOGOM stands for (Histograms of Gabor Ordinal Measures). HPOG 

stands for (Histograms of Principal Oriented Gradients); HGORP stands for (Horizontal Gradient Ordinal 

Relationship Pattern); LDA stands for (Linear Discriminant Analysis); LDP stands for (Local Derivative 

Pattern); O-CNN stands for (Ordinal Convolutional Neural Network); PCA stands for (Principal 

Component Analysis); PSIFT stands for (Pyramid Scale Invariant Feature Transform). RS-LDA stands for 

(Random Subspace Linear Discriminant Analysis); SRC is for (Sparse Representation Classifier); SURF 

is for (Speeded Up Robust Features), and SF stands for (Steerable Filter); WNNC stands for (Weighted 

Nearest Neighbour Classifier); N/A stands for (Not Applicable). 

The suggested method leverages the additional data present in the display technology picture by 

combining characteristics generated from the 2D-RGB sector directly aspect, and even the depth 

maps and contrast, and is projected to outperform 2D-RGB+depth and 2D-RGB FR methods. 

The recommended FR solution necessitates the necessary stages: 

a) Before-processing: The programme Light Area Toolkit v0.4 [38] has been utilized to 

generate the sub-hinge several views vector. The facial section is then cut throughout 

all sub-hinge photos dependent on the features in the dataset, and the cut sub-hinge 

pictures are shrunk to (24 × 24) pixels. 

b) Disproportion map removal: A dispersion map is recovered from the trimmed sub-

hinge array of several views, collecting the geometric data accessible in the display 

technology picture. The display technology dispersion map was recovered utilizing the 

approach provided in [39] and [40], which generates the discrepancy map as slopes of 

unipolar plane images. 

c) Extraction of depth maps: A feature vector is recovered from the clipped several 

views of the sub-hinge array, giving feature vectors on the placement and form of the 



 

 

 

 

face elements. The feature vector was retrieved utilising the approach provided in [41], 

which predicts several views audio correlations and then improves them utilizing the 

analysis to identify. 

d) VGG-Face characteristics removal: Before training the VGG deep markers, which 

were originally formed for 2D FR, are well-adjusted individually for depth map 

and mismatch. The depth characteristics, texture, and disparity are extracted from the 

2D-RGB core image, and also the depth maps and disparity, utilizing three deep 

learning solutions depending on the VGG-Face classifier [42]. 

e) Level of Fusion Characteristics: For every input, the collected characteristics are 

concatenated into a single category using Fusion of Different Scales.  

f) SVM classification: The synthesized extracted features are given to the SVM classifier 

(developed with [43]), which returns the participants' privacy. In this research, the 

accuracy of a soft-max classifier was also tested, with SVM operating slightly better 

than soft-max, explaining SVM's selection as the last classifier. 

 

4   Extraction of VGG-Face Features   

 
         VGG-Very-Deep-16 has been one of the best CNN designs for numerous image 

processing applications [44]. Around 2.6 million face photos were trained to create such a before 

training the VGG-Face model for FR, which includes rich changes in lighting, voice, posture, 

and occlusion. Since the VGG-deep model is the first training with 2D pictures, it cannot be 

adequate for FR to specify dispersion and depth data. This research has before trained the VGG-

Face model using the VGG-Very-Deep-16 CNN levels, taking depth maps and dispersion into 

account at the entry and away from the gradient descent impacts. Despite some researcher 

gathers and space limits, the fine-tuning for both depths maps and dispersion was conducted 

utilising a total of 30 epochs, LR (Learning Rate = 0.005) and a BS (Batch Size) of 32. The 

VGG-deep character produced by executing the VGG-Very-Deep-Face CNN deprived of the 

final 2 attached layers, as established in [42], is utilised to remove characteristics from the 2D-

RGB centre representation and also depth maps and dispersion. The outcome is a VGG-Face 

specification with an entire number of 4,096 characteristics to every entry, described as 

completely integrated level 6 characteristics. Before training the  VGG-Face model was utilised 

for 2D-RGB pictures, while fine-tuned models were employed for depth maps and dispersion. 

