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Abstract. Robots have found applications in a variety of settings, ranging from speeding up 

manufacturing processes for completing complex jobs in hazardous and hostile areas. Path 

planning for mobile robots is one of the most difficult challenges in robotics. Robot route 

planning is a difficult optimization issue that must be tackled in a variety of applications. In 

this paper, we proposed the Atom search optimization (ASO) algorithm to improve the mobile 

robot path with free, static and dynamic obstacles environments and compare the results with 

the particle swarm optimization (PSO) algorithm. The “atom search optimization” algorithm is 

a novel algorithm that was used for the first time in this study to plan the route of a mobile 

robot. This algorithm has improved the path and the execution time(time required for the robot 

to reach the destination) was reduced. The authors checked the proposed method with several 

cases using MATLAB2020a software. It has been demonstrated that the suggested strategy, 

rather than PSO, found better, more consistent, and smoother pathways with a shorter 

computation time. 

Keywords.  Mobile robot route planning, Atom search optimization algorithm, particle swarm 

optimization.  

 

1  Introduction 

 

     Rapid technological advancements open up new and better prospects in a variety of areas. 

Robotics is now one of the most exciting developments [1]. The primary aim of robotic technology 

is to develop machines that can perform such human tasks. They are commonly used in a variety of 

circumstances to speed up a process or work in and exploring aggressive, hazardous, and 

inaccessible environments [1]. Forward kinematics and, later, inverse kinematics is necessary for 

the design of any work in robotics systems [2]. In this work Forward kinematics is considered. One 

issue is how the mobile robot determines the shortest path to the target while avoiding collisions. In 

mobile robot work, the path planning issue is crucial. To plan the course of the robot from one point 

to another, robotic systems employ intelligence algorithms. Path planning's main objective is to 

determine a robot's permissible movement in a given setting with obstacles. From the start position 

to the target position, these motions require a collision-free direction [2]. A smart mobile robot route 

planning system can save a lot of time while also lowering the robot's wear and capital expenditure 
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[3]. Researchers all around the world have developed a variety of meta-heuristic search algorithms 

to address complicated global optimization issues and approaches to improve them during the last 

few decades [5]. A constrained optimization problem can be used to overcome the difficulty of route 

planning. Depending on the environment and tasks that the robot must do, the goal or fitness function 

of the problem can be presented in a variety of ways [1]. 

  In this paper, For tackling mobile robot path planning in two-dimensional space with static and 

dynamic impediments, the (ASO) technique was introduced. The results are compared with a PSO 

algorithm in the same manner. The suggested technique is a novel type of atom dynamics-based 

meta-heuristic global optimization methodology. ASO is a population-based iterative heuristic 

global optimization algorithm that that can be applied to a wide range of optimization issues. ASO 

is a simple and straightforward method that mathematically describes and replicates nature's atomic 

motion concept, where atom interaction forces emerging from the Lennard-Jones potential and 

constraint forces arising from the bond-length potential interact with each other. To investigate the 

problem of mobile robot path planning, the ASO method is utilized. In path planning issues, The 

findings of the experiments indicate that ASO can outperform other well-known techniques such as 

(PSO) and that it is competitive with its rivals.. 

2  Robot path planning 

   The fundamental purpose of robot route planning using optimization criteria is to identify a path 

from start to finish that is free of collisions [5]. In its most basic form, path planning attempts to 

build a collision-free path for the robot from its starting place to the destination location while 

staying away from the strewn about the workspace, using some knowledge about the environment 

[6]. There are some assumptions made in this work before exploring and proposing a solution to this 

issue: 

• The proposed environment was designed with 200 x 200 pixels. 

• The proposed environment was designed with three scenarios free, static &dynamic obstacles.  

• The obstacles are represented by an equally size circular shape. 

• The speed of the dynamic obstacles was fixed. 

 

• The mobile robot movement was omnidirectional at any time.   

• Minimizing the distance function yields the shortest distance. 𝑓(𝑥, 𝑦)[7]. 

 

𝑓(𝑥, 𝑦) = √(𝑥𝑑 − 𝑥𝑠)
2 + (𝑦𝑑 − 𝑦𝑠)

2                                                                                                                  (1) 

 

where: The next position is represented by 𝑥𝑑 , 𝑦𝑑  , and the current position is represented by 

𝑥𝑠, 𝑦𝑠 . 

• The shortest path planning was obtained by applying PSO &ASO algorithms, then compared the 

results between them. 



