
EAI Endorsed Transactions  
on Cloud Systems Research Article 

1 

Conceptual Model of a Dashboard for Monitoring 
Microservices 
Prayudi Utomo1,*, Falahah2 

1Informatics Department, Universitas Widyatama, Bandung, Indonesia 
2Information System Department, Universitas Telkom, Bandung, Indonesia 

Abstract 
The popularity of microservices architecture in building software for the distributed environment leave some problem, such 
as configuration, orchestration, and monitoring. Some technology and software had been built and implemented, but it has 
certain constraints for implementation such as its complexity in configuration and needs many components for running. The 
aim of this research is to propose the conceptual model of a dashboard for monitoring. The model consists of components, 
the interaction between components, and the requirements for each component. We used Model Driven Architecture (MDA) 
for describing the model and building the visual prototype based on the model. We used a black-box approach and monitored 
the microservices through its endpoint. We also propose a simple algorithm for determining endpoint status. We argue that 
our model will provide flexibility on implementation and can be implemented in a small or medium microservices 
environment. 

Keywords: microservices, monitor, model, conceptual, endpoints, MDA. 

Received on 07 June 2020, accepted on 27 August 2020, published on 07 September 2020 

Copyright © 2020 Prayudi Utomo et al., licensed to EAI. This is an open-access article distributed under the terms of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution, and 
reproduction in any medium so long as the original work is properly cited. 

doi: 10.4108/eai.7-9-2020.166285

1. Introduction

The popularity of microservices technology keeps arising 
since it appeared on the internet in the middle of 2013 
(according to google trends) or as mentioned on James 
Lewis and Martin Fowler’s blog posting [1].  Discussion 
about microservices is usually often compared with 
monolithic technology, such as the advantage of 
microservices in increasing the performance of application 
dramatically, regardless of the scale of a user on the 
application. Another benefit of using microservices is 
flexibility in the development process, both technology and 
programming language, as long as they can communicate.  
Many companies are transforming their software 
architecture from monolithic into microservices.  Some 
popular names such as Netflix, Amazon, eBay, and 
Soundcloud have promoted the success of microservices 
implementation [2] 

Despite these benefits, there are lots of challenges in 
implementing microservices that can be categorized into 

*Corresponding author. Email: prayudi.utomo@gmail.com 

two groups which are technical and organizational 
challenges. In technical challenges, we can determine some 
cases such as testing, infrastructure, integration, logging, 
and monitoring. [3] The problem of monitoring 
microservices also becomes a significant finding on the 
pain of microservices [4].  The problem of monitoring 
exists on the operation stage from design-development-
operation cycle  

We also know that there are some tools for monitoring 
microservices such as Raygun APM, Zipkin, Apache 
Kafka, Grafana, and Prometheus. The tools mentioned 
above are usually complex and suitable for monitoring 
large and complex microservices systems.  All the tools 
need to be configured and usually runs on complex 
architecture. The dashboard is also too complex so it makes 
the tools not easy to understand for the novice users for 
simple monitoring purposes.  To resolve this problem, we 
propose a conceptual model for building the dashboard for 
monitoring microservices that can run in a simple 
environment and can be used as a simple tool for 
monitoring microservices.  We used the Model Driven 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5

http://creativecommons.org/licenses/by/3.0/


Prayudi Utomo, Falahah 

2 

Architecture (MDA) approach as a modelling tool to help 
us to define the composition of the model.   

The goal of this article is to gather, analyse, and propose 
the conceptual model of a dashboard for monitoring 
microservices that were inspired by existing systems and 
try to address the complexity of system monitoring.  

The contribution of this research is explained below: 
1. Propose the conceptual and generic model for

monitoring microservices.
2. Identify the significant features and process of

monitoring.
3. Propose the practical approach of defining the status

of microservices through endpoints.
The remainder of the article is structured as follows:

Section 2 describes the fundamental concept of 
microservices architectures and basic concept of 
monitoring; section 3 presents the research questions and 
the method for resolving it; section 4 shows the result of 
the concept; section 5 shows the implementation of the 
concept; section 6 shows the related works and its 
difference with the model we proposed and section 7 is the 
summary and conclusion. 

2. Microservices Architecture

In this section, we will describe the overview of 
microservices architecture, its benefits, components, the 
steps of development and problems that can arise, and how 
to monitor them.  

2.1. Overview of Microservices 

Microservices is considered a new architecture style on 
software engineering that consists many small units called 
microservices which each of them can provide specific 
services.  The microservices solution arose from problems 
that came from previous application styles, monolithic in 
nature, which is large, and become complex and not easy 
to maintain [5].  On a microservices architecture, the 
modules have to be identified and packaged into a service.  
The service should be designed in appropriate granularity 
and implementing microservices needs careful planning 
and design [6].  

