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Abstract. Due to geometric effects rather than material failure, buckling is the most typical 

failure mode of slender RC columns. Real columns are never perfect, and their flaws have 

a big effect on their stability, therefore, to use FEA software to study slender RC columns, 

requires a number for this imperfection, known as the imperfection factor. By checking 

experimental fields, codes provide some imperfection factor values to utilize in design and 

analysis these factors cover all kinds of imperfection that means they will be a flexible 

value. On the other hand, numerical fields like FEA software manuals dose note give a 

clear way to specify the imperfection factor according to experimental references 

especially material imperfection dependency. The results of the analytical model of the 

slender RC columns are presented in this work. The investigation includes the creation of 

an analytical model based on the finite element approach using ABAQUS/Standard 2020 

software to see how material variation affects the value of the imperfection factor. The 

analytical model was compared to the experimental work utilizing similar properties to 

validate the results. All columns were axially loaded. The experimental and finite element 

results were in good agreement. From the relationship between SFR variation and the 

imperfection factor, a second-order equation could be suggested. 
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1   Introduction 

Buckling is a physical phenomenon in which a relatively straight, slender member (or body) 

bends laterally (typically suddenly) from its longitudinal position due to compression [1]. 

Buckling, rather than material failure, is a loss of stability caused by geometric effects. 

However, if the resulting deformations are not controlled, the material can fail and collapse [2]. 

Real columns are never perfect, and defects in them have a significant impact on their stability. 

The real columns buckle before the buckling force because of these defects from the perfect 

shape or material [3]. The material yielding or the column buckling can both cause a column to 

fail. It is of interest to the engineer to determine when this changeover takes place. In slender 

columns, buckling is a more common mode of failure. Imperfection refers to the trait or state of 

being imperfect. These imperfections are divided into geometric imperfection, thickness 

imperfection, material imperfection, and boundary imperfections [4]. Local and overall (bow, 

global, or out-of-straightness) geometric imperfections are the two basic categories of initial 

geometric imperfections. Initial local geometric imperfections can be discovered on the outer or 
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inner surfaces of metal structural members in perpendicular directions to the member surfaces. 

Initial overall geometric imperfections, on the other hand, are global profiles for the entire 

structural member throughout its length in any direction. An eccentricity of  

 

ej = l0 /400                                                                        (1) 

 

where l0 is the effective length  

 

maybe used as a simplified alternative for walls and isolated columns in braced systems to cover 

imperfections associated with normal execution variations [5]. Or the eccentricity equal of: 

  

e0 = αm L / 500                                                               (2) 

 

where L is the span of the bracing system 

 

and αm =√0,5⟮1 +
1

m
⟯                                                          (3) 

 

in which m is the number of members to be restrained [6]. Equivalent geometric imperfections, 

with values that reflect the impacts of both global and local imperfections, should be utilized. 

From the previous equations (1,2) Eurocodes offered a similar range for the imperfection factor 

in concrete and steel structures. In this study, because of the columns subjected to the concentric 

load, therefore the eccentricity (e) is equal to the imperfection factor (IMF). Perturbations in 

geometry are the most common source of imperfections. Abaqus allows you to define an 

imperfection in three ways: as a linear superposition of buckling eigenmodes, via static analysis 

displacements, or by directly providing the node number and imperfection values. The 

perturbations utilized are usually a few percent of a relative structural dimension like a beam 

cross-section or shell thickness [7]. Nessa Yosef Nezhad Arya in 2015 studied the second-order 

FE analysis of axial loaded concrete members according to Eurocode 2, the nonlinear analysis 

focused on concrete material modelling and its nonlinear behaviour, by comparing the FEA 

results of a benchmark experiment, the finite element model was confirmed [8]. Alaa Hussein 

Al-Zuhairi & Safaa Qays Abdulrahman in 2020 studied the performance of slender reinforced 

concrete columns with different cross-sectional shapes, the study aimed to use nonlinear finite 

element analysis to explain the structural performance of slender SSRC columns both 

experimentally and numerically [9]. Four samples were selected “first one normal concrete and 

the other three was strengthened with SFR” from an experimental study where don by Al-Helfi 

& Allami (the strengthening effect of SFR and CFRP on a part or whole of the of slender RC 

columns) one was a reference and others were compared [10] to investigate the material 

variation effect on the imperfection factor using ABAQUS/Standard 2020. 



 

 

 

 

2   Experimental Programs 

All columns were axially loaded, with dimensions of 2000 mm in length and 120 mm x 60 mm 

in cross-section, column top, and bottom ends were supported by load plate working as a hinge, 

and the major longitudinal reinforcement was symmetrically 2 x 3Ø6. The stirrups were Ø6 @ 

50 mm along with 300 mm from the ends of the column, with 150 mm in the remaining length. 

The first reference column (SC11) tested was not strengthened, whilst the other columns were 

strengthened using SFR as detailed in Table 1.  

Table 1.  Summary of Experimental Results. 

