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Abstract. The In this work, multi objectives multi item four dimensional transportation 

problem with vehicle speed consisting of uncertain variable parameters is studied. Due to 
bad road conditions, the rate of variation of speed of the vehicle may vary in different 
routes and the speed of different vehicles are also considered first time in the time 
minimization transportation model. Equivalent deterministic models for the uncertain 
programming model are proposed by using chance constrained and expected value 
method. Finally goal programming technique is applied to derive a suitable compromise 
solution of the uncertain multi objective multi item four dimensional transportations 
problems with consideration of vehicle speed. An illustrative real life situation is 

discussed and optimal results are displayed to demonstrate the proposed methodology.. 

Keywords: Four dimensional transportation problem _ Uncertain variables _ Goal 
programming. 

1   Introduction 

The primitive transportation problematic presented by Hitchcock[1] in 1941 and it is 

developed by Koopmans[2]. Currently transportation problem(TP) with single objective are 

not sufficient in today’s market to manage day–to-day decision making problem. Thus, in 

order to maximize the profit for the firm, we consider many objectives at a time. Since there is 

no connection between the cost parameter of various objectives of the Transportation 

Problem: these are considered as conflicting and commensurable model of the multi objective 

transportation problem [MOTP]. Well known researchers like Lee et al 1973[3], Pandian et al 

2011[4], Quddoos et al 2013[5] and Nomani et al 2017[6] etc., therefore worked on more 

efficient process to solve MOTP. 
 

The transportation problem with conveyance is termed as solid transportation problem 

[STP] and it was presented by Haley[7]. Numerous models like multi objective solid 

transportation problem, solid transportation with secure responsibility etc., have been 

developed under STP from then. In global competition, STP is a major factor as it minimize 

solid transportation cost, time taken to provide the service and distance. Applying zero point 

principle Pandian et al[8] have provided a solution methodology for obtaining the minimized 

transported cost of STP. Furthermore, he extended his work by providing cost sensitivity of 

ranges[9]. 
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When we consider real life problem the presence of multiple routes/roads bring out other 

factor such as the condition of roads, the different distances between the routes. However all 

the transportation modes and routes may not be ideal. So while trying to maximize the profit, 

we need to factor in breakability. Also the breakability factor depends upon several other 

choices such as the roads condition, distance and the vehicle used. So considering the fair 

choice of routes plays a major role. A four dimensional solid transportation problem [4DSTP] 

is a STP wherein along with the conveyances different routes and vehicles are considered. The 

distinguishing factor between TP’s, STP’s and 4DTP’s is that the distance too is considered. 

To solve the time minimization transportation problem, the speed of the vehicle also play a 

vital role. It might be possible that shortest road routes might not be in best condition. In such 

routes might affect the speed of transportation. The rate of disturbances of speed has not been 
considered by any researchers till date. Considering multiple objective and multiple product in 

a 4DTP converts a 4DTP into four dimensional multi objective multi item transportation 

problem [4DMOMITP]. 

 

real life situation all the parameters required for the STP are not always accurate or 

available. Contradicting in the STP problem we considered, we assumed to be fairly accurate. 

The parameters like availability of demand and constituent transportation charge are not exact 

continuously due to the uncertainty in human judgment and lack of information which are 

uncontrollable factors. But these uncertainties can be considered by fuzzy sets given by 

Zadeh[10]. Multiple researchers who proposed methods to solve TP’sutilized fuzzy numbers 

for representing the parameters’ uncertainty. 

 
To solve MOTP, Zimmerman[11] gave fuzzy programming method. It was later studied 

by bit et al[12] to solve multi objective solid transportation problem [MOSTP] where in 

genetic algorithm was applied by Liu et al[3] where objective function coefficient were taken 

as fuzzy numbers . The Method of solving fuzzy MOSTP, taking all parameters as fuzzy 

numbers excluding decision variable was proposed by Ojha et al[13] to solve fully fuzzy 

MOTP, the Mehar’s method was introduced by Gupta et al[14]. Deepika rani et al[15] 

presented a technique to obtain the optimal compromise solution of FFMOMISTP. In fuzzy 

environment (intuitionistic L-R type) and vehicle speed, Dipakkumar et al formulated 

MOMITP in four dimensions[16]. 

 

Although Zadeh’s Fuzzy set theory[10] is widely applied in many uncertain models, it 
could not handle human uncertainty in some contexts involving incomplete information. As an 

attempt to deal with such indeterminacies, Liu founded uncertainty theory[17],[18]. 

Nowadays, doubt theory is considered as a mathematical division for modelling belief degrees 

and has been adopted in many mathematical models like uncertain programming, logic, graph, 

statistics and finance[19],[20],[21]. The belief degree of an indeterminate event to happen is 

measured by indeterminate amount. To simultaneously contract with uncertainty and 

randomness, the usage of random indeterminate variable and chance measure was also 

introduced by Liu[22]. Post that, he also presented uncertain random programming to model 

optimization problems containing more than one random variable. Gao[23], in his paper, 

newly proposed certain properties based on continuously uncertain measures. 