The differences between monolithic and microservices 
architecture can be described based on five aspects [7]: 
basic architecture principles, scale, database, deployment, 
and coupled properties. We can see the differences as 
shown in Table 1.  

We can illustrate the architecture of microservices from 
the perspective of the way of communication and 
coordination, as explained by Taibe et al. [8]. Generally, 
the microservices stand behind a “gateway” that can be an 
API-Gateway, Service Discovery (client-side), or Service 
Discovery (Server-side). Regardless of the form of the 
gateway we choose from Taibe et.al, [8] we can conclude 
that for accessing the microservices, we need to access the 
gateway first. 

Table 1. Differences between Microservices and 
Monolithic architecture [8]. 

Aspect Monolithic architecture Microservices 
architecture 

Basic 
principles 

Built as a large system 
and usually one code-base 

Built as a small 
component based 
on business 
functionality 

Scale Hard to scale based on 
demand 

Easy to scale 
based on demand 

Database Uses a shared database Each module has 
its database 

Deployment Larger code base using 
single IDE 

Small size code 
and independent 

Coupled Tightly coupled, so it is 
difficult to change 
technology, code 
language, or framework. 

Loosely coupled, 
easy to change 
the technology or 
framework 
because every 
module is 
independent. 

The gateway will provide some services such as routing 
the message, balancing the load, or forwarding the 
response from microservices.  Figure 1 shows the example 
of accessing microservices using API-Gateway. In the 
figure, we can see that the API-Gateway becomes a single-
entry point for accessing the services. By implementing a 
single-entry point, it will be easy for us to monitor and 
control the services. 

Figure 1. API-Gateway on Microservices [9] 

The microservices are built through three phases, which 
are design, deploy, and observe or operation [10]. The 
designing phase starts from monolithic, then continues 
with designing the microservices by defining the scope of 
services, design the communication between the services, 
and design for resilience.   

In the deploying stage, we can choose some strategies 
on implementing microservices, which can be divided into 
2 areas, with containers or without containers [11]. The 
issues that needs to be addressed in this stage such as how 
to standardize artifacts of microservices deployment and 
implement continuous delivery. In the observing phase, the 
microservices that are already running need to be 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



Conceptual Model of a Dashboard for Monitoring Microservices 

3 

monitored to avoid the failure, and to understand the 
behaviour that exists across hundreds of services. 

The microservices also can be arranged into some 
containers that run in certain environments.  Figure 2 
shows the illustration of microservices that run under the 
container, in which one container will handle one service. 
The container can be clustered to become a pod, the pod 
then can be grouped into a node, and the node can also be 
grouped into clusters. The project is an application-level 
[12]. 

Figure 2. Encapsulation of Microservices inside the 
Container [12] 

2.2. Monitoring Microservices 

Monitoring microservices can be done in several ways. 
Turnbull [13] defines a general framework for monitoring 
which consists of two things: events and metrics. Both of 
them will provide the state of our environment and its 
performance.   Turnbull proposed the framework as shown 
in figure 3.  On Turnbull’s framework, the monitoring 
process can be done by implementing events, logs, and 
metrics. The log will record the events based on its metrics 
and it can be recorded from the targeted system, which also 
can be divided into 3 layers: business logic, applications, 
and operating system. Using an event router, this log can be 
presented on a destination dashboard using a store, graph, 
or alert. 

Based on Turnbull’s framework, we can determine that 
the component of monitoring consists of the targets to be 
monitored, the event, logs and metrics, event route, and 
destination to show the result. Turnbull also mentioned two 
approaches to monitoring, black-box, and white-box.  In 
the white-box approach, the microservices should be made 
to be able to monitor, which means, the microservices 
should have a function for sending the value of the 
parameter we want to be monitored.  

Figure 3. Monitoring Framework [13] 

Regarding the architecture of microservices, the 
monitoring process also can be done for each level of 
microservices layer such as node layer, container layer, 
application layer, and dependent service layer [14]. 
Accessing the node layer and container layer needs 
permission from the system monitored and can be done by 
inserting the code to explore the value of monitored 
parameters. 

3. Study Design

To build the conceptual model of the dashboard for 
monitoring microservices, we followed the modification of 
Design Research Methodology [16] for addressing our goal 
and answering the research questions.  The following 
subsections describe in detail the study design and its 
execution. 

