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Abstract. Real-time pricing’s total cost minimization problem is studied in this 
paper at a neighborhood area network level in smart grid. We propose a 
mathematical energy scheduling model for real-time pricing demand response, 
and based on which, a distributed energy consumption scheduling algorithm for 
total cost minimization is proposed. 
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1   Introduction 

One of the most popular and promising areas within smart grid is the field of demand 
response [1]. This research area hides the potential key to the next stage of a more 
efficient smart grid. It also offers possibilities for the customers to receive a smaller 
and more manageable bill, which in return will further encourage current and 
potential customers to utilize their smart-grid-compatible appliances [2]. Along with 
the development of smart meter and two-way communication schemes are also 
developed methods for near real-time energy consumption scheduling [3]. Regardless 
of the mentioned achievements, there are still problems and challenges remain yet to 
be solved. Among them the main problem that requires a timely solution in demand 
response is the real-time demand response issue [4]. Demand response issue has a 
couple of challenges to it, with the first being customers’ participation [5, 6]. The 
improvements on real-time demand response, in return, concern the customers as 
well. With the introduction of the Plug-in Hybrid Electric Vehicle (PHEV) into smart 
grid [7], a regular customer can now be both a power consumer and/or a power 
supplier. The second challenge of the demand response issue is real-time pricing 
(RTP). Schemes, such as Time-of-Use Pricing (TOUP) scheme [8], Critical Peak 
Pricing (CPP) scheme [9], [10], and Day-Ahead Pricing (DAP) scheme [11] that 
perform parts of RTP’s function have enabled the customers to lower their power 
costs and have more flexibility with their power usage. But the challenge of RTP, that 
is the fact the customers might not be able to know the future power price, remains 
[12]. In real-time demand response system, price prediction challenges are preventing 
the system from minimizing customers’ bills using the RTP scheme [5]. 



In a scenario where the customer can manage its smart appliances energy 
consumption using smart home console while the demand response program is 
transparent to it, instead of having the customer worry about how to optimize the load 
management to reduce the bill payment, the demand response program will provide 
the automatic energy scheduling functionality to it. In this scenario, the customer 
wants to do laundry and tells the washer to wash using real-time demand response 
program. Then the washer communicates with the smart home automation console 
with a desired task schedule based on the customer’s predefined settings on the 
washer and the smart home console. 

All the appliances are controlled by the energy consumption scheduling console 
system. This is the system that assists the customers with their scheduling for energy 
consumption. A good schedule of energy consumption will not only save the 
customer a lot of dollars, but also reduce possible pressure that the power grid 
receives during peak hours [13].  

Here we assume that only the schedulable energy is considered in this paper. This 
scenario assumes the energy consumption scheduling system has the ability to pause 
or resume. This paper proposes a real-time demand response system and its matching 
distribution energy consumption scheduling algorithms that aim at solving the total 
cost minimization problem. Forthcoming discussion about the problem and its 
solutions will also be hosted in the above-mentioned energy consumption scheduling 
system setup.  

The reset of the paper was organized as follows. Section 2 discussed related works 
that have been done previously in the field of energy scheduling. Section 3 presents 
the system model. Section 4 provides the problem statement and the proposed 
solutions to the problems. Simulations and analysis will be found in Section 5. 
Finally, Section 6 will conclude this paper. 

2   Related Work 

Traditional demand response is achieved through Supervisory Control and Data 
Acquisition (SCADA) infrastructure [14], but it is not as real-time as in smart grid 
environment. Real-time demand response requires the power provider to update retail 
power price at each timeslot level for all the customers. Furthermore, it also obliges 
each customer to report load consumption to the power provider at each timeslot.  

In most researches, the methods of achieving demand response through energy 
consumption scheduling can be grouped into two categories: task scheduling and 
energy-based scheduling [5]. A task scheduling method focuses on scheduling the 
fixed load requests throughout the timeline, while an energy-based scheduling method 
focuses on scheduling flexible load requests throughout the timeline [5]. The flexible 
load requests mean that load requests can be partially consumed and rescheduled 
throughout the timeline. It gives more flexibility to the customers on the energy 
consumption scheduling. For example, the paper [15] proposes an autonomous 
Demand-Side Management (DSM) framework to solve the optimization problem of 
reducing the utility’s operational cost with an energy consumption scheduling 
algorithm. But in reality, sometimes customers do not fully trust each other, especially 



those within the same network, due to potential privacy leaking issues [16, 17, 18]. 
Moreover, it is important to realize that in their study, incentives are offered to the 
participants as the proposed pricing scheme to encourage the use of the energy 
consumption scheduling devices. However, this pricing scheme is linearly 
proportional to the load that each customer uses, but in reality the power price is not 
always proportional to the customers load consumption, especially during the peak-
time of the utility. In addition, the work in [15] focuses on energy consumption 
scheduling of the appliances within a household instead of that of the whole 
neighborhood area network. 