SeyyedMojtabaChasence[24] introduced uncertain linear fractional programming problem and 

also presented few methods to convert uncertain optimization problem as an equivalent 
deterministic problem. 



 

 

 

 

 
Liu[25] introduced a new uncertain multi objective programming and goal programming 

technique as a compromised method to solve uncertain multi objective programming using 

inverse uncertainty distribution. Uncertain goal programming method was proposed by Liu 

Chen[26] for an uncertain multi objective programming problem. To get the answer of the 

multi level indeterminate programming problems, Yao and Liu [27] developed programming 

methods. For an uncertain multi objective problem, a compromise programming models and 

interactive satisfied methods were presented by Zhou et al and Zhong et al[28],[29]. For 

uncertain STP, Cui and Sheng[30] presented an expected constrained model. Later, a 

transportation problem was studied by Guo et al[31] consisting of random supplies and 

uncertain costs. By using type-2 uncertain optimization methods, Yang et al[32] found the 

compromise solution for fixed charge STP. Multi objective multi item STP under uncertain 
situation was formulated by Hasan Dalman[33]. A solid transportation problem involving 

creation amalgamation was studied by Yuan Gao and SamarjitKar[34]. Motivated by above 

authors, we have tried to propose a solution methodology for an uncertain multi objective 

multi item four dimensional transportation model with vehicle speed[UMOMI4DTPS]. The 

prime motive of this prototypical is to exploit the income and minimize the transportation 

charge. In the time minimization objective function, the speed of the various conveyance and 

degradation of speed owing to poor road conditions have been factored in for the first time 

ever. 

 

We created three different models. Out of the three models that we are presenting, First 

model has been procured considering the items whose breakability that depends on both 

conveyances and type of routes taken. The next one considers shipping of items that are 
damageable only because of its type. The last one involves shipping of non-breakable item. 

The equivalent classical models for UMOMI4DTPS are obtained by by predictable chance 

and value restraint technique. The models are demonstrated by numerical instance to know the 

efficiency of the suggested model for obtaining the best compromise solution. 

 

The article has been structured thusly. We have presented the theories and descriptions of 

doubt theory which are used models in section 2. Notations used in the article is assumed in 

segment 3. In segment 4, the mathematical model of uncertain multi objective is introduced. 

Equivalent deterministic models by using expected value and chance constraint methodsare 

given in the sections 5 and 6 respectively. Fundamental ideas about goal programming 

technique and the procedure for solving the UMOMI4DTPS are given in section 7 and 8 
respectively. A numerical example has been given in section 9. The discussion, practical 

implication, comparison and conclusions have been given in sections 10,11,12 and 13 

respectively. 

2 Preliminaries 

Some fundamental concept of indecision theory, which have been use in the subsequent 

discussions are introduced below. 

 

Definition 1:  [20],[17] Let L  be a   –algebra of collection of events  of a universal 

set  . A set function M  is said to be indeterminate portion defined on the  –algebra where



 

 

 

 

 M
designate the confidence grade with which we trust that the occasion will happens and 

satisfies the subsequent maxims: 

1. Normality Axiom: For the universal set  ,we have  
  1  .M

 

2. Duality Axiom: For any event ,we have 
   C 1    .M M

 

3. Subadditivity Axiom: For every countable sequence of events 1 2, ,..., 
 we have 

1
1

}{ { }i
i

i

i

U








  M M
 

4. Creation Axiom: Let 
 ,i i iL ,M

 be indecision spaces for i=1,2,3,…. The produce 

uncertain quantity is an uncertain measure holds  
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Definition 2: [17] A function 
 ,:  L,M

 is said to be an uncertain variable such 

that 
   / ( )      

 is an event for any Borel set B  of real numbers.  

Definition 3: [17] An indeterminate variable 


 defined on the uncertainty space 

 , , L M
is said to be non- negative if 

 0 0  M
 and positive if 

 0 0.  M
 

Definition 4: [17] For any real number x , the indecision distribution 
( ) x

 of an uncertain 

variable 


 is defined by 
 ( ) .  x xM

 

Definition 5: Let 
( )x

 be the regular indecision distribution of an uncertain variable .  

Then 
1( ) 

 is called inverse uncertainty distribution of   and it exists on (0, 1). 

Definition 6: [17] The uncertain variable 
( 1,2,..., )i i n 

 are said to be autonomous if 
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            (1)                                          

where
( 1,2,... )iB i n

 are called Borel sets of real numbers. 

Theorem 1: let   be an uncertain variable with regular uncertain distribution function 


 .Then its    optimistic value and   pessimistic values are   
1 1

sup inf( ) (1 ), ( ) ( ).          
   (2)                                             

Theorem 2: [18] The regular uncertainty distributions of independent uncertain variables 

( 1,2,3,..., ,..., ) i i m n
are

( 1,2,..., ,..., ) i i m n
 respectively. If the function 

1 2( , ,..., ,..., )m nf x x x x
 is strictly increasing and strictly decreasing with respect to 1 2, ,..., mx x x

 

and 1 2, ,...,m m nx x x  respectively then the uncertain variable 1 2( , ,... ,..., )     m nf
  has an 

inverse uncertainty distribution 
1 1 1 1 1 1 1

1 2 1 2( ) ( ( ), ( ),..., ( ), (1 ), (1 ),..., (1 ))                   

    m m m nf
                            (3)                                                                                            

Definition 7: [17] The expected value of uncertain variable ξ is given by 
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    E x dx x dxM M
                                 (4)   

This is valid only if at least one of the integral is finite. 