3   Atom Search Optimization 

   ASO  approach is fundamental molecular dynamics. The notion of molecular dynamics was 

developed in theoretical physics and has since been applied to domains like chemistry, biology, and 

materials science; where atomic motion is governed by classical mechanics. Newton's second law 

is that, if Fi is the interaction force and Gi is the constraint force acting on the ith atom and the atom 

has mass mi then the acceleration of the atom is [8], [4]: 

 

 𝑎𝑖 =
𝐹𝑖+𝐺𝑖

𝑚𝑖
                                                                                                                                                                    (2) 

   

The interaction force operating on the Lennard-Jones potential (L-J potential) is employed on ith 

atom from the jth atom in the dth dimension at t time, which can be represented as[8], [4]: 

𝐹𝑖𝑗
𝑑(𝑡) =

24𝜀(𝑡)

𝜎(𝑡)
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𝑟𝑖𝑗(𝑡)
)
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                                                                                                               (3)  

 And 

𝐹𝑖𝑗
′ (𝑡) =

24𝜀(𝑡)

𝜎(𝑡)
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Fig. 1. Atoms force curve 

 

Figure 1 depicts the atoms' force curve for molecular dynamics [4]. It can be demonstrated that due 

to repulsion or attraction, atoms retain a constant relative distance that fluctuates within a given 

range, and the repulsion shift relative to the equilibration distance (r=1.12σ) is substantially larger 

than the attractiveness. As a result, the repulsion is positive, while the attraction is negative. thus, 



atoms will not converge to a single spot. As a result, equation (4) cannot be directly used to the 

solution of optimization problems. This equation has been updated to the following as: [8], [4]: 

 

𝐹𝑖𝑗
′ (𝑡) = −𝜂(𝑡) [2(ℎ𝑖𝑗(𝑡))

13
− (ℎ𝑖𝑗(𝑡))

7
]                                                                                                                   (5) 

Where the depth function is ( t) that can be used to modify the repulsion or attraction zone, defined 

as [8], [4]: 

𝜂(𝑡) = 𝛼 (1 −
𝑡−1

𝑇
)
3

𝑒−
20𝑡

𝑇   (6) 

 

Where the maximum number of iterations is T and a is the depth weight and the function behaviors 

of F ' with different values of  corresponding to the values of h ranging from 0.9 to 2 are depicted 

in Figure 2. 

 

Fig. 2. F ' function behavior with various values of   



  According to Figure 2, repulsion develops when h values are in a certain range of 0.9 to 

1.12, attraction takes place when h values range from “1.12 to 2”.The equilibration takes 

place when h values range from 1.12 to 2. The attraction steadily grows h from equilibration 

“ h=1.12 “ to maximum “ h=1.24 “ and then starts to reduce. If h is greater than or equal to 

2, the attraction is about equivalent to zero. As a result, in ASO, to encourage exploration, 

with a smaller function value, the lower limit of repulsion is set to h= 1.1, while with a 

bigger function value, the higher limit of attraction is set to h= 1.2. With a larger function 

value, the upper limit of attraction is set at “h =2.4”, therefore h is expressed as [4]: 

 

ℎij(t) =

{
 
 

 
 h𝑚𝑖𝑛 if 

rij(t)

𝜎(t)
< h𝑚𝑖𝑛

rij(t)

𝜎(t)
 if h𝑚𝑖𝑛 ≤

rij(t)

𝜎(t)
≤ h𝑚𝑎𝑥

h𝑚𝑎𝑥 if 
rij(t)

𝜎(t)
> h𝑚𝑎𝑥

                                                                                                                        (7) 

 

hmax  and hmin  are the upper and lower limits of hij respectively. The length scale σ(t) is described as 

follows [8], [4]: 

 

𝜎(t) = ∥∥
∥xij(t),

∑  j∈KBest xij(t)

K(t) ∥∥
∥                                                                                                                                       (8) 

Where: KBest denotes the subset of K atoms with the best function fitness values [8], [4]. 

{
h𝑚𝑖𝑛 = g0 + g(t)
h𝑚𝑎𝑥 = u

                                                                                                                                        (9) 

 

where u is the upper limit and g is a drift function that aids the algorithm in drifting from exploration 

to exploitation [8], [4]: 

𝑔(𝑡) = 0.1 × sin (
𝜋

2
×

𝑡

𝑇
)                                                                                                                                           (10) 

The weighted sum of components of the forces in the dth dimension is now the total force acting on 

the ith atom from all other atoms. [8], [4]: 

Fi
d(t) = ∑  j∈KBest  random jFij

d(t)                                                                                                                               (11)  

where random j is a number in the range [0,1] [8], [4]. 

