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Abstract:  Contemporary Smart Grid (SG) systems are enticed by smart devices 

and entities due to unfolded developments in intelligent transportation technologies 

(ITT). The SG ecosystem, when introduced to Internet of Things (IoT) makes every 

object active and brings them online. However, the traditional cloud deployments 

look puerile to meet the analytics and computational exigencies for such dynamic sub-

systems. Starting with highlighting the mission critical requirements of an idealized 

SG infrastructure, this work proposes an edge centered FOG (From cOre to edGe) 

computing model primarily focused to realize the processing and computational 

objectives of SG.   The motive of the work is to comprehend the applicability of fog 

computing algorithms to interplay with the core centered cloud computing support, 

thus  enabling to come up with a new breed of real-time and latency free utilities.  

Further, for demonstrating the feasibility of the proposed framework, a comparative 

optimization framework is proposed that captures the monetary expenses due to the 

power consumption, latency and emission issues in both cloud based as well as fog 

commuting frameworks.   Finally, the suitability and viability of fog computing 

approaches are demonstrated through its comparative results of the metrics with that 

of traditional data center or cloud computing approach. Results clearly demonstrate 

the superiority of FOG computing over its cloud counterpart.      

Keywords:   Smart Grid (SG), Internet of Things (IoT), Fog computing, Cloud 

computing, Advanced Metering Infrastructures (AMI), software defined networking 

(SDN).  
 

1. Introduction  

   There are relentless economic as well as environmental arguments in the academia, 

industries, R&Ds and legislative bodies for the overhaul of the contemporary power 

grid comprehended by a full Smart Grid rollout [1]. The latter integrates green cum 

renewable energy production utilities, robust power monitoring schemes, adapts and 

evolves with the consumption behavior and requirements. However, the unique 

feature that overlays on the heap of a SG amenities is connectivity and real-time 

analytics [2]. The recent advancements in information and communication 

infrastructures in general and Internet of Things (IoT) utilities in specific redefine the 

notion of “SMART” in current SG architectures.  This work outlines the fog 
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computing paradigm and examines its primacy over the cloud computing counterpart 

that became ubiquitous in fulfilling the computational and analytics needs of a 

reliable, robust, resilient and sustainable SG.   

  The notion of smartness has been introduced into the contemporary SG architectures 

where the local nodes will be leveraged with computational capabilities.  They will no 

longer remains a “thing” rather will be transformed into active computing nodes or 

“objects”. Every component of SG network whether it is at the generation, 

transmission or service level, will act as active nodes in the entire transportation web. 

They are now called object in the sense that they will be having attributes, gateways, 

states etc. The whole transportation system can be encapsulated as a network of active 

nodes having deterministic state transitions. This is achieved through the notion of 

internet of thing (IoT).  IoT will ensure real-time transport of information to and from 

the utilities, smart grid system and other components in the power system and 

charging infrastructure in a way that the current as well as future needs of these 

entities along with dedicated business engagement can be determined [3].  

      Such technologies are enabled by the recent developments in RFID, smart sensors, 

communication standards, and Internet protocols[4]. The basic principle is to have an 

environment where smart sensors collaborate directly with the “objects” without 

human involvement aiming to deliver multitudes of applications and services [5], [6].  

It is a consensus belief by industries as well as research giants that down the line, in 

near future IoT will emerge as a technology enabler for smart transport, X2X (where 

X may be any of but not necessarily same from entities like Vehicles, Grids, Homes, 

Micro-grid etc.) data and energy exchange topologies, optimal renewable integration 

and intelligent charging infrastructures [7].   

   However, it is obvious that in the IoT architecture the population of connected 

entities will overshoot the current growth drift and will jeopardize the normal 

computing configurations [8]. This will in turn cause an exponential escalation in data 

generation, handling of which is key task to ensure viable implementation any data 

aware infrastructure. Connecting the objects through edge networks and technologies 

such as Wireless Sensor Networks (WSN), Zigbee, bluetooth, RFID, WiFi, 3G, and 

4G etc. will increase the complexity of underlying communication architectures.  

Efficient and robust data analytics setup that can establish a real-time cum intelligent 

decision making atmosphere at every edge services becomes the need of hour. An 

exhaustive review of existing control paradigms reveal the presence centralized 

coordination strategies such as cloud computing, grid computing etc [8],[9]. However 

the service demands of IoT architecture reflect that there needs computing schemes 

that can execute locally at the edge itself. The prevalent cloud models are not intended 

to handle the seven unprecedented V’s (Volume, Velocity, Variety, Variability, 

Veracity, Visualization and Value) in the data generated by IoT architectures and 

coupling the whole universe of “things” or “objects” directly to the cloud is nearly 

unfeasible [10].  Fog computing approaches seem to be the preeminent preference for 

computations at the extreme edges such as vehicles, roadways, charging station etc 

[10]–[13].           

