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Abstract. The Internet of Things (IoT) technology has immense potential for 

application in improvement and development of Smart Grid. The rising number 

of distributed generation, aging of present grid infrastructure and appeal for the 

transformation of networks have sparked the interest in smart grid. The need for 

energy storage system primarily the electrical energy storage systems is 

growing as the prospects for their usage is becoming more compelling. 

Dynamic electrical energy storage system viz., Electric Vehicles (EVs) are 

relatively standard due to their excellent electrical properties and flexibility but 

the possibility of damage to their batteries is there in case of overcharging or 

deep discharging and their mass penetration profoundly impacts the grid. To 

circumvent the possibility of damage, EVs’ batteries need a precise state of 

charge estimation to increase their lifespan and to protect the equipment they 

power. Based on ease of implementation and less overall complexity, this paper 

proposes a real-time Battery Monitoring System (BMS) using coulomb 

counting method for SoC estimation and messaging based MQTT as the 

communication protocol. The proposed BMS is implemented on hardware 

platform using appropriate sensing technology, central processor, interfacing 

devices and the Node-RED environment. An optimization model aimed at 

maximizing the trade revenue for EVs’ aggregator is presented aimed at 

enabling the smart charging. 

Keywords: Internet of Things, Battery Monitoring System, MQTT, SOC 

estimation. 

1   Introduction 

Internet of Things (IoT) signifies the network based interconnection of daily usage 

entities. It is termed as a self-organizing wireless linkage of devices aimed at the 

interconnection of everyday objects. It links with the wireless network through the 

interface by the electronic identifiers, sensors, two-dimensional codes on things. The 

IoT technology helps achieve the communication between man and machine or 

machine to machine. Three key features of IoT are: considerable, intelligent and 

internet connective [1]. There are four features in IoT: gathering of data, bilateral 

communication, handling and response control. 

The International Telecommunication Union (ITU)  laid onward officially the 

notion of Internet of Things in year 2005 [2]. The report illustrated a draft for the IoT 

period: when a driver maneuvers erroneously, the vehicle will spontaneously alarm; 



suitcase will prompt the owner about neglecting something; communication from 

garments to washer about the color and temperature desired and so on. 

Since the inception of the smart grid concept being an integral part of IoT was put 

forward, it has been vastly appreciated by utilities. IoT integrated Smart Grid results 

in improvement of energy productivity, reduced ecological influence, enhanced 

security, reduced vulnerability to external interference and increased consistency of 

electric supply [3]. 

The integration of Smart Grid tools in utility networks will influence marvelous 

transformation in grid management and electric power use in upcoming years. The 

methodical change in load regulation, along with boosted dispersion of non-

conventional energy sources, suggest a fresh array of challenges in equalizing 

expenditure and production. Increased deployment of energy storage devices in the 

distribution grid will help expedite this process and improve system performance [4]. 

Bulk energy storage has been used for decades in the utility grid and now the 

integration of renewables is creating a need for more distributed storage. With 

increasing adoption of non-conventional energy sources and rise in popularity of 

plugin hybrid electric vehicles (PHEVs) and all electric vehicles (EVs), the need is for 

a far more vigorous electric infrastructure. Figure 1 shows the key areas where energy 

storage systems can be applied. 

 

Fig. 1:  Areas of application of energy storage in smart grid 

Innovations in battery technology have been the key motivation for distributed 

storage systems. With the increasing penetration of electric mobility, the battery 

prices are declining which will be of assistance in grid applications. To prolong the 

life of battery-based energy storage system and ensure their reliability, a proper 

battery monitoring system needs to be integrated along with. 

This paper proposes a lightweight communication protocol based EV’s battery 

monitoring system aimed at prolonging the battery pack’s useful life. The paper is 

organised as follows. Section II sheds light on EVs impact on grid and how bilateral 

flow of power can improve grid functionality. Section III tells key features of a 

typical battery monitoring system. Section IV gives background information on 

battery capacity estimation technique used. Section V provides the framework of 

proposed hardware setup. Results are shown in Section VI. To reduce the impact of 



uncontrolled charging of EVs on grid, an optimization model intended to maximize 

the EV’s aggregator revenue is formulated in Section VII. 

2   Electric Vehicles and Smart Grid 

As per reports of National Renewable Energy Laboratory (NREL), mass production 

of EVs has limited adverse effect on the electricity generation need. For example in 

USA, for EVs constituting the 50% of the total vehicles in use by year 2050 will 

entail only 8% increment in electricity generation and an increment of 4% in 

generation capacity meanwhile also considerably reducing the emissions from 

conventional vehicles and lowering the fuel usage in transportation sector [5]. Other 

effect of mass adoption of EVs on power grid are- 

• Increase in the working temperature of transformers due to the extra load of 

charging EVs. This reduces the operating life, thereby incurring additional 

expenditure. 