Theorem 3: [35] The regular uncertainty distributions of independent uncertain variables

( 1,2,..., ,..., ) i i m n
are 

( 1,2,..., ,..., ) i i m n
 respectively. If the function 

1 2( , ,.., .., )m nf x x x x
is strictly increasing and strictly decreasing w.r.to 1 2, ,..., mx x x

and

1 2, ,...,m m nx x x  respectively, then 
1

1 1 1 1

1 1

0

( ) ( ( ),..... ( ), (1 ),.... (1 ))m m nE f d            

  
 (5)                                                                                                                             

From the above theorem, we know that 
1

1

0

( ) ( )    E d

                                                                                    (6) 

where ξ is an uncertain variable with regular uncertainty distribution Φ.  

Definition 8: [17] A linear uncertain variable ξ is defined as  

0
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                                     (7)                                                                                 

denoted by L(l, m), where in l, mR with l < m. 

The inverse delivery function of a linear uncertain variable L (l, m) is given by 
1( ) (1 )l m      

                             (8)                                                                            

Where 0.5    and its expected value is given by   

[ ]
2

l m
E 




                                                   (9) 

3. NOMENCLATURE 

The following notations have been considered for constructing the proposed two models: 

m              number of origin 

n               number of destination 

K              number of mode of transport 

R              number of transportation routes 

T              number of products 

wZ
uncertain objective functions, where w=1,2,… 

igP thi - origin, 
thg

good’s purchasing price 

jgS thj
destination, 

thg
 good‘s selling price   



 

 

 

 

ijkrgC
the unit transportation cost of 

thg
good from 

thi         origin to 
thj

terminus by 
thk

transport via 
thr road per unit distance. 

ijkrg
the rate of breakability per unit distance of 

thg
good from 

thi origin to the 
thj

terminus by 
thk transport via 

thr road. 

ijrd
distance from

thi  origin to 
thj

terminus via 
thr road. 

kV
speed of the 

thk transport 

ijr
rate of disturbance of the speed due to 

thr  road from 
thi origin to 

thj
destination. 

ijkg
unloadingand loading time of the 

thg
good with admiration to the transportmovement 

from 
thi origin to 

thj
 destination by 

thk transport 

iga
quantity of 

thg
good available at 

thi origin 

jgb
therequirement of

thg
good at the 

thj
destination 

ke
capacity of a single vehicle of 

thk transport. 

wD

negative deviational value. 

wD

positive deviational value. 

4.Mathematical Formulation Of UMOMI4DTPS: 

A uncertain multi objective multi item four dimensional transportation problem with  

vehicle speed is formulated as follows. Let there be  m origins iO
(i=1,2,…m), n demands jD

(j=1,2,……n) , R roads rQ
(r=1,2….R), G goods

Pg (g=1,2,….G),K conveyances kE

(k=1,2,….K).The objective of this transportation model is to maximize the profit and 

minimize the time taken for transportation. Estimating the exact amount of parameters that are 

related is not so simple in the present situation.  Application of transportation problem in real 

life situation involves lot of uncertainties for the decision makers such as availability of raw 

materials, fluctuation of unit transportation cost and demands in destinations. Hence the 
following are some unmanageable factors in transportation problems. 

1. The product availability at the origin may be uncertain, considering time factor. 

2. The decision maker may not always know the unit transportation charge for the 1st 

transportation operation. 

3. The recently introduced products’ total demand may be uncertain in the market. 

So, we formulate considering all the parameters(availabilities, demands, purchase price , 

selling price,  loading and unloading time, capacity of the conveyances and transportation 

cost)   as uncertain variable which might be incorporated in the real life situation. 

There are chances of goods or items are transported may be damaged during the 

transportation period. The reason for this breakability’s are diverse. It may depend on the 

route through which the item is transported and also the nature of the goods that transported. 



 

 

 

 

Mainly the glass items, especially ceramics and china clay have this concerns. For some items 
damageability may be due to its type only. Some items may not be damageable at all. 

Considering the above factor, we have introduced three different models by involving the rate 

of breakability and are given as follows. 

Model 1: In model 1, we consider the transporting goods that are vulnerable to 

breakability, that depend on different mode of transports along different routes. Here, we use

ijkrg
 the rate of breakability per unit distance from 

thi origin via 
thr  road to

thj
 destination for 

the 
thg

goods via 
thk transport. 

Model 2: This model considers the goods that are damageable because of their nature. g

is used to denote the rate of breakability per unit distance of the 
thg

goods. 

Model 3: This model considers non-breakable goods. 

4.1. Model 1: UMOMI4DTPS with breakable items based on mode of transports, roads 
and goods 

The maximizing the total profit is the first objective and minimizing the transportation 

time is the second objective of the model which are given below. The transporting time will be 

taken into consideration if the goods are transported from 
thi origin to 

thj
terminus by 

thk

transport via 
thr  road. 