3.1. Goal and Research Questions 

This study’s goal is to propose a simple and easy to 
implement model of a dashboard for monitoring 
microservices.  We present the model as generic as possible 
so it can be implemented in any technology and 
environment.  Based on this goal, we defined the following 
research questions: 

1. RQ1: What is the generic component for
monitoring microservices

2. RQ2: What is the simple approach to developing a
microservices monitoring system.

3. RQ3: How can we present the simple model for
monitoring microservices.

3.2. Research Methodology 

The research was conducted with Design Research 
Methodology (DRM) [15] that consists of 4 stages: 
research clarification, a descriptive study I, prescriptive 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



 
Prayudi Utomo, Falahah 

4 

study, and a descriptive study II.  There were some 
modifications and enhancements of DRM in the field of 
software engineering, such as making a design cycle [15].  
In this study, we adopted the DRM that was modified by 
Tuffley [16] for building a process reference model (PRM). 
Tuffley modified the design research methodology making 
it 5 steps: awareness of the problem, suggestion (literature 
review), development, evaluation, and conclusion. Figure 
4 shows the steps of DRM as proposed by Tuffley. 

 

 
Figure 4. Adaptation of Design Research 

Methodology in Software Engineering by Tuffley [16] 

According to the approach, we implemented the 
research methodology as follows 
1. Awareness of the problem: at this stage, we discussed 

the importance of monitoring issues in a microservices 
architecture. We already discussed this topic in the 
introduction section of this article that mentions the 
existing monitoring system usually comes with 
complex interfaces and not suitable for monitoring a 
simple microservices system.  

2. Suggestion or literature review: We discussed basic 
principles of microservices architecture and general 
framework for monitoring by Turnbull [13], in section 
2 and also discussed some related works on monitoring 
in section 6.  In building the model, we also considered 
the MDA approach for defining the component in the 
hierarchical structure. 

3. Development: We build the conceptual model of a 
dashboard for monitoring microservices using the 
MDA approach and limited the implementation to 2 
layers, CIM and PIM.  We do not cover the 
implementation of the concept on PSM because it is 
out of our scope and it will drive the concept into 
complexity.  

4. Evaluation: We did not use a specific method for 
evaluation of the model due to some constraints for 
implementing the model in a real environment.  We 
replaced this topic by showing how to implement the 
model using simple interfaces.  We described the 
result and future issues in section 5. 

5. Conclusion: We summarized the result and its 
implementation in section 7. 

3.3. Limitation and constraints 

We set some limitations and constraints for our study, 
based on our goal and research questions, as follow: 
1. The target of monitoring is limited to small to medium 

scale of microservices, so the model will be suitable 
for organizations that are in the early stage of 
microservices implementation. 

2. The model focuses on monitoring the performance of 
microservices and does not include the security 
aspects. 

3. We proposed the model for designing the dashboard, 
which includes the component that should appear on 
the dashboard based on minimum requirements of 
monitoring microservices, and we did not include the 
detailed mechanism for logging or information 
retrieval from a log. 

4. We used MDA for the modelling approach and limit it 
to the first two layers: Computational Independent 
Model (CIM) and Platform Independent Model (PIM). 

4. Results 

In this section, we discuss the result of our study that 
consists of components we need to identify and the 
modelling approach. 

4.1. Components of Monitoring Model 

Before we identify the model, we need to identify the 
component of the monitoring model. Adopting the 
framework from Turnbull, we proposed a framework to 
help us identify the component of monitoring, as shown in 
figure 5.  

 

 
Figure 5. Framework for Monitoring Microservices 

System 

The components of the framework can be defined as 
follow: 

(i) The object is the thing we want to monitor. In this 
case, the object is the microservices itself. 

(ii) The access point is the way we access the object to be 
monitored. In this case, we assume that the 
microservices are placed beside the gateway and we 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



Conceptual Model of a Dashboard for Monitoring Microservices 
 

5 

could not access them directly, so we chose to access 
them through endpoints.  Let us assume that one 
microservice can have some endpoints, so we need to 
address each endpoint to check the availability of the 
service. 

(iii) The monitoring system is one that can monitor, which 
consists of several elements such as: 
a. Reader, the element on the system that can read 

the parameter value from the object through the 
access point. 

b. Logger, the place for storing the parameter value. 
c. Checker, the element on the system that checks 

the value from the logger and compares it with a 
certain standard and sends the result to the 
dashboard. 

Turnbull also defines 3 important components of 
monitoring, which are event, log, and metric.  

Metric is the parameter we want to measure. Metric 
consists of the parameter and the threshold. The parameter 
is something we can measure, and the threshold is the 
minimum quality standard that should be met by the 
parameters. In our proposed system, we defined the 
parameters and threshold as below: 

(i) Parameters: We will use four parameters which are: 
failed requests, server response time, server requests, 
and availability. The four parameters were chosen 
based on consideration of easiness on data collecting. 
The reason why we chose these parameters because 
we accessed the microservices through endpoints, the 
we used the four golden signals (Latency, Traffic, 
Errors, and Saturation) [17] to identify the status of 
endpoints. Each signal can consist of several 
parameters.  