The paper [19] also introduces an energy consumption scheduling framework with 
optimal solutions to reduce the total cost and the peak-to-average-ratio (PAR) of the 
system when all the customers share their complete load profile. On the other hand, 
they also took the customers’ concern about privacy into consideration and come up 
with distributed stochastic strategies that will extract partially enough information to 
improve the overall load profile. The strategies in [19] are considering how to 
minimize the power provider’s cost and PAR without trying to motivate the 
customers. Their schemes may have some insights into modeling of customers 
autonomous energy consumption scheduling within neighborhood area network 
distribution network and it has the optimal goal of minimizing the utility’s operational 
cost. But if one considers how the customers, instead of the power grid, are playing 
the center role of successful demand response, the challenges would be the lack of 
methods focusing on reducing customers’ cost. 

3   System Model 

3.1   Customer Model 

Assume that there are N  customers in a Neighbor Area Network (NAN), denoted 
as1,2,...,i,...N . Assume that time is divided into timeslots, and therefore let timeslot 

j  denote the time period  [ 1 , )j t j t   , where j  1,2,..., and t  is a unit time per 

timeslot. Assume that all the load demands from customers are schedulable power 
loads and they are known at the beginning of each timeslot. For customer i , its 
demand of power load at timeslot j  is defined as li ( j) where j  1,2,... 
and 0  li ( j)  li

max ( j), where li
max ( j)  denotes the maximum load capacity that the 

customer i  can handle, which is normally a constant defined by each customer’s 
setup of its own power system.  

At each timeslot, all the customers send their load demand requests to the power 
provider. Then they wait for the power provider’s response of the current power price. 
In the real-time price (RTP) scheme, each customer has the opportunities to 
dynamically schedule its load at each timeslot. The energy consumption scheduling 
algorithm exists and it uses load demand li ( j) and RTP power price as inputs and how 

much load they consume as outputs. 



Let oi ( j)  denote the actual energy consumption of customer i  at time slot j , and 

we have either 0  oi ( j)  li ( j) or oi ( j)  li ( j). if customer i  consumes the energy 

within the load demand of j  timeslot li ( j) , then 0  oi ( j)  li ( j) holds. On the other 

hand, if customer i  actually consumes not only all the load demand of j  timeslot 

li ( j) , but also the delayed load demand from previous timeslots, then oi ( j)  li ( j) 

holds.  Let bi ( j)  denote the instantaneous bill payment for customer i  at time slot j , 

and it is calculated as follows.  
bi ( j)  oi ( j)  p( j).                                       (1) 

 
Let Bi ( j) denote the normalized bill payment of customer i  during time period 

[0, jt)  and it is calculated as follows,  

Bi ( j)  oi (k)  p(k)
k1

j

 .                             (2) 

3.2   Power Provider Model 

Assume that there is only one power provider within the power distribution system. 
For the power provider, it receives the load requests l1( j),l2 ( j),..., lN ( j) from all the 

customers at timeslot j . Let the a( j)  denote instantaneous aggregate load of the 

power provider and is defined as  

a( j)  oi ( j)
i1

N

 .                                        (3) 

Let A( j) denote the accumulative aggregated power load of the power provider at 

time slot j  and it is defined as  

1 1 1

( ) ( ) ( )
j j N

i
k k i

A j a k o k
  

   .           (4) 

The above is the actually consumed aggregated load A( j), but the aggregated 

original load demand also needs to be defined. Let e( j)  denote the instantaneous 

aggregated load demand of the power provider requested by all the customers 
{1,2,..., i,...N} at timeslot j . It can be calculated as  

e( j)  li ( j)
i1

N

 .                       (5) 

Let E( j) denote the accumulative aggregated load demand for the duration from 

timeslot 1 to timeslot j . It can be calculated as 

1 1 1

( ) ( ) ( )
j j N

i
k k i

E j e k l k
  

   .                              (6) 