5 Tracking of the Face  

 
       The Intel RealSense camera series could be utilized to detect and observe face emotions 

and actions either with or without hairstyle and spectacles. It can identify approximately 78 face 

features points in 3D, which could aid in the creation of facial animation, avatars, and emotion 

identification [45]. Intel RealSense could also identify head position across 3D coordinates for 

roll, yaw, and pitch. Based on the camera used, tracking up to 4 people with indicated squares 

for face boundaries is possible. This is especially important in platforms when the environment 

cannot be handled since it allows the person to be recognized and observed solely. In 

comparison to several of the recent industry frontrunners, such as the Microsoft Kinect 2.0.0, 

the Intel RealSense camera series will offer high-quality and sampling rates. The higher the 

pixel density and sample rate, while monitoring fine or fast movement, the better. 



 

 

 

 

 

5.1 Intel RealSense Camera F200, R200 and SR300 

The Intel RealSense SR300 is a simple, transmitted light 3D camera sensor that has one of the 

lowest 3D depths and 2D digital cameras presently commercially available. The Intel RealSense 

SR300 provides customers the option to engage with active sense by integrating depth detection 

with a 1080p RGB sensor. Hand movement recognition, background segmentation, 3D 

scanning, and facial recognition are all examples of techniques that can be used. The Intel 

RealSense SR300 camera is appropriate for reality and wearable technology applications like 

hand and finger tracking, face tracking and detection, checking and localization, and scene 

segmentation. This is accomplished by the simultaneous employment of an IR projector and a 

Light detector with coded emission spectra [46]. 

A globe USB 3.0 thermal imager that can provide video feeds in IR is the Intel RealSense 

Camera R200, colour, and depth and may be utilized with a variety of compatible devices 

including Ultrabook’s TM, 2-in-1, All-in-One, or portable systems (Intel 2016). The R200 has 

an IR depth detecting capability and a full HD colour camera. Its 3 cameras, which comprise 

RGB and stereoscopic IR, are used to produce depth. The VGG-Face description produced by 

executing the VGG-Deep-Face CNN omitting the previous two convolution levels, as proved 

to be successful in [47], is utilized to detect edges from the 2D-RGB centre perspective and also 

depth maps and dispersion. The outcome is a VGG-Face specification with a maximum 

number of 4096 characteristics for every entry, described as completely integrated level 6 

characteristics. Utilizing ultrasounds, the developer may generate 3D printable things and 

sections, such as the capacity to create and edit bespoke avatars, by computationally recording 

individuals or stuff in a 3D space. The formation of 3D avatars or things yields things that might 

be integrated into real-life fields and applications to aid with visualization [45]. Avatars have 

also been utilized in rehabilitation programmers where people do not wish to view themselves 

afterward distress permanently or temporarily bodily damaged. 

The Intel RealSense spectrum has continuously advanced in current decades, notably in terms 

of performance capture accuracy, camera capacity, and area of vision lengths. Fig 2 depicts a 

comparative evaluation of the F200, R200, and SR300 systems' key characteristics. 

The Intel RealSense SDK, SDK elements, and deepness camera operators for the F200, R200, 

and SR300 models are no further getting upgraded leading to the release of the latest software 

of the visual range [46], as indicated below. Fig 3 provides an in-depth evaluation of the SDK 

application's running regions and applications. 

The Intel RealSense SDK has 3D human tracking include certain critical qualities that aid in the 

development of strong and productive apps. This means the capability to offer accurate results 

in the influence of environmental aberrations like piercings or spectacles over a wide variety of 

colours. Facial hair could be another factor that can significantly affect object tracking; 

nevertheless, the Intel RealSense SDK will mitigate this effect. Obstacles could also critically 

degrade the object pursuing of many camera detection systems; common actions like yawning, 

wiping the face, and so on can affect detection and information collecting. This is something 

that the Intel RealSense camera spectrum can consider and decide to pursue properly. 

 



 

 

 

 

 
Fig 2.Intel RealSense F200, R200, and SR300 Characteristically Analysis [46]. 