(ii) The threshold is the limit value of each parameter we 
decided to show that the endpoints failed. The 
threshold depends on the type of parameters, such as 
seconds for response time, frequency (events per 
certain period) for failed requests, and server 
requests. 

The log is the place we stored the data.  The log can be 
a text file or database file that arranges the data into a 
certain format. 

The event is the time when we get the value of the 
parameter.  Sample of an event such as a failed event that 
can be generated from error handling, or alert is generated 
based on certain criteria (threshold).  In this model, we 
assumed that the reader will collect the data from objects 
in a certain period, for example, each one second, and store 
the value in the log. 

4.2. Modelling Approach 

Some aspects need to be considered before defining the 
model, which are: monitoring mode (black-box vs white-
box), level of metric we want to collect (application level), 

type of display, and display journey. Table 2 below shows 
the option for each aspect and the shadowed area is our 
chosen solution. 

Table 2. Options for Design Aspect 

Aspect Options 
Monitoring-
mode 

Black box White box 

Level of metric Node Contai
ner 

Applicati
on 

Depend
ent 
services 

Type of display Counter Gauge Timer  
Display journey General specific 
 

Monitoring mode has two options, which are black-box 
and white-box. In this model, we chose black-box since we 
only accessed the microservices through its endpoint and 
would not modify the code inside the microservices so it 
could report itself. On the level of metric, we chose 
application level since for monitoring the first 2 options 
(node and container), we needed direct access to the 
environment where microservices was running.  Type of 
parameter’s display: we could implement 2 types which are 
score metric (number) or gauge. Display journey was 
chosen because first it would display all selected 
microservices and then we could choose specific 
microservices for detailed information. We will use DMM 
as a short name for the dashboard for monitoring 
microservices. 

We used the MDA approach in defining the conceptual 
model of DMM. In MDA, the model consists of 
Computational Independent Model (CIM), Platform 
Independent Model (PIM), Platform Specific Model 
(PSM), and Implementation Specific Model (ISM) [18] 
that can be considered as model layering. The lower the 
model, the more detailed and specific the result, so it can 
be said that PSM is more detailed than CIM and PSM is 
more specific than PIM. According to our research goal, 
we chose the layer of MDA for describing our conceptual 
model, which were CIM and PIM. Each layer consists of 
several processes and the output for each process can be 
seen in Table 3 below. 

Table 3. Process and Output in Modelling Activity 

Model Process Output 
CIM Define the requirement List of requirements 
 Identify the functions of 

the system 
Use case diagram 

 Identify the system 
architecture 

Architectural diagram 

 Define activity in a 
certain function 

Activity diagram 

PIM Define system 
specification 

System specification 

 Define data/class model Class diagram 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



 
Prayudi Utomo, Falahah 

6 

Model Process Output 
 Define the specific 

process 
pseudocode 

 

4.3. Model of Dashboard for Monitoring 
Microservices 

A. Computational Independence Model (CIM) 

Since the objective of this research was to propose a 
simple and generic model of DMM, we defined the 
requirements as follow: 

(i) The system should be able to display the status of 
microservices based on their end-point condition. 

(ii) The system should be able to display the status of 
each monitored parameter for each endpoint. 

(iii) The user can customize the period of reporting in 
the display area. 

(iv) The system can send alerts to a specific address on 
a specific parameter, as defined by the user.  

(v) The system can produce a report based on user 
requests. 

Based on the list of requirements above, we could draw 
the use case for DMM as shown in figure 6. 
 

 
Figure 6. Use Case Diagram of DMM 

As we can see from the use case diagram, there are five 
main features of this system. Set configuration will be used 
for registering microservices, define for setting the 
reporting period, and account for sending notification. The 
feature of check endpoint status will run the checker 
function because all the output in DMM will depend on this 
function. We describe the process of check endpoint status 
using an activity diagram as shown in figure 7. 
 

 
Figure 7. Activity diagram for process check 

endpoint status 

Based on the requirements mentioned above and the 
activity diagram, we could identify the component of the 
DMM system using the ArchiMate approach, which are 
actor, services, application, and its component, data, and 
technology. Since we were in the CIM stage, we did not 
include data and technology on the architecture model.  The 
components needed for building the DMM are: 

(i) Actor: User 
(ii) Business services and process: 

a. Display the status of microservices, get a 
notification, and produce reports. 

b. The process for delivering the services above are 
set configuration, read the log, display the data, 
send a notification, and create a report. 