Let  ( j) denote the Peak-Average load Ratio (PAR) of the power provider at time 

slot j , and is defined as follows,  

 ( j) 
maxk{1,2,..., j}{a(k)}

A( j)
j

,                                 (7) 

where maxk{1,2,..., j}{a(k)}  is the peak instantaneous aggregate load during the time 

duration [0, jt)  and 
A( j)

j
 is the average load during the same time period. Note 

that the paper [20] also defines this ratio, but the definition of this ratio is not exactly 
the same due to different load representation. The paper [19] defines a two-step 
conservation rate model for calculating the accumulative cost function for the utility 
of a 6-hour time duration, which was adopted by the BC Hydro company [21]. The 
time variable in [19] is a continuous variable instead of a discrete variable. 

Let  ( j)  denote the instantaneous cost of the power provider. Based on [19], 

 ( j)  can be calculated as  

 ( j) 
K1 a( j)1,   if  a( j)  l peak;

K2 a
2 ( j)2, if  a( j)  l peak .






               (8) 

where l peak  is the instantaneous peak load threshold of a specific power provider, 
which is the constant known to the power provider. K1 , K2 , 1 , and 2  are the 

power provider’s preset constant parameters based on its own situation measured in 
$/kW, $/kW, $, and $, respectively. This equation shows that the instantaneous 
operational cost  ( j)  for the power provider will be a linear function of the 

instantaneous aggregate load a( j) , if a( j)  is lower than the peak load threshold l peak , 

and  ( j)  will be an increasing quadratic function of the a( j) , if a( j)  is higher than 

the peak load threshold l peak . Then let ( j) denote the accumulative cost of power 

provider at time slot j  and is defined as [19] 

( j) 
( j 1) ( j),  if  j  2,3,...;

 ( j),                  if  j  1.





. (9) 

4   Total Cost Minimization Problem in RTP demand response 

4.1   Problem Statement 

In a demand response system, the power provider always seeks to lower its load 
demand during peak time stage. In terms of measurement, the power provider seeks to 
minimize its PAR  ( j) in (7). To achieve that, the power provider tries to persuade its 

customers to decrease their load consumption from the peak time or shift the load to 



non-peak time. But to incentivize the customers to lower the load consumption during 
peak time, the power provider employs the RTP scheme so that every customer uses 
the provider’s real-time power price to adjust the load consumption accordingly.  

Assume that all the load demand li ( j)  for each customer i  at timeslot j  may be 

schedulable. Assume that at timeslot j , the customer i  has the ability to 

automatically assign certain tasks to its household’s appliances. Then all the 
appliances can automatically schedule the appliances’ load based on the tasks that 
customer has assigned them to accomplish. Then the smart home console will have a 
load demand li ( j)  known before the beginning of timeslot j  for each customer. 

In order for the power provider to measure the performance of energy consumption 
scheduling algorithm in terms of reducing the bill of the customers, we introduce the 
following metric to measure the performance. Let BAvg ( j)  denote the average bill of 

N customers over j  timeslots. It is calculates as 

BAvg ( j) 
Bi ( j)

i1

N


N  j .

                                         (10) 

Since BAvg ( j)  is the accumulative value of the average bill of N customers over j  

timeslots, the above normalization makes more sense than just an accumulative bill 
over j  timeslots. 

We assume that the energy consumption scheduling algorithm exists, and that it 
can help the customers to make decisions on how to consume the energy request at 
each timeslot. Assume that at each timeslot, the energy consumption scheduling 
makes decision on oi ( j) . If the load demand li ( j)  is partially consumed as oi ( j) , 

there will be an instantaneous load remainder li ( j) oi ( j)  delayed for the later 

consumption scheduling. At j th  timeslot, customer i  may have multiple previously 

accumulated delayed remainders and they are all waiting for consumption scheduling. 
Let ri ( j)  be the accumulated delayed remainders for customer i  at j th  timeslot. 

Then ri ( j)  can be calculated as  

ri ( j) 

ri ( j 1) [li ( j 1) oi ( j 1)],

     if  oi ( j 1)  li ( j 1), j  2,3,...;

ri ( j 1) [oi ( j 1) li ( j 1)],

     if  oi ( j 1)  li ( j 1), j  2,3,...;

li ( j) oi ( j),   if  j  1.