Column 

ID 
Strengthened 

Materials 
Length of 

Strengthened 

Fcu 

(Mpa) 
EC 

(Mpa) 

Ultimate Load 

Test Result 

(KN) 

SC11 Non Non 35 24870 182 

SC21 SFR L 55 31176 261 

SC22 SFR L/2 55 31176 260 

SC23 SFR L/3 55 31176 244 

3   Finite Element Analysis 

Because laboratory studies require expensive equipment and tools, as well as a specialized 

laboratory with qualified workers to complete the experiments, they do not cover a large variety 

of factors. As a result, the finite element method (FEM) is the most suited tool for expanding 

the range of parameters to be investigated. A three-dimensional nonlinear numerical analysis 

has been carried out to simulate the imperfection factor effect on RC columns buckling. 

 

3.1   Analysis Procedure 

 

There are two types of research methods in Abaqus: linear and nonlinear. Because the buckling 

behaviour cannot be obtained, the nonlinear analysis couldn’t depict axially loaded slender 

column real behaviour  in this paper, for both static general and dynamic analysis produced by 

Abaqus software. This development occurred because of two aspects. First, all FEM equations 

are based on the equilibrium of stresses and strain compatibility, which means that these 

equations are impossible to solve due to the discontinuous response at the buckling point. 

Second, up until final collapse, A perfect (ideal) column is used to illustrate the FE model. 

Instead of bifurcation, Abaqus handles the discontinues problem by displaying a geometric 

imperfection mode in the perfect (ideal) geometry of the model. In Abaqus, there are numerous 

approaches for defining an imperfection. One of these techniques is to use the 

*IMPERFECTION keyword to directly apply the imperfection in the input file. This 

necessitates data like eigenvalues and buckling modes, which were provided via linear elastic 

buckling analysis. In a brief, the FE simulation of the provided specimens necessitated the 

creation of two models for the same mesh: To determine the likelihood of collapse, an initial 

model for elastic buckling analysis was developed as shown in Fig 1. This model was analysed 

with linear elastic buckling to get possible buckling mode and Eigenvalue of this mode which 

represent the critical load. The plastic model then imports imperfection data (buckling mode, 



 

 

 

 

Eigenvalue) from the linear analysis to do the nonlinear analysis of slender RC columns [7]. 

The input file of both models has been altered as shown in Fig 2. 

 
 

Fig. 1. Linear analysis (buckling mode). 

 

 
 

(a) Elastic model                                                       (b) Plastic model 

 

Fig. 2. The input file of imperfection factor (highlighted characters). 

**OUTPUT REQUEST 

** 

*Restart, write, frequency=0  

** 

**FIELD OUTPUT: F-Output-1 

** 

*Output, field, variable=PRECELECT  

*NODE FILE 

U 

*End Step 

**- - - - - - - - - - - - - - - - - - - - - - - - - - - 

- -  

*IMPERFECTION, FILE=Job-1, 

STEP=1 

1,4 

** 

**STEP: Step-1 

** 

*Step, name= Step-1, nlgeom= YES 

*Dynamic, Explicit 

,1. 

 

 

 

 



 

 

 

 

 

3.2   Material Properties 

 

Plain concrete's nonlinear behaviour  in compression and tension was simulated using the 

concrete damage plasticity model (CDPM), which took damage characteristics into account. To 

explain the response of plain concrete with uniaxial and compound stresses, CDPM employs 

two types of parameters. The reinforcing steel bars were also modelled using Abaqus' plasticity 

model, which used a bilinear model to characterize the stress–stress relationship of 

reinforcement. Up to the yielding point, the bilinear model is elastic, and between the yielding 

point and the start of strain hardening, it is ideal plastic as shown in Fig 3. 

 

 

 
 

Fig. 3. Stress-strain curve for steel reinforcement. 

 

3.3   FEA model boundary conditions, interaction, and meshing 

 

Both ends of the samples were treated as pinned ends in the nonlinear analysis, identical to the 

test condition. Reference points (RP) were used to simulate the pin ends conditions. At both 

ends, the movement was constrained in all axes, except the axial movement at the top end was 

allowed. Although all rotations in all axes were allowed. To ensure a complete link between the 

reinforcing bars and the concrete, the interactions were represented as an embedded region. In 

the linear and nonlinear analyses, a mesh size of 20 mm was chosen for concrete and 

reinforcement. Concrete was modelled using C3D8 element, 8-node linear brick. The steel 

reinforcement was modelled using D3T2, a two-node linear three-dimensional truss as shown 

in Fig 4. 

 

 

 



 

 

 

 

 
 

 

(a) Boundary conditions                          (b) Interaction                                 (c) Meshing 

 

Fig. 4. Slender RC column modelling. 

4   Analysis Results and Discussion 

4.1   Imperfection Factor Check 

 

In this section two verification are presented: first, check to see which imperfection factors 

provided by Eurocodes give satisfying results for the reference model, and the second check by 

choosing different imperfection factor values in addition to reference model imperfection factor 

to investigate SFR strengthened effect. 