(iii) Application component and process: 
a. The main component of DMM is the dashboard 

itself. Inside the dashboard, there are some 
processes such as: setting the configuration, 
reading the data from log, processing, and 
displaying the data, setting and sending the alert 
and generating reports based on user requests. 

b. The Read process can consist of sub-processes 
such as: sending requests and recording the 
response, sending data and recording the result, 
and so on. The response is recorded on a log file. 

(iv) Data component: 
The data component for the system is a log file. The 
log file is generated by the sub-process in reading. The 
log file consists of a time series of recorded values for 
each parameter, written by sub-process.  

(v) External component: 
The external component is the microservices itself 
which can be accessed using its endpoint. The DMM 
system will identify the microservices endpoint and 
register it into the DMM catalogue. 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



Conceptual Model of a Dashboard for Monitoring Microservices 
 

7 

Figure 8 shows the architectural model of DMM. 
 

 
Figure 8. Architectural Model of DMM 

B. Platform Independent Model 

Platform Independent Model describes the specification of 
the system based on its business requirement. As derived 
from the previous section, DMM should have some 
features such as setting the configuration, reading the log, 
displaying, sending alerts, and generating reports.  Based 
on this requirement, we can define the detail specification 
of DMM as follows: 

DMM should have three main functions which are: 
create the log, analyse the log, and visualize the log. For 
each function, we can define the process as shown in Table 
3. 

Table 3. Process in DMM Function 

Function Process 
1. Create the log Send request directly to an endpoint 

Accept the response 
Write the response to the log file 

2. Analyse the log Read the values for each parameter’s 
status on the log 
Compare the value to threshold 
values 
Set status for each endpoint. 

3. Visualize the status Visualize the status for each endpoint 
by set the colour for each status. 
Visualize the status for the services 
by displaying the recapitulation of 
status for each endpoint that exists on 
each service 

 
Before the system can perform its function, the user 

needs to set up some configuration such as: 

(i) Registering the services as an object for a monitor. 
(ii) Setting the period of monitor, or cut-off for reading the 

log and displaying the result, for example, every 10 
minutes. 

(iii) Defining the threshold for each parameter, or using the 
default value, for example, we can set the threshold of 
response time to 5 seconds. If the response is more 
than 5 seconds than we can set the status as fail. 

(iv) Setting the time range for sending the request to the 
endpoint, for getting the response such as every 5 
seconds. 

(v) Setting the account for sending the notification. 

As we can derive from the specification above, we can 
identify the class data for DMM such as service_catalog, 
service_endpoint, parameters, log, notification, and 
configuration.  Figure 9 shows the class diagram for DMM. 
 

 
 

Figure 9. Class Diagram for DMM Model 

The main information that will be displayed on the 
dashboard is the status of the object observed.  On our 
proposed model approach, we determined the status of 
microservices by exploring the status of endpoints. We 
chose this approach because the model we built is based on 
black box monitoring approach, where the monitor system 
accesses the microservices by accessing the endpoint.  One 
microservice can have lots of endpoints based on their 
functions, such as to get, post, put, and delete. Failure in 
one of these endpoints can cause the failure of the 
microservices.  The four parameters on examining the state 
of the endpoint, are failed response, server response time, 
server request, and availability.  The four parameters we 
derived from four golden signals for monitoring distributed 
system which are latency, traffic, error, and saturation [19].  
For each parameter as mentioned, we can define the 
threshold values, which depend on the organization’s 
condition or previous experience of the users.   
On setting status process, we propose to use the algorithm 
as shown in pseudocode below.  The pseudocode is 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



 
Prayudi Utomo, Falahah 

8 

written for setting a status of one endpoint for a certain 
time.  So, we defined: 

(i) Four parameters as an array of P[n], each for failed 
response, server response time, server request, and 
availability,  

(ii) Threshold (T) as an array of T[1], T[2], T[3], and 
T[4], for each parameter in P[n], 

(iii) The status = Success, Warning, Danger and Off. 
The criteria for defining status is as follow: 
1. Success: if count of (P[n] > T[n]) = 4 
2. Warning: if count of (P[n] < T[n]) = 1 
3. Danger: if count of (P[n] < T[n]) = 2 
4. Off: if count of (P[n] < T[n]) = 4 

Based on assumption above, we can define the 
pseudocode for defining status as below: 
 
// Value of Parameter P[n] on certain time t 
var P = []; 
 
// Treshold 
var T = []; 
 
// Counter 
var count = 0; 
 
checkCount() { 
    P = readLog();  //reading the log file 
    for (i = 1; i <= 4; i++) { 
        if (P[i] > T[i]) { 
            count = count + 1;} 
    } 
    return count;} 
 
setStatus(count) { 
    switch (count) { 
    case (count == 4): 
        return “Success”; 
    case (count == 3): 
        return “Warning”; 
    case (count == 2): 
        return “Danger”; 
    default: 
        return “Off”;} 
} 
 

5. Implementation and Discussion 

5.1. Interface Design 

To show that the model can work, we implement it in a 
prototype for small e-commerce site that consist 4 services: 
user, post, product and analytic. We pick the name of our 
DMM model is Monitorifix.  Figure 10 shows the main 
menu of the Monitorifix DMM model. 