1

1 1 1 1 1

2

1 1 1 1 1 1 1 1 1

1

Max [ (1 * ) ( * )]*

*
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1,if 0,
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m n K R m n K R G
ijr ijkr

ijkg ijkrg

i j k r i j k r gk ijr

G

ijkrg

g

ijkr

Z S d P c d x

d y
Z x

v

x

y

1

1 1 1

1 1 1

1

0,

subject to,

, 1... , 1... , (supply constraints)

(1 ( * )) , 1... , 1... , (demand constraints)

, 1... ,




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 





 



  

   

 




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

G

ijkrg

g

n K R

ijkrg ig

j k r

m K R

ijkrg ijr ijkrg jg

i k r

G

ijkrg k

r g

x

x a i m g G

d x b j n g G

x e k K
1 1 1

(Conveyance constraints)
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m n R

i j

ijkrgx i j k r g
    (10) 

 

4.2 Model 2:UMOMI4DTPS with breakable items due to their nature 

In this model we have formulated a case wherein the goods that are selected has 

damageability factor only because of its type. This model is same as of the previous model 



 

 

 

 

except the objective and constraint which depends upon
.ijkrt . So, the required model is 

developed as shown below:    
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1 1 1 1 1

2
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(11)                                                                                    

4.3.Model 3: UMOMI4DTPS with no damageable goods 
In this model, we have formulated a problem which involves no breakable goods.As we 

cannot deal uncertain environment directly, the above problem with uncertain supplies, 

demands, costs, filling and receipt time and capacities could be converted as equivalent 

deterministic model by employing the expected value and chance constraint methods. 

5 Expected Value Models For UMOMI4DTPS 

In this section, we have introduced the equivalent deterministic models for 

UMOMI4DTPS using expected value method. 

5.1 Expected value method for Model 1 

Equivalent deterministic form for model 1 by using expected value method is given in 

(13). 

Applying the properties of theories of expectation in the (13), we have (14).  
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(12) 

5.2 Expected value method for Model 2 

Equivalent deterministic model after applying the properties of Expected value method is 

given in (15). 

5.3 Expected value method for Model 3 

Model 3’s equivalent deterministic form after applying the properties of Expected value 

method is given in (16). 



 

 

 

 

1

1 1 1 1 1

2

1 1 1 1 1 1 1 1 1

Max E [ (1 * ) ( * )]*

*
Min E *

(1 )

1,if

where,






    

        

 
    

 

 
  

  



 

m n K R G

jg ijkrg ijr ig ijkrg ijr ijkrg

i j k r g

m n K R m n K R G
ijr ijkr

ijkg ijkrg

i j k r i j k r gk ijr

ijkr

Z S d P c d x

d y
Z x

v

x

y
1

1

1 1 1

1 1 1

1 1 1 1

0,

0,if 0

subject to,

E 0, 1... , 1... ,

E (1 ( * )) 0, 1... , 1...

E







  

  

   






 


 
    

 

 
     

 
















G

ijkrg

g

G

ijkrg

g

n K R

ijkrg ig

j k r

m K R

jg ijkrg ijr ijkrg

i k r

m n R G

ijkrg k

i j r g

x

x a i m g G

b d x j n g G

x e 0, 1... ,

0, , , , , .























 

   
 


  ijkrg

k K

x i j k r g
     (13) 

Definition 9 A feasible solution 
** } { ijkrgX x S

 is an efficient (no dominated) 
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6. Chance Constrained Method For UMOMI4DTPS 

In this section, we have introduced the equivalent deterministic model for 

UMOMI4DTPS using chance constrained method. 

6.1 Chance constraint method for Model 1 

Suppose that
, , , , ,jg ig ijkrg ijkg ig jg kS P c a b and e

are autonomousindeterminate variables 

with regular indecision distribution
, , , , , ,      jg ig ijkrg ijkg ig jg k  respectively. Model 1’s 

equivalent deterministic model using the chance constrained method is given in (17). 

6.2 Chance constraint method for Model 2 

Equivalent deterministic form of Model 2 using the chance constraint method is given in 

(18). 

6.3 Chance constraint method for Model 3 

Model 3’s equivalent deterministic form using the chance constraint model is given in 

(19). 
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are predetermined confidence level and 
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Where 1 6 7,..., and  
are predetermined confidence level and 

(0,1), 1,2,...7.i i  
 

* 1 1 1

1 1 2 3

1 1 1 1 1

* 1

2 4

1 1 1 1 1 1 1 1 1

Max [ ( ) ( ) ( ( )* )]

*
Min ( )*

(1 )

1, f 0,

where,

     

 


  

    



        



   

 








 

m n K R G

jg ig ijkrg ijr ijkrg

i j k r g

m n K R m n K R G
ijr ijkr

ijkg ijkrg

i j k r i j k r gk ijr

ijkrg

g

ijkr

Z d x

d y
Z x

v

i x

y
1

1

1

6

1 1 1

1

5

1 1 1

1

7

1 1 1 1

0, f 0

subject to,

[ ], 1... , 1...

(1 ), 1... , 1...