• The energy storage system ought to store electricity from the minimum carbon 

producing sources, e.g., nuclear energy and renewable energy. However, 

coinciding the demand and supply load curves is a big challenge. 

• Shortage in electric power supply, if the accumulated EV charging profile 

constitutes the peak demand period. 

However, charging of EVs at off peak hours augments the load curve for electric 

utilities. So, the usage of large no of EVs must be accurately optimized for various 

charging setups and technologies. A sample optimization model for smart charging is 

presented in section VII in this paper. 

Demand Response (DR) is additional advantage to the grid by disrupting the EVs 

charging demand at peak hours. In parked condition, EVs generate or store electricity 

which can be fed back to grid using appropriate connections- this is known as vehicle-

to-grid power or V2G power. The batteries of EVs plugged into charging 

infrastructure can act as distributed energy storage systems for the electrical grid. The 

electrical energy delivered backed to the grid must be priced such that the additional 

cost incurred must be recovered back as the battery’s lifecycle is reduced due to 

frequent charging-discharging. The distributed storage provides advantages such as 

making the grid more steady, secure and resilient by regulating frequency and the 

spinning reserve as backup power in the distribution system. Large scale integration 

of intermittent sources of energy e.g., wind and solar sources into the grid is 

facilitated by V2G system. For the world-wide shift to the emerging green and 

sustainable energy economy, V2G is an important enabler. 

3   Battery Monitoring System 

Battery Monitoring System (BMS) is a smart system whose function is to monitor 

the vigor of a battery pack. BMS computes the battery’s capacity, depreciation of 

battery while the charging/discharging and correct productivity of the battery and 

provides this information in real time to users. This mitigates the sense of incorrect 

safety of periodic battery assessment as it is vigilant to emerging issues before hand 



the occurrence of a possible malfunction. As every cell is observed separately, so any 

damage can be checked and appropriate warnings against the values pre-set by 

consumers and protective measures can be employed, safeguarding the other cells 

against cumulative damage thereby extending battery life. BMS logs history data of 

all measured parameters for further analysis and future reference. 

 

 

Fig. 2:  A BMS Framework 

Figure 2 shows a typical BMS framework incorporating the measurement of key 

battery parameters e.g., current, voltage, temperature etc., and performing necessary 

calculations/estimations to extract useful information about energy storage system 

i.e., State of Health (SoH), State of Charge (SoC), operating temperature range. Based 

on these calculated parameters, controlling actions are taken to maintain the battery’s 

lifecycle and safety against potential hazards. Therefore, the prime objective of 

monitoring is to gauge various variables, log events, generate warnings, record usage 

profile and represent this information locally and remotely to the user. 

BMS is unable to sense movable connections present in the battery, leakage of cell 

material, corrosion of connections leading to the development of high resistance and 

subsequently fire danger. It is also unable to visually monitor developing swelling, 

potential leakage, cracks in the outer geometry of battery pack etc. 

4   SoC Estimation 

Proper battery use demands the knowledge of its State of Charge (SoC). The 

development of suitable control strategy necessitates the accurate estimation of 

battery’s remaining capacity i.e., SoC [6]. Being a vital parameter depicting battery 

performance, precise estimation prolongs the battery lifecycle, avoids deep discharges 

and helps designing practical control methods to keep battery operating in the 

optimum region. However, a battery being a chemical energy storage source, and this 

chemical energy isn’t directly accessible which makes the estimation of the SoC of a 

battery challenging [7]. By estimating the present capacity of the battery, it can be 



safely charged/discharged at levels appropriate for battery lifecycle enhancement. The 

energy capacity of a battery depends upon its charging current, discharging current, 

oldness, operating temperature, cut-off voltage, and usage profile. 

Numerous techniques have been suggested for the batteries SoC estimation [3-4]. 

These techniques can be classified into three types: electrochemical-based, electrical 

based and adaptive ones. The electrochemical techniques although highly accurate are 

considered difficult to implement in software or hardware as they require access to the 

chemical composition of battery. Adaptive techniques [7] involve a battery equivalent 

model and a solution algorithm e.g., neural network [10], Kalman filter [11] and fuzzy 

logic algorithm. The efficiency of the equivalent model determines the accurateness 

of these techniques. But, electrical techniques demand only measurable parameters 

e.g., terminal voltage, charge/discharge current and internal resistance. Due to ease of 

implementation and low complexity, coulomb counting technique which is based on 

the integration of current over time is one of the most commonly used electrical 

technique for SoC estimation  [10,11]. 