 
Figure 10. Main Display of Dashboard for Monitoring 

Microservices 

The dashboard will display the categories of services on 
the left bar and a list of services including the recap of 
endpoint status in the right bar. The system will have 4 
main menus which are services, endpoint, reports, and 
configuration. Figure 11 displays the list of endpoints that 
are available in services we monitored. It gives us an 
overview of all endpoints and the user can choose to 
display a certain status or all statuses. 

 

 
Figure 11. The status of Endpoints 

Other features that are available on Monitorifix are 
report and configuration. The report can be used for 
generating custom reports such as the status of  certain 
endpoints in a certain period, or comparing some services 
in one sheet, and much more.  Monitorifix also provides a 
detailed status for each parameter for one endpoint as 
shown in figure 12.  The status will be displayed based on 
the time period chosen by the user in the configuration 
menu. 

 
 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



Conceptual Model of a Dashboard for Monitoring Microservices 
 

9 

 

Figure 12. The four parameters status of one 
endpoint 

The model is designed as simple as possible and can be 
implemented in any environment. The interface can be 
integrated with any tools for generating data or reading the 
parameter values.     

5.2. Specific Platform for implementation 

There are many possible combinations of technologies for 
implementing PIM into PSM. We can convert the PIM into 
certain technology stacks, for example, front-end: 
HTML/JavaScript, back-end: PHP/Python and Apache 
web server, data storage: file-based, message broker, 
database file.   Another example of technology stack: front-
end: Java, back-end: Java/PHP, data-storage: file-based.  

The options of technology stack can be customized 
depends on the environment capability of supporting the 
monitoring systems. 

5.3. Discussion and future opportunities 

The DMM model is suitable to be applied in a small or 
medium microservices environment and focuses on 
profiling services as a single unit. Although it seems so 
simple, the dashboard can help the user and developer in 
monitoring the services without setting lots of 
configuration that might not be necessary to set for the 
early stage of microservices implementation.  Users can 
add and remove certain microservices and it can give the 
user the scalability of monitoring systems.  

As mentioned in the previous section, the ability for 
monitoring systems supported by microservices 
architecture is a mandatory requirement. The Monitoring 
system can give us a warning and take important action to 
keep business services running.   We can monitor the 
system easily if the system has the ability for reporting 
itself periodically and automatically, by creating a log of 
its activities.  We can implement a good logging system if 
we can define the most critical parameters to be recorded.  
It indicates that we need to consider the monitoring process 
since the beginning process of the analysis and design of a 
system that runs is based on a microservices architecture.  
It means that we have to define whether the microservices 
can report themselves or we need to install a specific 
component for monitoring and logging.   

Along with the growth of microservices in the 
organization, it will face some critical issues according to 
monitoring such as: 

(i) Portability: the monitor should be independent of 
the microservice, so it will lead to an idea of a 
detachable component for monitoring. 

(ii) Interoperability:  the monitor can run in any certain 
technology stack, and can support a variety of 
components and types of microservices.  

(iii) The complexity of the system:  It would be better 
for organizations to prepare their strategy on 
adopting microservices, together with monitoring 
strategy so they can provide the services and at the 
same time keep the performance of the services.   

(iv) The needs of closer monitoring:  a sensor for 
monitoring can be attached to the microservices 
component for closer monitoring, and it can give 
the microservices additional load. There is a 
consideration about the trade-off on each approach, 
such as setting the priority of microservices, and it 
can lead us to choose what strategy we need to 
implement for logging and monitoring.    

(v) System security: The more complex the system, the 
more issues of security need to be addressed. The 
microservices that can be built by the different 
groups need standards on security requirements and 
protocols, and also need a way to monitor security. 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5



 
Prayudi Utomo, Falahah 

10 

The next step after we can monitor the performance, 
is to monitor the security of the systems.  

(vi) Failure preparation: We can set some warnings for 
parameters to define the failed status of the system 
and it can be part of an early warning system. The 
information on the dashboard can help users in 
anticipating the failure and implement a certain 
strategy for recovery, such as failover or graceful 
degradation.  