  The geometric restriction plays a crucial role in atom motion in molecular dynamics. For the sake 

of simplicity, each atom in ASO is assumed to have a covalent link with the best atom, the best atom 



exerts a restriction force on each atom. The constraint force operating on the ith atom in the dth 

dimension is defined as [4]: 

 

𝐺𝑖
𝑑 = 𝜆(𝑡) (𝑥best 

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))                                                                                                                                    (12) 

where, the Lagrangian multiplier is λ(t), which is described as: 

 

𝜆(t) = 𝛽e−
20t

T                                                                                                                                                              (13) 

Where: the multiplier weight is β. 

As a result, the ith acceleration of an atom  at time t  can be expressed as [8]: 
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d(t)
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T
)
3

e
−20t

T

∗ ∑  j∈KBest

randomj[2(hij(t))
13
−(hij(t))

7
]

mi(t)

(xj
d(t)−xi

d(t))

∥∥xi(t),xj(t)∥∥2

+𝛽e−
20t

T
xbest
d (t)−xi

d(t)

mi(t)

                                                                                                                     (14) 

 

At the tth repetition, the mass of the ith atom is mi(t). It is determined as follows [8]:: 

𝑀𝑖(𝑡) = 𝑒
−

𝐹𝑖𝑡𝑖(𝑡)−𝐹𝑖𝑡best (𝑡)

𝐹𝑖𝑡worst (𝑡)−𝐹𝑖𝑡best (𝑡)                                                                                                                                       (15) 

 

mi(t) =
Mi(t)

∑  N
j=1Mj(t)

                                                                                                                                                        (16) 

 

Where:  Fit best (t) = 𝑚𝑖𝑛
i={1,2,…,n}

 Fiti (t) and      Fit worst (t) = 𝑚𝑎𝑥
i={1,2,…,n}

 Fiti (t) 

  
The ith atom's location and velocity at time(t + 1) are given by [8]: 

  

𝑣𝑖
𝑑(𝑡 + 1) =  random 𝑖

𝑑𝑣𝑖
𝑑(𝑡) + 𝑎𝑖

𝑑(𝑡)                                                                                                                       (17) 

 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1)                                                                                                                                (18) 

 

   Each atom must communicate with as many atoms as feasible that have a better fitness value than 

its K neighbors to improve the exploration in the first stage of the ASO algorithm. The atoms must 

associate with as few atoms with a higher fitness value as feasible as their K neighbors to improve 

exploitation in the last stage of iterations[4]. The distance ratio rij to the length scale σ controls 



whether Attraction or repulsion is the attraction or repulsion interaction force acting on each atom 

from its neighbors. The length scale σ reflects the distance between each atom and its K neighbors' 

average location. As a result, K is a time-dependent function that decreases with the number of 

repetitions, and K may be determined [4], [8]: 
 

𝐾(𝑡) = 𝑁 − (𝑁 − 2) × √
𝑡

𝑇
    (19) 

 

4  Simulation Results 

     TO plan the path of a “mobile robot”, the proposed ASO algorithm was implemented utilizing 

MATLAB R2020a. Experiments were carried out On the platform with Intel® Core™ i7-8550U 

CPU at 1.99GHz, Windows 10 Home OS. A number of pre-tests were used to identify the parameters 

for the suggested procedures as in Table 1. In order to discover the shortest pathways for free, static 

and dynamic obstacle environments 5 random points were generated. The maximal number of 

iterations was 20. To resolve the path planning issue, ASO was proposed and compared with a 

particle swarm optimization algorithm. The study was testing our proposed ASO in three 

environments (free, Static & Dynamic obstacles) as in figures3,4,5 & 6. Search space was 200 × 

200 grid with three obstacles. The maximal number of iterations was 20. The proposed method was 

run by taking four cases in each environment as in Tables 2,3 & 4. From the obtained result, it can 

be concluded that the execution time(the time required to travel the robot from the current point to 

the goal)  and the minimum path( minimum cost) in ASO were reduced as compared with PSO 

algorithms. This demonstrates the Atom Search optimization algorithm's strength. 