(11) 

Based on this accumulative load remainder, there is a case that the customers want 
to avoid. That is, some of their load requests are kept in the remainder for such 
relatively long time that they don’t get used. Besides, for the power provider, if the 
customers putting too much load requests in the load remainder, it makes it difficult 
for the power provider to calculate and announce the real-time power price. 
Therefore, the unused part of load request stored in the load remainders means some 



cost for the customers. Let ci ( j) denote the remainder load cost at timeslot j  for 

customer i , and it can be calculated as  
ci ( j)  [ri ( j)],                                                  (12) 

where   is a function of ri ( j)  in terms of $ / kWh . It means the price function for 

unused load requests. Let cAvg ( j) denote the average remainder cost of N customers 

over j  timeslots, and it is calculated as 

cAvg ( j) 
ci ( j)

i1

N


N  j

                                   (13) 

In order to measure the performance of using the energy consumption scheduling 
algorithm to schedule the power consumption, a weighted performance is needed. Let 

cTot ( j) denote the accumulative total cost for customer i  at j th  timeslot. It can be 

calculated as  
cTot ( j)   BAvg ( j) (1 ) cAvg( j) .                               (14) 

 
 

Customer’s Total Cost Minimization Problem: mincTot ( j)       (15) 

4.2   Real-time Pricing Scheme 

Let p( j)  denote the retail power price at timeslot j . According to [19], p( j)  is 

defined by the power provider, either based on the wholesale power market price [20], 
or based on the aggregated load [19]. In practice, the paper [20] adopts the power 
price prediction methods for the customers to make decisions on scheduling energy 
consumption. On the other hand, instead of using price prediction, the paper [22] 
points out that for power prediction, no matter it is off-peak or peak hour, estimation 
accuracy is very poor, especially for the off-peak with its accurate rate lower than 
30% in most months. Therefore, a non-prediction-dependent RTP scheme is required 
for the customers in the demand response program. Based on the paper [23], a 
practical and polynomial real-time power price, p( j)  can be calculated as a function 

of the instantaneous aggregated load demand,  
p( j)   e( j)                     (16) 

where   and   are the parameters that defined by the power provider. In general,   

is a constant and  1, e( j)  is the instantaneous aggregated load demand in (5). To 

enable the power provider to persuade customers to use less power during the peak 
time,  can be calculated as  

 
1,        if  e( j)  l peak;

e( j)

l peak ,  if  e( j)  l peak .






                      (17) 



Now that the power price is calculated by the power provider based on (16), and 
then RTP price information is broadcasted to all the customers at the beginning of 
each timeslot.  

4.3   Distributed Energy Consumption Scheduling on Cost Minimization 

On the customer side, energy consumption scheduling is responsible for making 
the decision of its own energy consumption at each timeslot. The decision result will 
impact its bill payment individually. Thus all the customer’s decisions at each timeslot 
will impact the whole distribution system’s performance. 

Solving the problem of minimizing customer’s bill is an optimal process of 
decision making on choosing oi ( j)  over the j  timeslots for customer i . Meanwhile, 

flattening the system’s overall load demand is a byproduct of this optimal process.  
For each timeslot, the decision of choosing oi ( j)  is made by the customer i  based 

on the real-time power price and a power price threshold. The threshold is 
dynamically calculated at each timeslot based on the RTP, so that it will help the 
customer to minimize its bill payment. In a real-time demand response power system, 
each customer optimally consumes or schedules its load demands oi ( j)  based on the 

power price of each timeslot using the energy consumption scheduling. Each 
customer minimizes its bill payment calculated in (1).  

In order to let the customer’s energy consumption scheduling to make decisions 
that will benefit the customers’ bill minimization, we introduce the power price 
threshold as the following to assist the customers to make decisions on oi ( j) .  

pi
threshold ( j)  pi

avg ( j)                (18) 

 pi
threshold ( j) is the threshold of power price that the customer i ’s energy 

consumption scheduling will use to manage all their appliances.  
 pi

avg ( j)  is the average power price that customer i  has been observed over 

the j  timeslots, and it is a customized parameter for customer i .  

We develop a strategy based on the threshold defined in (18). The idea behind the 
strategy is, if the RTP price is not expensive, each customer seeks to schedule more 
energy for consumption, and if the RTP price is expensive, each customer tends to 
schedule less energy for consumption. Thus the strategy is each customer uses a 
stationary policy y  to decide how much remainder to consume if 

the p( j)  pi
threshold ( j) . Each customer uses a stationary policy x  to decide how much 

remainder to consume if the p( j)  pi
threshold ( j) . Therefore, the decision of actually 

consumed energy at j th  timeslot oi ( j)  can be calculated as  

oi ( j) 
x  li ( j),               if  p( j)  pi

threshold ( j);

li ( j) y  ri ( j), if  p( j)  pi
threshold ( j).