Future opportunities in this research are to identify other 
parameters for monitoring endpoints and how to set the 
status of microservices based on endpoints or any 
parameter.  

6. Related Works on Monitoring 
The issue of monitoring microservices is covered in some 
related works such as the needs of control loops for a 
runtime that includes monitoring, analysis, planning, and 
execution [20].  The previous works on monitoring 
microservices are varied from using a specific software, 
proposed dashboard model or proposed model for decision 
guide in microservices system. We can summarize the 
comparison of related works in monitoring with our work 
in table 4 below. 

Table 4. Related Works on Monitoring Microservices 

Articles Key point Comparing with 
our works 

Monitoring and 
Analysis of 
Microservices 
Performance [21] 

Uses Keiker 
framework, 
collect data and 
store it locally 

Utilizes the log 
data that can be 
generated and 
stored anywhere, 
no need additional 
software. 

A Dashboard for 
Microservice 
Monitoring and 
Management [22] 

Emphasizes the 
discussion on 
component 
information that 
should exist on the 
dashboard, not 
including the 
approach for 
gathering the 
information 

Proposed black-
box approach on 
monitoring and 
the mechanism 
how to gather 
information from 
existing 
microservices 

Decision 
Guidance Models 
for Microservices 
– Service 
Discovery and 
Fault Tolerance 

Proposed a 
decision model for 
services 
discovery, service 
registration, 
versioning, 
caching, load 
balancing, and 
fault tolerance. No 
decision model for 
assigning the 

Focusing on 
runtime 
monitoring the 
microservices, and 
emphasizing on 
service 
availability by 
checking the end-
point periodically, 
and provide the 
preview of status 
microservices 

Articles Key point Comparing with 
our works 

status of the 
services 

Performance 
Engineering for 
Microservices: 
Research 
Challenges and 
Directions [24] 

identified three 
key areas for 
monitoring issue 
in microservices, 
which are: 
instrumentation 
for distribution 
monitoring, 
measurement, and 
anomaly detection 
techniques. 

We adopt some 
concept of 
architecture for 
monitoring 
microservices 
which are 
distributed 
monitoring (we 
recommend to 
read the signal 
from end-point), 
and additional 
measure (we 
recommend the 
mechanism to set 
the status of 
microservices). 

7. Conclusion 

In this research, we proposed a simple model for building 
a dashboard for monitoring microservices. We proposed 
the components of a monitoring framework that consists of 
an object to be monitored, access point, and the system 
monitoring itself that contains the reader, the logger, and 
the checker. The system can access the microservices that 
are usually placed behind the gateway, through its 
endpoints.  The status of each endpoint can be used for 
showing the status of services.  We use four parameters for 
detecting the endpoint condition and generated the status 
of endpoint based on the combination status of each 
parameter compared with its threshold.  The system was 
modelled using the MDA approach and implemented as an 
interface prototyping using static webpages. The 
monitoring model we proposed focuses on profiling the 
status and condition of each service and does not provide 
information about dependent services. It uses a black-box 
approach so the system can access all the microservices as 
is, regardless of the inner structure of microservices, as 
long as the microservices have the endpoint to access.  

References 
[1] Lewis., J., & Fowler. M., “Microservices” Available:  

https://martinfowler.com/articles/microservices.html (last 
accessed: 05/05/20) 

[2] Richardson, C., “Microservices Architecture” Available: 
https://microservices.io/articles/whoisusingmicroservices.
html (last accessed: 05/05/20) 

[3] Makilato, N, & Mikkonen, T. Challenges when moving 
from monolithic to Microservices Architecture, in book 
Current trends in Web engineering, pp 32-47. 

[4] Soldani, J, & Tamburri, D.A. The Pains and Gains of 
Microservices: A Systematic Grey Literature Review, 
Journal of System and Software, September 2018  

[5] Fritzsch, J, Bogner,J., Zimmermann, A., & Wagner,S. 
From monolith to microservices: A classification of 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5

https://martinfowler.com/articles/
https://microservices.io/articles/


Conceptual Model of a Dashboard for Monitoring Microservices 
 

11 

refactoring approaches, in Software Engineering Aspects 
of Continuous Development and New Paradigms of 
Software Production and Deployment (J.-M. Bruel, M. 
Mazzara, andB. Meyer, eds.), (Cham), pp. 128–141, 
Springer International Publishing, 2019 

[6] Zhelev, S., & Rozeva, A. Using Microservices and Event-
Driven Architecture for Big Data Stream Processing, in 
Proceedings of the 45th International Conference on 
Application of Mathematics in Engineering and 
Economics (AMEE’19), 2019 

[7] Parahar, M. Difference between monolithic and 
microservices architecture.  Available: 
https://www.tutorialspoint.com/difference-between-
monolithic-and-microservices-architecture (last accessed: 
05/05/20) 

[8] Taibi, D., Lenarduzzi, V., & Pahl, C. Architectural 
Patterns for Microservices: A Systematic Mapping Study. 
In Proceeding of 8th International Conference on Cloud 
Computing and Services Science, CLOSER (2018) 

[9] Image is taken from  https://dzone.com/articles/ 
microservice-architecture-learn-build-and-deploy-a (last 
accessed: 05/05/20) 

[10] Bruce, M., & Pereira, P.A. Microservices in Action, 
Manning Publication, 1st ed, 2018. 