  However installation of fogs (mini data centers) everywhere across the edges of the 

networks and entities may not be cost productive. The infrastructure demands varying 
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levels of services which in turn have specified QoS requirements. Transporting tera-

peta bytes of data from millions of edge devices to the central cloud in real-time is 

quite infeasible and even unessential, as a significant percentage of data are passive  

and don’t contribute to any decision making process. Furthermore, there exist several 

tasks that don’t even entail storage, processing and analytics at cloud scale. Such 

requirements motivate the need of a hybrid control architecture where the mining and 

analytics activities are intelligently dispersed.       

    The smart grid applications require location aware geodistributed intelligency in 

services such as metering information updates, power thefts, distribution outages, 

network intrusions etc, and require prompt and reflex actions to evolve and organize 

according to the adversaries.  However, the current smart grid is under immense 

pressure owing to its sullen response to the abovementioned computational demands. 

Also, due to its fragility concerns in SG control and coordination sub-systems, 

repercussions of power outages, resiliency and reliability issues are growing ever 

more serious. Upgrading to a computationally smarter, reliable and resilient grid has 

escalated from being a desirable vision, to an urgent imperative. Here we itemize few 

but not the least, of some of the mission critical requirements of an ideal SG 

infrastructure plus the sombre experiences encountered while going for pure cloud 

computing deployment.  

1.1 Support for scalable real-time services:    

The need of real-time analytics and decisions is being emerged as the need for the 

hour to carry up the timing requirements of mission critical SG utilities [14]. Even if   

some servers’ fiascos occur, the system should heal itself with just graceful 

degradation in latency services. The current cloud models support for SGs can 

provide rapid response mechanisms but adversaries still pose threats to 

responsiveness.   

1.2 Support for scalable, consistency guaranteed, fault-tolerant services: 

 Consistency for cloud-hosted utilities is a broad term associated with ACID 

(Atomicity, Consistency, Isolation and Durability) guarantees, support for state 

machine replication, virtual synchrony, and support for only limited count of node 

failures [1]. Today’s smart grid cloud infrastructures often “embrace inconsistency”, 

thus implementing consistency preserving computational structures constitute a 

nascent thrust domain for the research & development sector.  

1.3 Privacy and security:  

    The woeful protection services of current cloud deployments often stimulate the 

cloud vendors to recapitulate their security management folks to “not be evil”. Stern 

efforts are in progress across the power system and transportation communities to 

come up with SG cloud utilities and platforms leveraged with robust protective 

contrivances where the stakeholders could entrust the storage of sensitive and critical 

data even under concurrent share and access architectures [15], [16].  
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1.4 Highly Assured Connectivity:  

 Added with power outages, the smart grid consumers also experience intermittence in 

data connectivity. Projects for establishing mechanisms dedicated to support secured 

multipath data routing from user edges to cloud services are on headway. Critical 

components of the future smart grid applications demand better quality of service 

(QoS) and quality of experience (QoE) from the data routing backbone that underlie 

the cloud-hosted utilities.   

1.5 Need for risk management modules:  

  Switching from traditional power grid to multi-tenant SG subsystems introduce 

substantial risks to power sector, an issue that need to get fixed in inception phase. 

The penetration of autonomous EVs into modern road transport manifolds such 

concerns. The EVs are becoming a basin for multi-dimensional data production, an 

asset if mishandled, may befool the execution of whole systems.   Moreover, the data 

generated due to Cloud-IoT integrated transportation telematics coupled with 

advanced metering infrastructures (AMI) can prove to be harmful to its stakeholders, 

specifically for privacy and security [16]. Thus, it’s an earnest need for the 

stakeholders to be assured with stringent protection protocols and be inert from the 

vulnerabilities.  Such scenario necessitates incorporating robust risk analysis 

procedures that will evaluate and quantify the computational and business risks that 

persist in such critical infrastructures. Selection followed by implementation of proper 

risk analysis paradigms is itself a full-fledged realm to dwell on. Risks perceived to be 

minor in inception phase, later elicits tougher public concerns. Though the “pay-for-

usage” protocols of cloud computing business models are efficient in satisfying the 

bulky analytics and computational tasks, the bliss transforms into worries when the 

applications demand null-latency services and when the data stream chokes the 

bandwidth restricted communication buses.  The emerging wave IoT based 

transportation telematics can prove potentially astonishing in fulfilling the mobility 

requirements of contemporary smart grid architectures.  