 

 

Table 1. parameters for ASO and PSO 

Optimization 

algorithm 

parameters 

Maximum 

iteration 

alpha(α) Beta(β) Limda(λ) m 

ASO 20 20 0.5 1 1 

parameters 

PSO Maximum 

iteration 

W C1 C2 Population size 

20 1 1.5 1.5 50 
 

 

5  conclusion 

   This work looked at the challenge of mobile robot path planning in a two-dimensional workspace. 

Atom Search optimization algorithm and Particle Swarm Optimization search methods were 

proposed for finding the shortest path in the space were employed to select the best path with free 



static and dynamic obstacles. Only the path length was used as objective by using Euclidian distance. 

The method that has been proposed is ASO was tested in three different settings and shown to be 

capable of determining the best path with minimum time as compared with PSO. In further research, 

instead of using ASO, the Butterfly algorithm can be used to optimize the robotic path. 

 

Table 2. comparative between ASO and PSO for free obstacles environment 

cases Start point target minimum cost 

(Shortest path in 

pixels for ASO) 

minimum cost 

(Shortest path in 

pixels for PSO) 

Execution time for 

ASO 

(second) 

Execution time for 

PSO 

(second) 

Case1 (20,20) (180,70) 165 173 36.0142 38.7519 

Case2 (20,20) (180,190) 175 210 41.2211 42.7239 

Case3 (20,10) (137,95) 122 162 25.5928 32.4814 

Case4 (20,20) (30,160) 145 146 29.9424 32.0411 

 

The best path for ASO The best path for PSO The cost for ASO The cost for PSO 

    
Start point (20,20) &target(180,70) Start point (20,20) &target(180,70) cost=165 cost=173 

    
Start point (20,20) &target(180,190) Start point (20,20) &target(180,190) cost=175 cost=210 

    
Start point (20,10) &target(137,95) Start point (20,10) &target(137,95) cost=122 cost=162 



    
Start point (20,20) &target(30,160) Start point (20,20) &target(30,160) cost=145 cost=146 

 

Fig.3. the best path ,the cost in each iteration for ASO & PSO in free obstacles environment 

 

Table 3. comparative between ASO and PSO for static obstacles environment 

cases Start point target minimum cost 

(Shortest path in 

pixels for ASO) 

minimum cost 

(Shortest path in 

pixels for PSO) 

Execution time for 

ASO 

(second) 

Execution time for 

PSO 

(second) 

Case1 (20,20) (180,70) 166 167 31.367 35.5854 

Case2 (20,20) (180,190) 195 196 36.5991 37.2071 

Case3 (20,10) (137,95) 123 139 23.5234 26.3468 

Case4 (20,20) (30,160) 147 149 27.9884 28.9725 

 

The best path for ASO The best path for PSO The cost for ASO The cost for PSO 

    
Start point (20,20) &target(180,70) Start point (20,20) &target(180,70) cost=166 cost=167 

    
Start point (20,20) &target(180,190) Start point (20,20) &target(180,190) cost=195 cost=196 



    
Start point (20,10) &target(137,95) Start point (20,10) &target(137,95) cost=123 cost=139 

 

 

  

 
Start point (20,20) &target(30,160) Start point (20,20) &target(30,160) cost=147 cost=149 

Fig. 4. The best path, the cost in each iteration for ASO & PSO in static obstacles environment 

Table 4. comparative between ASO and PSO for dynamic obstacles environmen 

cases Start point target minimum cost 

(Shortest path in 

pixels for ASO) 

minimum cost 

(Shortest path in 

pixels for PSO) 

Execution time for 

ASO 

(second) 

Execution time for 

PSO 

(second) 

Case1 (20,20) (180,70) 165 169 24.5218 27.9011 

Case2 (20,20) (180,190) 195 268 20.2752 22.4291 

Case3 (20,10) (137,95) 121 161 6.6995 15.7852 

Case4 (20,20) (30,160) 145 151 27.5628 50.9255 

 
 

The  motion of robot using ASO algorithm 

Case1 

   
Case2 

   



Case3 

   
 

 

Case4 

   
Fig. 5. The robot's motion from start point to end point in each case using ASO  

 

The  motion of robot using PSO algorithm 

Case1 

 
 

 

  

The  motion of robot using PSO algorithm 
Case2  

  
Case3 

   



Case4 

   
 

Fig. 6. The robot's motion from start point to end point in each case using PSO
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