[11] Mahajan, A. Microservices Without Containers, Available 
online on https://dzone.com/articles/ microservices-
without-containers, (last accessed: 10/05/20) 

[12] Richardson, C. Choosing a Microservices Deployment 
Strategy, 2018, Available online on 
https://www.nginx.com/blog/deploying-microservices/, 
(last accessed: 15/05/20) 

[13] Turnbull, J. (2016). The Art of Monitoring 
[14] Saito, H, Lee, H.C., & Wu, C-Y.  DevOps with 

Kubernetes: Accelerating software delivery with container 
orchestrators, Packt Publishing (October 16, 2017) 

[15] Glass, R.L, Vessey, I., and Ramesh, V.(2002). Research in 
Software Engineering: an analysis of the literature, 
Information and Software Technology, 44. Pp.491-506. 

[16] Tuffley, D.J. A Design Research approach to developing a 
Process Reference Model for leadership of integrated 
teams in virtual environments, Ph.D. Thesis, Griffith 
University, Queensland, Australia, 2010. Available online 
on: https://research-repository.griffith.edu.au/ bitstream/ 
handle/10072/365310/Tuffley_2010_02Thesis.pdf? 
sequence=1&isAllowed=y, (last access: May 20, 2020) 

[17] Beyer, B., Jones, C., Petoff, J., & Murphy, N.R. Site 
Reliability Engineering: How Google Runs Production 
Systems, O'Reilly Media, 2016 

[18] Bajovs, A., Nikiforova, O., & Sejans, J. Code Generation 
from UML Model: State of the Art and Practical 
Implications, Applied Computer System, vol. 14, 2013 

[19] Allclair, T., &Kaczorowski, M., “Exploring container 
security: Isolation at different layers of the Kubernetes 
stack”  Available: https://cloud.google.com/blog/ 
products/gcp/exploring-container-security-isolation-at-
different-layers-of-the-kubernetes-stack (last accessed: 
05/05/20) 

[20] Garriga M. Towards a Taxonomy of Microservices 
Architectures. In: Cerone A., Roveri M. (eds) Software 
Engineering and Formal Methods. SEFM 2017. Lecture 
Notes in Computer Science, vol 10729. Springer, Cham, 
2018 

[21] Barakat, S. Monitoring and Analysis of Microservices 
Performance, Journal of Computer Science and Control 
System, Vol.10 No. 1, May 2017 pp 19-22 

[22] Mayer, B., & Weinreich, R. A Dashboard for Microservice 
Monitoring and Management, In Proceeding of 2017 IEEE 
International Conference on Software Architecture 
Workshops,  

[23] Haselbock, S., Weinreich, R., & Buchgeher, G. Decision 
Guidance Models for Microservices – Service Discovery 
and Fault Tolerance, in Proceeding of ECBS ’17, August 
31-September 1, 2017, Larnaca, Cyprus 

[24] Heinrich, R., Hoorn, A., Knoche, H., Li, F., Lwakatare, 
L.E., Pahl, C., Schulte, S., & Wettinger, J. (2017). 
Performance Engineering for Microservices: Research 
Challenges and Directions, in Proceeding of ICPE ’17 
Companion, April 22-26, 2017, L’Aquila, Italy 

 
 
 

EAI Endorsed Transactions on 
Cloud Systems 

05 2020 - 09 2020 | Volume 6 | Issue 18 | e5

https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture
https://dzone.com/articles/%20microservice-architecture-learn-build-and-deploy-a
https://dzone.com/articles/%20microservice-architecture-learn-build-and-deploy-a
https://dzone.com/articles/
https://www.nginx.com/blog/deploying-microservices/
https://cloud.google.com/blog/%20products/gcp/exploring-container-security-isolation-at-different-layers-of-the-kubernetes-stack
https://cloud.google.com/blog/%20products/gcp/exploring-container-security-isolation-at-different-layers-of-the-kubernetes-stack
https://cloud.google.com/blog/%20products/gcp/exploring-container-security-isolation-at-different-layers-of-the-kubernetes-stack