The constancy of the monitoring can be harmed by changing light sources, and previously, it 

has been observed that the detection of feature vectors has been substantially harmed; this was 

especially apparent in the development of Microsoft Kinect [48]. Vision-based detection 

systems frequently function best in controlled situations with few changes including shape, skin 

tone and clothing colour, illumination level, and position level. In addition, peripheral clutter is 

kept to a minimum. Utilizing this technology in the house for health assessment could be 

challenging for distant individuals because the temperature will not be appropriate [48]. On the 

other hand, the Intel RealSense works well during poor-light circumstances, when the other 

technologies strain and are also troublesome due to large variations in illumination. 



 

 

 

 

 
Fig 3. Intel RealSense F200, R200, and SR300 Systems Required to operate Environment [46]. 

5.2 Intel RealSense Camera ZR300, D415 & D435 

As the marketplace for the manufacturing of Intel Real-Sense and SDK has grown, so has the 

requirement for both long - short-term thermal imaging cameras, leading to the creation of the 

D435, ZR300, and D415 Intel Real-Sense Camera systems. 

The ZR300 has a high-quality depth camera with an incorporated powerful motion detection 

mechanism. The ZR300 offers a wide range of uses because of its high-quality deepness 

detecting, extremely durable monitoring, long-term assistance, outdoor and indoor usage, and 

low energy consumption. The camera has an inside variety of around 3.5 m and an outside length 

capable of capturing far thousands of miles. The recommended option, on the other hand, 

changes based on the lighting and situation [45]. The Intel RealSense Peripheral Device ZR300 

is viewed as an appropriate option for educational videos, mechanical development, and systems 

engineering, among several other proposed options. The ZR300 can provide 3D spatial 

awareness by utilizing object tracking, spatial awareness, and region training. Most 

significantly, the ZR300 provides a full edge level, that allows 3D perusing systems and prompts 

mechanical actions to measure activity in a variety of environments [45].  

Intel just launched a new D400 system set with the most sophisticated information fusion 

performance to time. The D415 and D435 deepness identifying cameras would cover the newest 

Intel RealSense vision system and component. Besides that, to the dynamic picture flash and 

normal angle of vision, the Intel RealSense Deepness Camera D415 provides a critical option 

with straightforward deepness channel information collection. The D435, on the other hand, can 

record and transmit depth data from object detection, as well as a global picture shutter and a 

broader range of vision, resulting in great depth perception accuracy in movement [46]. The 



 

 

 

 

optimum situation for the D400 sequence has been significantly enhanced over earlier 

incarnations of the Intel RealSense Camera line, with information gathering achievable at 

intervals close to and beyond 600 seconds in both inside and outside scenarios [46]. 

 

6 Conclusion 

        It is still difficult to select appropriate kinds of computers for designing a 

biometric attendance monitoring system. The two often used biometrics qualities of the present 

scheme are the face and fingerprint because of their simplicity and high acceptance ratio. For 

FP or facial picture capture, an optical system is necessary. CMOS is the most common sensor 

in virtually most cameras. FR attendance systems save time by eliminating the requirement for 

individuals to wait and make eye contact with the detector. To communicate attendance records, 

the communication network is critical. Wi-Fi is an excellent choice since it can carry large 

volumes of information in a little period of interval. This is beneficial for tracking presence in 

real-time. Moreover, with the growing usage of smartphones in the IoT (Internet of Things) age, 

biometric attendance systems are being pushed toward the next level. Currently, new 

smartphones have built-in hardware and software including a fingerprint sensor, facial 

recognition, camera, and iris scanner.  

The Intel RealSense family is still in its development, but it is rapidly developing thanks to an 

ever-improving camera and an ever-growing SDK. Because of its 3D scanning, FR, and 

FP identification features, the Intel RealSense system is regarded as a competitive, if not 

improved, a competitor to the Microsoft Kinect, and thus seen as a viable tool for research & 

innovation in the healthcare industry. 

As a result, for future study, there is an option to collect attendance simply utilizing cell phones 

rather than putting up a program with different system components. Utilizing a wireless router 

on the smartphone, the biometric features may be captured and transferred to the cloud server 

for verification. Future studies will examine a reorganized photo as additional light field input 

data to raise the efficiency of an unfocused range of values for different factors located at 

varying spaces; it may be highly valuable for several faces’ identification challenges. 
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