[1 ], 1...

0, , , , , .

 

 

 





  



  



   







 





  

   

  

 











G

G

ijkrg

g

m K R

ijkrg jg

i k r

n K R

ijkrg ig

j k r

m n R G

ijkrg k

i j r g

ijkrg

i x

x j n g G

x i m g G

x k K

x i j k r g
























         (19) 



 

 

 

 

Where 1 6 7,..., and  
are predetermined confidence level and 

(0,1), 1,2,...7.i i  
 

 

7. Goal Programming Approach 

The goal programming is a technique proposed by Charnes clan cooper[36] for obtaining 

satisfactory solution even in the presence of more than one goals. This field was further 

developed by many authors like T.Chang[37], Pal[38],etc. Fuzzy goal programming approach 

was introduced by Mohammed[39] for solving MOTP. The same technique was implemented 

to solve MOTPwith linear membership function as well as non linear membership functions 

by M.Zangiabadi[40],[41]. Minimizing the distance between 1( ,..., ) wZ Z Z
 and aspiration 

(or) target level 1( ,..., ) wZ Z Z
,which are set by the decision maker, is the purpose of goal 

programming. For this purpose, the negative and positive deviational variables have been 

introduced below. 

max(0, )  w w wD Z Z
 

max(0, )  w r wD Z Z
 

To minimize the distance between wZ
and wZ

, we have to minimize either
, 

w wD D
or 

 w wD D
.When we have to maximize 

, ( , ) .  w w w w wZ g D D D
While, when we have to 

minimize 
, ( , ) .  w w w w wZ g D D D

When we desire 
, ( , ) .     w w w w w w wZ Z g D D D D

 

Membership functions are defined in order to express the satisfaction of decision maker 

along with the solution. Given below are the definitions of membership functions. 
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( )w wZ
represents the decision maker’s satisfaction. Therefore, it must be maximized i.e 

1 1max( ( ( )),..., ( ( ))) w wZ x Z x
 

Here wZU
 and wZL

are the highest acceptable and aspired level of achievement for 
,wZ

 

(w = 1;2) objective function. 

We know that the maximum value of any membership function is one. Therefore, to 

maximize any of the membership functions, we minimize its negative deviation from 1 to 

make them as close as possible to 1. The LPP can be formulated as below. 

min(max( ( , ))) 

w w Wg D D
 

i.e min Q 
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, wQ D
where w = 1; 2. 

. 0,  w wD D
 

, 0,0 1,    w wD D Q
and with given constraints. Here, we have considered 

UMOMI4DTPS type of problem; goal programming technique will be the most appropriate 

procedure for getting the most suitable compromise solution. 

8. Algorithm For Solving UMOMI4DTPS 

The following proposed algorithm is used to solve three different models of 

UMOMI4DTPS. 

Step 1: Convert the uncertain MOMI4DTPS into deterministic model by applying the 

expected value and chance constraint models. 

Step 2: Solve the profit and time objective function 
,wZ

(w = 1;2) individually subject to 

the supply, demand constraints including breakability and conveyance constraints. 

Step 3: Compute the values of every of the objectives function 
,wZ

(w=1;2) at each 

solution obtain in step 2. 

Step 4: From the set of solutions calculated from the step 2, obtained the upper wZU
 and 

lower wZL
bound for each objective function. Here wZU

and wZL
are the highest satisfactory 

and aspired level of accomplishment for 
,th

wZ
(w = 1;2) objective function. 

Step 5: Use goal programming technique to formulate the following LPP model for the 

given UMOMI4DTPS. 

Min Q 
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1w

w w
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D D

U L

 


  


 

wQ D
,where w=1,2. 

. 0w wD D  
 

wD

.
 wD

0, 
0 1 Q

,and with constraints given in the  respective model. 

Step 6: Solve the above model obtained in step 4 by using generalized abridged gradient 

method (LINGO-18.0 Suite Solver) to get the compromise solution. 

9. Numerical Example 

Numerical example of UMOMI4DTPS is presented in this section, whose parameters are 

linear uncertain variables, to showcase the effectiveness and efficiency of the presented 

methodology. Here, variables like availabilities, demands, purchase price, selling price, 

unloading and loading time and transportation cost are considered as indeterminate variables. 



 

 

 

 

We consider two different sources (origins), customers (destinations) conveyances, roads and 
different goods each. 

i.e m = n = K = Q = G = 2. 

Table 1 contains the data for availabilities of goods in the sources. 

Table 1: Available stock in each origin 

 i   g   iga
 

1 
1 L(380,400) 

2 L(260,360) 

2 
1 L(180,380) 

2 L(217,377) 

The following table contains the data for demands of goods in the destination. 

Table 2: Demands in the destinations 

1.1  j
 1.2  g

 
1.3  jgb

 

1.4 1 1.5 1 1.6 L(100,164.084) 

1.7 2 1.8 L(50,150) 

1.9 2 1.10 1 1.11 L(70,100) 

1.12 2 1.13 L(110,130) 

The purchasing prices of the goods are given in table 3. 
Table 3: Purchasing price for the goods 

1.14 i  1.15 g
 

1.16 igP
 

1.17 1 1.18 1 1.19 L(8.250,20) 

1.20 2 1.21 L(12,14) 

1.22 2 1.23 1 1.24 L(7,15) 

1.25 2 1.26 L(11,13) 

The selling prices of 
thg

goods in the 
thj

destinations are in the following table. 