 

4.1.1   Reference Model  

 

Using the numerical method highlights the fact that the results may not be precise because of 

material properties and modelling errors. Referring to Eurocode 2 [8] and Eurocode 3 [9], two 

values will be tested through the simulation respectively to compare with the experimental 

reference model (normal concrete) results: 

 

L = clear length of column = 2000mm 

 



 

 

 

 

From equation (1) 

 

Imperfection factor = L / 400 = 2000 / 400 = 5 mm 

 

From equation (2) 

 

Imperfection factor = L / 500 = 2000 / 500 = 4 mm 

 

 
 

Fig. 5. Comparison between two different imperfection factor values of the load-deflection 

curve for FEA model and experimental model.   

As illustrated in Fig 5. Which shows that the imperfection factor (4) is considered satisfactory.  

 

4.1.2   SFR Strengthened Models 

 

As mentioned previously, there are no imperfection factor values within the specifications, 

considering the effect of SFR, two values will be tested in addition to reference column 

imperfection factor value (1.5, 2.5, 4) to see how well the results match the experimental work 

as shown in Fig 6.   

 

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15

Lo
ad

 (
K

N
)

Displacement (mm)

Expermental model
(normal concrete)

FEA Model with
imperfection factor = 4

FEA Model with
imperfection factor = 5



 

 

 

 

 
 

(a) SC21 (All lengths of the column strengthened with SFR). 

 

 
 

(b) SC22 (L/2 of the column strengthened with SFR). 
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(c) SC23 (L/3 of the column strengthened with SFR). 

 

Fig. 6. SFR effect on the imperfection factor for each strengthened column 

 

Fig 6-a shows the comparison between load-deflection curve for each experimental (all length 

of the column strengthened with SFR) and FE model, FE model tested with three different 

values of imperfection factors to see which is the nearest to experimental results, also Figure 6-

b and 6-c show the comparison between experimental and FE model for each L/2 SFR 

strengthened column and L/3 SFR strengthened column respectively. Table 2. showing the best 

values for the imperfection factor that apply to the behaviour  of the real columns tested in the 

laboratory. 

Table 2.  Columns IMF values. 

Column IMF 

SC11 4 

SC21 1.5 

SC22 1.5 

SC23 2.5 

 

 

4.1.3   IMF-SFR relationship  

 

Fig 7. illustrates the relationship between the imperfection factor and SFR distribution length 

by a curve showing different values for this factor which gives a clear idea about the material 

deviation imperfection factor.   
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Fig. 7. IMF-SFR relationship. 

 

 

Although, by getting a graphical relationship it’s easy to convert to a mathematical equation that 

can be used to determine imperfection factor for RC slender column strengthened with SFR of 

any distribution length. 

 

Since y = IMF (imperfection factor) 

 

          x = SFRL (steel fibre reinforcement distribution length) 

 

The suggested equation will be  

 

IMF = 4.2029 SFRL2 – 6.7828 SFRL + 4.0533                                    (4) 

 

4.2   Deformation Diagram 

 

Most compressed structural elements are designed using Euler's theory of buckling, or one of 

Euler's adjustments to account for inelastic behaviour . The practical applicability of these ideas 

is typically assessed by comparing them to buckling loads acquired using a traditional 

mechanical or hydraulic testing machine. A half sinewave will buckle a column with hinged 

ends, the deformation diagrams of slender RC column at failure load are shown in Fig 8. 
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Fig. 8. Slender RC column deformations. 

 

4.3   Failure mode    

 

The inception of cracks is seen at the mid-height of the column as the load increased until failure, 

Fig 9b shows the failure mode in the slender RC column that has been analysed and which also 

gave good compatibility with the experimental model shown in Fig 9a. 

 



 

 

 

 

 
 

(a) Experimental failure mode                                     (b) Analytical failure mode 

 

Fig. 9. Failure mode. 

 

4.4   Failure Load 

 

The comparison of ultimate load and maximum deflection between finite element and 

experimental results are shown in Table 3. which shows that the agreement between finite 

element and experimental results is quite good.   

Table 3.  Ultimate load and deflection results. 

Column 

ID 
Ultimate load (KN) Maximum deflection (mm) 

EXP. FEM EXP. FEM 

SC11 182 174 7.5 10.5 

SC21 261 279 8 7.7 



 

 

 

 

SC22 260 256 8.6 11.1 

SC23 244 217 11.6 9.7 

 

 

The presence of SFR distribution deviation affected the values of the failure load which 

reflecting the difference of the imperfection factor for every case. 

 

 

5    Conclusion 
 

       Geometrical nonlinearity of slender RC column makes buckling the most common failure 

mode when it analysed using a suitable FEA software, ABAQUS one of the powerful software 

for this purpose, Abaqus user manual mentions to the geometric imperfection without 

considering material perturbation effects on this factor, the nonlinear FEA prosses depends on 

constant imperfection factor provided to the input data of the FEA models if they have the same 

geometry and material, but the factor will be variable if the material variation distribution 

through column length changes from a model to another, this variation could be written as a 

suggested second-order equation resulted from representing load-deflection curve relationship 

for all models, the analytical model was compared to the experimental work and the results were 

in good agreement.     
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