        (19) 

where 0  x 1 and 0  y 1.  



From (19), the solution to problem in (15) is now to find the optimal stationary 
policy (x, y)  in (19) that will give the customer the minimized total cost in (15). Here 

we use simulation to find out the optimal policies for all the customers. 

5   Simulation 

Average load requests fluctuate within [0, peak load] following Gaussian 
distribution with a mean value of half of the peak load. 

5.1   Simulation Setup 

Assume that the amount of each customer’s load demand follows the same normal 
distribution. Assume that the communication overhead and delay between all the 
customers and the power provider are ignored. Let   denote the peak load defined by 

the power provider, let the normal distribution 2 2( , ) ( / , ( / 3 ) )N N    , and this 

will guarantee the values of 99.7% of observations fall in the interval [0,2 / N ]  

[24]. Even though the possibility of generating negative number is small, this design 
still eliminates them by regenerating another normal distribution number when it 
happens. To make the aggregated input load request less intense, we setup a dynamic 
way of generating normal distribution load request for each customer at each timeslot. 
If setting up input as letting each customer follow a normal distribution of 

2( / , ( / 3 ) )N N  , it will make the ( )e j  in equation (5) stable as high as  . But in 

order for the e( j)  to fluctuate within [0,], we let the aggregate load requests follow 

the normal distribution of  2/ 2, ( /(2*3))  . In this way, a random aggregated load 

requests is generated at current timeslot j , which is denoted as ej
rand . Then, the 

aggregate load requests follow the normal distribution means that 

 2/ 2, ( /(2*3))rand
je   .  

Let each customer generate the load requests based on this random aggregated load 
request. We still use the normal distribution to let each customer generates its load 
request at each timeslot. But the normal distribution 2( , )   follows 

2( / , ( / 3 ) )rand rand
j je N e N . Since ej

rand  is a random value of the range [0,], each 

customer follows a varying normal distribution to generate its own load request at 
different timeslot. In this way, both the aggregated load request and the individual 
load request follow the normal distribution to generate load request at each timeslot. 
Let Load Peak=1000kWh, N=100, and  =1E-2 for the rest of the simulation. 

The following experiments are based on values of   (value in equation (14), 
which is the weight value to determine the total cost for the customer) and vales of 
 . Also, we assume that [ri ( j)] 10 ri ( j)  in equation (12), which is linear. 



5.2   Simulation Results 

In the simulations, we have  =0.5 and  =500kWh. Fig. 1(a) and Fig. 1(b) show the 

total costs over y based on different x values, and we observe that the lowest total cost 
is when x=0 or x=0.1, and y is approximately in [0.8, 1.0]. Fig. 1(c) and Fig. 1(d) 
show the total costs over x based on different y values, and we observe that the lowest 
total cost is when y is approximately in [0.5,1.0] and x=0.0. Also in Fig. 1(d), when y 
= 0.0, the total cost has the largest values. This means if the load requests are delayed, 
they will never be used even when the real-time price is cheap. Therefore, the 
remainder load cost keeps growing. 

 
(a) Total Cost for fixed x=0.5, x=0.6,… x=0.9. 

 



 
 (b) Total Cost for fixed x=0, x=0.1,… x=0.4. 

 
(c) Total Cost for fixed y=0.5, y=0.9, …, and y=1. 



 
 (d) Total Cost for fixed y=0.0, y=0.1,… ,and y=0.4. 

Fig. 1. Total Cost  

 



Fig. 2. Total Cost 

As seen in Fig. 2, it is seen that the total cost has the largest value when x = 0 and y 
= 0; this is because that there is no load requests consumed that the large cost incurred 
by the customers waiting has dominate the total cost. For the smallest value of the 
total cost is when x = 0 and y = 1. This means that the best policy for customers is not 
to consume at all when the real-time price is expensive and delay them to the next 
timeslot as a load remainder, and then try to consume more of the remainder in the 
next possible cheap timeslot. 

6   Conclusion 

In this paper, we propose a problem of how to minimize the total cost for 
customers who participate in the operation of smart grid by using demand response 
and real-time pricing. To solve the problem, a new real-time price scheme is 
proposed, and based on which, the algorithm to find total cost minimization is 
proposed.  
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