    Motivated by the above mentioned mission critical Smart Grid requirements, the 

pitfalls associated with current cloud computing infrastructures to meet such needs, 

and having the assumption that the smart grid community is not in a position to 

reinvent a remotely owned Internet infrastructure or to develop computing platforms 

and elements from scratch, this work presents a fog computing framework whose 

principle underlie on offloading the time and resource critical operations From cOre 

to edGe.   The argument here is not to cannibalize the existing cloud support for SG, 

but to comprehend the applicability of fog computing algorithms to interplay with the 

core centered cloud computing support  leveraged with a new breed of real-time and 

latency free utilities.  

2. Fog Architecture for Smart Grid 
     The work presents a three schema computing architecture where the significant 

portions of smart grid control and computations are non-trivially hybridized alongside 

the cloud computing support. The objective is to overcome the disruption caused by 
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the development of IoT utilities where the control, storage, networking and 

computational needs are actively proliferated across the edges or end-points.     

 

 
  

                   Fig. 1:  Topology of FOG computing paradigm in a Smart Grid  

 
   The lowermost schema namely physical schema or data generator layer primarily 

comprises of a wide range of smart IoT enabled devices which come within the SG 

domain. For simplicity, the entities are abstracted into logical clusters of applications, 

directly or indirectly influenced by the expediency of SG operations.  

 The first cluster (C1) represents vehicular applications where the intelligent vehicles 

are arranged to form vehicular fogs. The existing transportation telematics support 

such as cellular telephony, on-board sensors (OBS), roadside units (RSU), and smart 

wearable devices will uncover the computational as well as networking capabilities 

latent in the underutilized vehicular resources. The notion is to employ the 

underutilized vehicular resources into communicational and analytics use, where a 

collaborative multitude of end-user clients or near-user edge devices  carry out 

communication and computation, based on better utilization of individual storage, 

communication and computational resources of each vehicle [5]. Similarly, similar 

presence of clusters (C2) could also be traced in smart home networks that have a 

noteworthy contribution in consistent operations of the backend SG support. The 

intelligent IoT equipped home gadgets such as washing machines, AC, freezes, 

parking lots, CC camera etc, are also potentially active to provide storage, analysis 

and computational support for satisfying the prompt and local decision making 

services. The third but not the least, cluster C3 depicts similar structure that can be 

constituted by utilities involved at the extreme ends of a SG infrastructure viz. micro-

nano grid, PLCs, automated circuit breakers and other entities associated to diverse 

range of SG generation, transmission and distribution services.   
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   The smart nodes within such clusters sense and cultivate the heterogeneous physical 

attributes and transmit it to the upper layers through dedicated edge gateways. 

However, the whole or a portion of data generated within these physical clusters are 

accumulated at the interim across access points such as global positioning (GPS), 

GIS, road-side units (RSU),remote terminal units (RTU), intelligent electronic 

devices (IED), phasor data concentrators (PDC), and other field arrays.   

  The next tier constitutes the fog computing layer comprising of intelligent fog 

devices such as SCADA, smart meters, routers, switches high-end proxy servers, 

intelligent agent and commodity hardware etc, having peculiar ability of storage, 

computation and packet routing. The software defined networking (SDN) assembles 

the physical clusters to form virtualized inter cluster private networks (ICPN) that 

route the generated data to the fog devices  spanned across the fog computing layer. 

The fog devices and its corresponding utilities form   geographically distributed 

virtual computing snapshots or instances that are mapped to lower layer devices   

in order serve the processing and computing demands of SG.     

3. Networking and Operation Model   
   For demonstrating the feasibility of a customized fog computing architecture in 

smart grid sub-systems proposed in section 2, the work develops metrics that 

correlates the performance of fog computing services to that of traditional cloud 

computing paradigms. The geo-distributed micro datacenters in a typical fog model 

performs a significant proportion of local computations on the data produced by data 

generators at the schema 1. However, the devices are leveraged with distributed 

intelligence, in that depending upon the degree of services criticality and the types of 

data, the righteous decision of whether to offload the data to the cloud or to the local 

micro-data centers can be undertaken. For SG applications, the fog computing 

framework outperforms its pure cloud counterparts in respect to metrics like power 

consumption, latency and carbon footprint (emission) etc.  

  Consider a pilot SG analytics service to be delivered from the three tier fog 

architecture devised in section II over a 24 hour time horizon. Out of volume  of data 

generated in the whole day, the  preprocessing and decision modules deployed in the 

first tier offloads   into the mega datacenters for cloud level analytics while distributes    

to the micro datacenters for local and instant processing and computations. Further, a 

significant portion of    gets filtered or cutout at the fog computing layer (schema 2) 

i.e. they don’t demand cloud level computations or permanent storage, rest are 

offloaded to the cloud for historical or less critical analysis operations or into the 

permanent storage. The uncertainty in the data distributions across multiple schemas 

is captured in probability factors depicted in figure 2.    