Table 4: Selling price for the goods 

1.27 j
 1.28 g

 
1.29 igS

 
1.30 1 1.31 1 1.32 L(70,104) 

1.33 2 1.34 L(110,120) 

1.35 2 1.36 1 1.37 L(100,124) 

1.38 2 1.39 L(100,104) 

Table 5 contains the data for capacity of the transports. 

Table 5: Capacity of the transports 

1.40 1e
 1.41 2e

 
1.42 L(300,496) 1.43 L(330,500) 

The loading and unloading time of different goods are presented in table 6. 

Table 6: loading and unloading timing 

i  
j

 k   1ijk
  2ijk

 

1 1 1 L(.3,.5) L(.3,.5) 



 

 

 

 

2 L(.3,.8) L(.2,.5) 

2 1 L(.5,.7) L(.34,.5) 

2 L(.22,.60) L(.22,.60) 

2 1 1 L(.56,.7) L(.6,.8) 

2 L(.3,.7) L(.8,1) 

2 1 L(.8,1) L(.1,.5) 

2 L(.32,.5) L(.34,.5) 

The unit transportation cost of various goods per units distance are in table 7. The 

breakability rates of goods per unit distance are given un table 8. 

Table 7: Unit transportation cost of different goods per unit distance 

i  j  k  r   1ijkrc
  2ijkrc

 

1 1 1 1 L(.20,.48) L(.20,.48) 

2 L(.32,.40) L(.20,.40) 

2 1 L(.26,.40) L(.16,.30) 

2 L(.40,.57) L(.1,.3) 

2 1 1 L(.30,.56) L(.12,.30) 

2 L(.34,.50) L(.22,.30) 

2 1 L(.2,.6) L(.28,.40) 

2 L(.3,.7) L(.34,.60) 

2 1 1 1 L(.38,.50) L(.200,.270) 

2 L(.40,.52) L(.12,.40) 

2 1 L(.2,.6) L(.2,.4) 

2 L(.40,.56) L(.30,.66) 

2 1 1 L(.340,.500) L(.200,.012) 

2 L(.260,.700) L(.1,.34) 

2 1 L(.400,.410) L(.2,.4) 

2 L(.3,.7) L(.1,.3) 

Table 8: Rate of breakability per unit distance 

i  j  k  r   1ijkr
  2ijkr

 

1 1 1 1 0.014 0.024 

2 0.014 0.015 

2 1 0.009 0.01 

2 0.024 0.014 

2 1 1 0.015 0.025 

2 0.024 0.015 

2 1 0.014 0.015 

2 0.011 0.012 

2 1 1 1 0.014 0.024 

2 0.024 0.024 

2 1 0.019 0.019 

2 0.016 0.009 



 

 

 

 

2 1 1 0.012 0.016 

2 0.014 0.01 

2 1 0.012 0.016 

2 0.012 0.011 

The speed of different transports are in the following table 9. 

Table 9: Speed of different transport 

1.44 1V
 1.45 2V

 
1.46 35 1.47 25 

Distance amongdissimilar sources and destination via dissimilar route are assumed by 

table 10. 

Table 10: Distance from source to destination via different routes 

i  
j

 1ijd
 2ijd

 
1 1 33 45 

2 45 35 

2 1 43 40 

2 56 45 

Table 11 contains the data of rate of disturbance of speeds. 

Table 11: Rate of disturbance 

i  
j

 1ij
 2ij  

1 1 0.0122 0.03 

2 0.013 0.022 

2 1 0.03 0.025 

2 0.011 0.04 

Applying the abovedevelopedalgorithm for the problem taken, the steps are: 

Here we have explained the procedure for expected value model 1 alone. 

Step 1: For the above data, deterministic optimization problems of the given model is 

obtained using expected value method(14) and solved. 

Step 2: Solving the above objectives separately, we have 1 31077.4Z  
 and 

2 278.967Z 
 

By using the calculated solutions, the value of each objectivespurpose is obtained as 

follow: 

1 1( ) 31077.4,Z x   1 2( ) 26711.88Z x  
 

2 1( ) 306.026,Z x  2 2( ) 278.967Z x 
 

The upper and lower bounds of each objective functions are as follows: 

1
26711.88,zU  

1
31077.4zL  

 

2
306.027,zU 

2
278.967zL 

 
Step 3: Using goal programming technique, the goal programming expected value 

method for Model 1 is expressed as follow. 
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Step 4: By using the generalizedabridged gradient method LINGO-18.0 Suite Solver, we 

obtain the efficient value of Q = 0:482 and the corresponding transportation plan is 

1 1 2 2.482, 0, .482, 0,      D D D D
Max 1 28975.005Z 

and Min 

2 11111 11211291.997, 123.008, 93.691,Z x x  
 

11212 12221 22122 1111183.098, 138.211, 218.182, 1,x x x y    1121 1222 22121, 1, 1.y y y  
 The 

remaining decision variables values are 0. We can conclude that both the objectives are 

achieved with decision maker’s satisfaction. Repeating the above steps from 1 to 4 for the 

remaining two expected value models and chance constraint models, we have the following 

results. 