In general, battery’s SoC is termed as the proportion of its current capacity (𝑄(𝑡)) 
to the nominal capacity (𝑄𝑛). The battery manufacturer specifies the nominal capacity 

which shows the utmost quantity of charge that can be stored in the battery. The SoC 

can be defined as follows:  
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2.1   Coulomb Counting Method 

With assumption that initial SoC (at time to) is in knowledge, SoC at any instant is 

usually estimated by integration of the battery current over time, as shown in equation 

(2) 
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SoC : State of Charge, Ibat : value of battery current, Qn : nominal capacity 
 

The accurateness of Coulomb counting technique depends upon various parameters 

viz., operating temperature, battery usage history, discharge current, and cycle life 

[14]. 

The coulomb counting technique consists of using the equation (2) by enumerating 

the charge supplied by the battery by sensing its input and output current [10]. 

Though, few inefficiencies are there in this technique- the initial SoC value is not 

correctly known, presence of self-discharge phenomena can change the real SoC 

value after a prolong storage time and battery degradation due to aging should be 

taken into consideration. 

5   Hardware Setup 

Rechargeable battery frameworks are to be an essential part of energy storage 

system in smart grids. Monitoring of battery performance is one of the key issue in 



control and management of a battery management system. The measurement part of 

BMS records cell voltages, battery current, and converts them into the digital 

measure. The measurements are done in every specimen period and communicated 

with a processor through an Analog-Digital (A-D) interface. Using these deliberate 

battery parameters, the processor’s function is to assess the SoC. Although SoC is 

considered as the “fuel gauge” of the energy storage system, but it actually displays 

the remaining vitality in the battery. 

The coulomb counting technique for SoC estimation was realized on the hardware 

platform. The battery monitoring system include the measurement of battery 

parameters viz., voltage, current flow and temperature by appropriate sensing 

technology and interfaced through an ADC (Analog to Digital Converter) device to 

microcontroller Broadcom BCM2837 SoC based Raspberry Pi 3 Model B. The SoC 

estimation technique has been implemented by measuring voltage, current and 

temperature of two parallel connected 3S Li-Po (Lithium Phosphorus) batteries with 

total nominal capacity of 4400 mAH. The direction of flow of current determines 

whether the battery is in charging or discharging condition. When the current ceases 

to flow, it is assumed that battery is in open circuit condition i.e., idle provided recent 

SoC monitored is more than 10%. If so, the last SoC reported is taken as initial SoC 

for next cycle. If SoC falls down below 5%, it is assumed that batteries are completely 

discharged and SoC is set to 0% for next cycle. Similarly, algorithm is applied at full 

charge condition. The estimated SoC along with experimentally obtained parameters 

by the BMS were shown both on PC and MQTT Broker-DIoTY App for Smartphone. 

The work can be further extended by integration of database management system to 

predict the time to charge/discharge the battery. 

5.1   Node-Red 

The estimation algorithm was implemented in the Node-Red environment. Node-

RED is a graphical means for connecting various hardware appliances, Application 

Programming Interfaces (APIs) and real-time facilities together– to equip the Internet 

of Things. Using a browser based flow editor, Node-RED offers an extensive range of 

nodes to simply connect the flows which can be executed to the runtime with minimal 

effort. The light-weight runtime is built on Node.js, taking maximum benefit of its 

event-driven, non-blocking model [15]. 

5.2   MQTT 

MQTT (Message Queuing Telemetry Transport) is a messaging based 

communication protocol that affords the lightweight network with an easy means to 

deliver data. The protocol is used for machine-to-machine (M2M) communication and 

plays an imperative part in the IoT. It uses a publish/subscribe communication model. 

MQTT is a useful selection for wireless systems which undergo fluctuating levels 

of latency because of bandwidth restrictions or fickle connections. 

In publish/subscribe model, communication is straight from client to an endpoint. 

But the publisher (client sending message) and subscriber (client getting message) 

have no knowledge about the presence of each another. There exist a third element, 



known as broker, who is familiar with both the existing parties i.e., publisher and 

subscriber. The broker categorizes every received message and delivers them suitably. 

As MQTT delinks the publisher and subscriber, only the information about 

hostname/IP and port of the broker is sufficient in order to communicate with 

messages. Delivery success is effortlessly conveyed upon the successful 

communication of the message [16]. 
 

 

Fig. 3:  BMS Hardware Block Diagram 

Figure 3 shows the BMS hardware prototype at the block level. The battery packs 

electrical parameters are measured using hall effect current/voltage sensors and after 

amplification, are communicated with the processor Raspberry Pi 3 B interfaced 

through an 8-bit ADC. Likewise, the external temperature is measured using sensor 

DHT 11 and conversed with the processor. The coulomb counting algorithm is 

implemented in the Node-RED environment and estimated SoC is communicated via 

MQTT protocol. Users can view the value of SoC and operating temperature in 

smartphone or PC by subscribing to corresponding topics via the broker DIoTY. 