 An ideal fog-cloud framework is leveraged with robust inferencing logic and 

intelligent filtering devices to undertake instant decisions on where to distribute the 

produced datasets. The objective of the proposed framework is to minimize the cost 

encountered due to power consumption, latency and emission issues. In case of fog 

computing approach, an additional cost term needs to be added due to communication 

among the IoT enabled sensors as well as micro datacenters.  
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Fig 2:  Decision tree for analysis and computation services 

 

3.1. Cost profile for Generic Cloud processing: 

 ( ) ( ) ( ) ( )C C C CF x C v C w C c  
                                                                 (1)          

Where ( )CF x , ( )CC v , ( )CC w  and ( )CC c  represent the overall cost function, 

power consumption cost (incurred due to storage and execution of the data at the 

mega datacenters), cost due to latency terms and the cost due to carbon footprint at 

the data centers respectively.   
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    Where, CS , CA and 3V  represent the power consumed in cloud storage, cloud 

storage cum processing and amount of data that is migrated to the cloud layer through 

cloud-fog gateway interface (21-22 in fig 1).  
E ((USD/KWh)) is the energy to cost 

conversion factor.   
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L (USD/Minutes) is the delay to cost conversion factor.  

     1 3( ) . . .(1 ) .C C C GC c V V                                                                (4) 
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 and 
G  represents the gas emissions rate from the data centers and emission to 

cost conversion factor.  

3.2. Cost profile for Fog aware Cloud processing:   

( ) ( ) ( ) ( )F F F FF x C v C w C c                                                                        (5) 

Where ( )FF x , ( )FC v , ( )FC w  and ( )FC c  represent the overall cost function, 

power consumption cost (incurred due to storage and execution of the data at the 

micro datacenters), cost due to latency terms and the cost due to carbon footprint at 

the local data centers respectively.   
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FA  and FS  represent the energy consumed in fog processing, fog processing plus 

cloud storage  respectively.   
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DCw , DEw , EFw  and FCw  represent the bandwidth of the channel linking 

generators to mega datacenters (when data demands pure cloud storage or 

computations), generators to edge routers, edge routers to fog gateways and fog 

gateways to cloud gateways respectively.  

3.3.  Optimization model:  

  In order to assess the viability of proposed fog computing framework, in this 

subsection a cost optimization model is proposed. The objective is to reveal the fact 

that, if properly designed, a fog computing framework can circumvent intricacies 

prevalent in contemporary cloud computing paradigms. The following optimization 

framework captures the scenario where former outperforms the later in terms overall 

performance.       

 Maximize  min ( ) min ( )F CF x F x                                                               (9) 

Subject to: 

1 2V V V                                                                                                               (10) 
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( ) ( )F CC c C c                                                                                                        (11) 

( ) ( )F CC w C w                                                                                                     (12) 

 

 
Fig 3. Comparison of per year investment on computations in fog and generic cloud 

deployment model.  

 
Fig 4. Comparison of per year investment on routing and processing in fog and 

generic cloud deployment model. 

    The formulation involves more constraints defining the data consumer-fog node 

mappings or associations, constraints related to load distribution among the fog 

processing nodes, constraints describing the coverage range of each fog instances and 

also constraints which define the overall quality of service (QoS) as well as quality of 

experience (QoE) of overall execution architecture. Objective function (9) under the 

aforesaid constraints give rise to a mixed integer non-linear programing (MINLP) 

formulation. This MINLP problem needs to be first transformed into MILP through 

linearization techniques. For realizing the viability of proposed framework, the 

coordinates of eight major data centers across the world are considered. To estimate 

the IoT users, top 100 cities according to population density are taken and the number 

user is taken to be proportional to population density. Due to space and time 

limitations, the authors skipped the implementation details and only presented the 

results for validation of the proposed model. Figure 3 & 4 depicts the respective 

improvements in the cost incurred in analytics and routing plus storage in for and 

cloud paradigms.  
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4. Conclusion 
   In this paper, an edge centered FOG computing model is proposed for smart grids 

infrastructures. The work first exposes the inadequacies of pure cloud based SG 

subsystem to meet the processing and computational requirements and proposes a 

model   that ensures proper distribution and offloading of computations across the 

cores (cloud) as well as edges.  For assessing the viability of the proposed framework, 

an SG use case is explored.  An optimization framework is presented that captures the 

cost terms associated to power consumption, latency and emission parameters. The 

viability of the proposed model is demonstrated through comparative results 

performed on pilot datasets under real world assumptions and constraints. The 

superiority of fog computing methods is reflected through the results and discussions. 

A further enhancement to the mentioned framework along with its validation and 

deployment in real world scenario are under progress and is presumed to demonstrate 

in future works.    
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