Table 12 contains the calculated objective values of each objective function (14),(15) and 

(16) in each model. The efficient solutions of each goal programming expected value models 

are given in detail in table 13. 

Table 12: Objective values of expected value models 

Model 

no. Max 1Z
  ijkrgx

  ijkry
 Min 2Z

  ijkrgx
  ijkry

 

Model 1 31077.4 11111 179.82x 
 1111 1y 

 278.967 11111 179.82x 
 1111 1y 

 



 

 

 

 

11211 50.22x 
 1121 1y 

 11211 50.22x 
 1121 1y 

 

11212 226.57x 
 1222 1y 

 11212 149.25x
 1222 1y 

 

12221 138.21x 
 2212 1y 

 12221 138.21x 
 2212 1y 

 

22122 218.18x
   22122 218.18x

   

`Model 2 43324.36 

11211 152.75x 
 1121 1y 

 

228.25 

11111 158.14x 
 1111 1y 

 

11212 149.26x 
 1212 1y 

 11212 149.25x 
 1121 1y 

 

12121 237.25x 
 2121 1y 

 12221 103.03x 
 1222 1y 

 

12122 160.75x 

21211 5.73x 
 

2222 1y 
 

22122 218.18x 
 

2212 1y 
 

22221 79.06x 
       

22222 28.21x 
       

Model 3 70016.99 

11111 27.04x 
 1111 1y 

 

174.49 

11111 115.43x 
 1111 1y 

 

11211 105.00x 
 1121 1y 

 11121 16.62x 
 1112 1y 

 

11212 310.00x 
 1212 1y 

 11212 50.00x 
 1121 1y 

 

12121 85.00x 
 2111 1y 

 11222 50.00x 
 1122 1y 

 

21112 165.96x 
 2211 1y 

 12211 15.62x 
 1221 1y 

 

22112 120.00x
   12221 15.62x 

 1222 1y 
 

    22112 77.73x 
 2211 1y 

 

    22122 42.27x 
 2212 1y 

 

    22211 15.62x 
 2221 1y 

 

    22221 38.16x 
 2222 1y 

 
Table 13: The efficient solution of Expected value MOMI4DTPS 

Model 

no. 

Objective 

value 

       Max 1Z
      Min 1Z

 
Max 1Z

 
Min 

1Z
 

Objective value 
wD

 wD

 wD

 wD

 

Model 1 0.48 0 0.48 0 0.48 28975 291.99 

11111 11211123.01, 93.69 x x
 

12221 11212138.21, 183.1 x x
 

22122 1111218.18, 1 x y
 

1121 1222 2212 1  y y y
 

Model 2 0.33 0 0.33 0 0.33 38784.04 285.04 

11111 11212158.14, 310 x x
 

12221 22122104.32, 218.18 x x
 

1111 1121 1222 2212 1   y y y y
 

Model 3 0.35 0 0.35 0 0.35 57575.34 247.85 

11111 11212132.04, 214.44 x x
 

12221 2211285, 265.96 x x
 

1111 1121 1222 2211 1   y y y y
 

By using goal programming technique, the efficient solution for UMOMI4DTPS are 

obtained as of table 13. 



 

 

 

 

Table 14 contains the calculated objective values of each of the chance constraint model 
objectives(17), (18) and (19), where

1 2 3 4 5 6 70.6, 0.9, 0.9. 0.9, 0.3, 0.9, 0.3.            
 

Table 14: Objective values of chance constraint model 

Model 

no. Max 1Z
 ijkrgx

and ijkry
 Min 2Z

 ijkrgx
and ijkry

 

Model 1 30706.69 

11111 11211147.96, 111.06 x x
 

281.8 

11111 11211203.95, 668.21 x x
 

11212 12221208.8, 128.98 x x
 11212 12221208.95, 115.84 x x

 

22121 2212247.77, 241.47 x x
 22122 22221232.73, 55.99 x x

 

1111 1121 1222 2212 1   y y y y
 1111 1121 1222 2222 1   y y y y

 

  2212 1y
 

Model2 46675.4 

11211 11212118.72, 207.21 x x
 

223.63 

11111 11212188.83, 208.96 x x
 

12121 12122269.28, 92.79 x x
 12221 22122117.58, 232.73 x x

 

22121 2112273.19, 1.95 x x
 1111 1121 1 y y

 

22222 1121 1212123.07, 1  x y y
 1222 2212 1 y y

 

2112 1y
 2222 1y

 

Model 3 78182.42 

11111 112118.68, 149 x x
 

169.22 

11111 11121135.69, 21.99 x x
 

11212 12121300, 147.52 x x
 11222 1121270, 70 x x

 

21112 22112153, 128 x x
 12211 1222171.79, 25.29 x x

 

1111 1121 1212 2111 1   y y y y
 22112 2212294.51, 33.50 x x

 

2211 1y
 1111 1112 1121 1122 1   y y y y

 