The lifecycle of the battery pack can be augmented overall by the feasible 

formulation of battery charging, discharging, and sleep practices e.g., in the 

occurrence of SoC topping 10%, the discharge should be allowed and in the 

occurrence that it trips down below 10%, the discharge need to be stopped. When the 

SoC touches 95%, then the battery charging must be stopped. Cyclic full 

charge/discharge enhances the longevity of the battery pack. The operation should be 

ensured below the specified temperature to avert the risk of explosion of the battery. 

6   Results 

The working of SoC estimation technique and real time of communication of 

battery parameters were tested during the charging mode of the LiPo batteries. Figure 

4 represents the effective capacity estimated by the coulomb counting method. These 

values are communicated with user using MQTT protocol. 
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Fig. 4:  Estimated capacity of battery packs 
 Fig. 5:  Battery pack temperature across 

different platforms 

     The battery external temperature measured is communicated in real time. Figure 5 

shows the temperature displayed on the PC and smartphone App labeled as CPU temp 

using DIoTY broker. 

7   Smart Charging 

Optimal scheduling of EVs charging is a necessity to counter the increasing burden 

on grid. If not done in advance, it will lead to imbalance of voltage as well as 

frequency, which ultimately may lead to grid failure and blackout. Continuous 

monitoring of power system is necessary while charging large number of EVs, in 

order to achieve grid balancing. A typical demand profile for one day in terms of 

15min bidding time blocks, obtained from Indian Power Exchange (IEX) is shown in 

Fig. 6 which is a replica of the energy demand in Indian scenario, where the minimum 

load is observed during the night hours and also during the mid of the day. 

Low peak hours during night, wherein the load is at its minimum, are most suitable 

for home based charging, using either Level 1 or Level 2. This period of 6 to 8 hours 

is also very good for charging batteries at Battery Swapping Stations (BSS). Public 

charging stations (CSs), where most of the charging is expected to occur during day 

time, can shift their charging load to low peak hours to enhance the functioning of 

grid. This can be done by deploying attractive charging schemes for the consumers 

during low peak hours or by storing energy during this period as a backup for peak 

load hours. This type of scheduling can prove to be beneficial for both the utility and 

consumers. A flatter load profile with less system peak differences can be obtained 

this way, which is desirable. Also, from the consumer’s view point, this is 

advantageous as evident from Fig. 6. Cost of purchasing electricity is lower during 

low peak hours as compared to that during peak hours. 

Such a demand side management can help in smooth running of power grid with 

fewer disturbances. Further enhancement of grid operation can be achieved by 

injection of power back to the grid and also by participating in reserve market to 

maintain the frequency up and down regulation. This can prove to be beneficial for 

the EV aggregator as well as to consumers, in terms of economy. 

The aggregator of EV charging station, as well as BSS, can gain maximum profit 

by optimizing the cost function of trading revenue mentioned in [17] which includes 



day ahead  (DA) market, reserve market (i.e. regulation up and down) and real time 

market (unscheduled interchange). 
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Fig. 6:  Demand profile for one day 

In order to participate in DA market, proper load forecasting is essential. 

Numerous techniques have been developed for load forecasting like Simplistic 

Benchmark methods, Seasonal ARMA modeling, Periodic AR models etc. [18].  

The uncertainties involved in the EV fleet characteristics, DA electricity market 

operations as well as in generation, transmission, and load may be represented by 

Monte Carlo simulation. Risk involved with the financial as well as economical 

aspects of the EV aggregator in uncertainty environments can be managed by 

conditional value added risk analysis (CVaR) as given in [19]. 

8   Conclusion 

Internet of Things (IoT) refers to the networked interconnection of everyday 

objects. IoT has a major role in the rapid development of smart grid. The 

implementation of Smart Grid devices in the utility grid will influence vast 

modification in grid management and usage of electric power in upcoming years. The 

integration of distributed generation necessitates the deployment of energy storage 

system. Due to better electrical characteristics, the dynamic energy storage system 

i.e., Electric Vehicles (EVs) is a good prospect although the probability of damage to 

battery pack in case of overcharging or deep discharging situations is there and 

uncontrolled charging can severely impact the grid functioning. To mitigate the 

danger of damage, an accurate real-time capacity determination of a battery pack is 

desired to increase their lifespan and to protect the equipment they power. A less 

complex and easy to implement algorithm i.e., coulomb counting technique is 

implemented in this paper and the estimated SoC along with measured parameters are 

made available in real time to the user on a remote basis in form of messaging 

communication. Further an optimization model for maximizing the trade revenue for 

aggregator of EVs is presented aimed at facilitating smart charging to reduce the 

impact of increased penetration of EVs on grid. 
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