  1221 1222 2211 2212 1   y y y y
 

By using Goal Programming technique, the efficient solution for UMOMI4DTPS are 

obtained as follows 

Table 15: Efficient solution of chance constraint UMOMI4DTPS 

Model no. 
Objective 

value 

       Max 1Z
      Min 2Z

 
Max 1Z

 
Min 

2Z
 

Objective value 
wD

 wD

 wD

 wD

 

Model 1 0.38 0 0.38 0 0.38 30471.09 290.91 

11111 11211164.26, 78.21 x x
 

12221 11212145.53, 208.96 x x
 

21111 2212235.98, 236.96 x x
 

22222 111116.31, 1 x y
 

1121 1222 2111 1  y y y
 

2212 2222 1 y y
 

Model 2 0.28 0 0.28 0 0.28 43410.40 273.33 

11111 11212209.31, 273.40 x x
 

12122 1222126.60, 175.60 x x
 

22122 1111 1121201.29, 1  x y y
 

1212 1222 2212 1  y y y
 



 

 

 

 

Model 3 0.29 0 0.29 0 0.29 67555.65 231.09 

11111 11212157.68, 254.64 x x
 

12221 2211297, 279.52 x x
 

1111 1121 1222 2211 1   y y y y
 

10. Discussion 

In our investigation, we have obtained the satisfactory solution of UMOMI4DTPS by GP 

predictable value and GP coincidental constrained method. The efficient solutions of expected 

value UMOMI4DTPS and Chance constraint UMOMI4DTPS are obtained using goal 

programming technique and are given in tables 13 and 15 respectively. Thus the goal 

programming technique is a fitting technique for dealing multi objectives transportations 

problems. In Model 1, the breakability of items depend upon different conveyances, items and 

routes. Where as in Model 2 damage of items which is considered only because of its nature. 
In Model 3, the damage of items is not considered. We get maximum profit in model 3 as 

breakability hasn’t been considered. In Model 2, there is considerable profit, while in Model1 

we get minimal profit as we infer from the table 13. Unlike expected value model where the 

solution is fixed, in chance constrained model we get optimistic - pessimistic solutions as we 

can obtain different satisfactory solutions according to condition which is given higher 

weightage as preferred by the decision maker as inferred from the table 15. 

 
(a) Profit objective function comparison 



 

 

 

 

 
(b) Time objective function comparison 

Fig. 1: Graphical analysis 

The foremost impartial of this examination is to exploit the turnover and minimalize the 

transportations period. As we can clearly infer from the graphs (figure 1), the profit obtained 
in the chance constrained model is higher than of the expected value models. Similarly, the 

time taken for transportation has also been minimized. Also, the decision maker can obtain 

solutions according to his preferences which is an added advantage of the proposed method. 

11 Practical Implications 

The presented model can be very much beneficial in real world business applications. 

Mr.Akash is a television retailer. He deals different types of televisions and has three outlets in 

Chennai, Puducherry and Madurai. All these products are bought by him from manufacturer 

located in Tuticorin, Tiruchirappalli and Salem. He uses conveyances (transports) like Lorries, 

tempos and trucks. There are different paths like NH-7, NH-45, NH-46, NH-68 and other 

village paths. The distances differ because of the presence of different manufacturer and 

different outlets. Also, the variety of conveyances may affect the transportation speed. The 

speed can vary due to the road conditions too. Moreover, televisions are breakable items and 

the rate of breakability will also vary depending upon the roads. Due to the unpredictable 

nature of the consumer, the availabilities, prices at different manufacturing companies vary; 
these parameters are imprecise quantities and are represented through linear uncertain 

variables. Therefore the present investigation will definitely prove to be useful in real life 

cases. 

12 Comparision Between Proposed Method And Existing Methods 

The method presented is a type of UMOMI4DTPS with different parameters such as 

selling price, cost price, availabilities, demands, loading and unloading time, unit 

transportation cost and the vehicle speed. Till date no method accounted vehicle speed. The 

proposed method is the first ever model considering vehicle speed .Methodologies and 

environments to solve MOMISTP have been investigated by many researchers. In 2018, the 



 

 

 

 

Bera et al[42] has provided a method for MOMI4DTP considering only budget constraints 
using rough and fuzzy interval environments. However the proposed model is the only model 

considering all parameters and aspects for the first time. As the proposed model considers 

diverse parameters, it is beneficial one for the managerial decision making under uncertain 

environment. 

13. Conclusion 

we have presented a multi objective multi item four dimensional transportation problem 

vehicle speed under uncertain environment. Unlike other transportation models, here we have 

considered the variance in vehicle speed because of the road condition. The equivalent 

deterministic models for UMOMI4DTPS have been obtained by using both expected value 

and chance constrained methods followed by compromise solution which is obtained by using 

goal programming technique. The suggested model is identicalinformal to apply, comprehend 

and is economically more beneficial for a firm as the profit is increased and the transportation 

time is efficiently minimized too. Hence, the decision maker can make better managerial 

decisions. The numerical example provided has keenly showed the ease of application of this 
method as well as provides an efficient solution for UMOMI4DTPS. 
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