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Abstract

In this study, a proposed descriptor based on the improved local ternary patterns (ILTP) that also uses the
color properties of rice varieties is presented. Not only gray-scale intensity, but R, G, and B color components
of the rice grains are considered. Combining a support vector machine (SVM) with the proposed descriptor
for classification of 17 rice varieties planted in Vietnam gives an overall accuracy of 95.53%. To evaluate
and compare the effectiveness of the proposed descriptor with other analysis techniques for rice varieties
classification, texture descriptors based on local binary pattern and local ternary patterns are combined with
SVM to classify these 17 rice varieties. Experiment results show that the classification accuracy from the
SVM using the proposed descriptor is significantly higher than using ILTP or other texture descriptors from
the literature. This technique can be used to build an automatic system of rice varieties identification and
classification.
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1. Introduction

Rice varieties are diverse to deal with diseases, climate
change, and pests, so knowing their characteristics
is necessary. However, external observation of grains
from different varieties of rice reveals that they are
quite similar, so classification and identification from
measuring their shapes and sizes, or through only
visual observation, is time consuming and often leads
to inaccurate results. Therefore, an automatic rice
classification method is necessary for rice gene bank
centers, farmers, and researchers.

∗Corresponding author. Email: ttknga.sdh16@hcmut.edu.vn

Combining features of rice varieties with machine
learning methods is applied in research of rice varieties
classification. Extracted features include color [1, 2],
morphological features [3, 4], both shape and color
[5, 6], or color, morphological and texture features
[7, 8]. To compare and evaluate classification ability
from color, morphological and texture features, these
feature sets are combined with SVM for classification
of 17 rice varieties planted in Vietnam, as done in
[9]. Classification accuracy achieved was 83%, 71.53%,
and 75.82% for texture, color, and morphological
features, respectively. The results show that texture
features are quite effective when compared to color and
morphological features for rice variety classification.
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Therefore, this study focuses on texture analysis to
enhance the classification accuracy of rice varieties.

1.1. Related Work
Texture is important information from an image, and it
is applied in many fields, such as pattern recognition,
medical image analysis, and image retrieval [10]–
[16]. Texture analysis is usually categorized into four
main methods: statistical, structural, model-based,
and transform-based [17]. In another more detailed
study [18], the authors classified texture feature
extraction methods into seven categories: statistical
approaches, structural approaches, transform-based
approaches, model-based approaches, graph-based
approaches, learning-based approaches, and entropy-
based approaches.

Statistical methods for texture, including basic
descriptors and the gray level co-occurrence matrix
(GLCM), were used in some research on rice variety
classification. Statistical descriptors such as mean,
standard deviation, uniformity, and third moment of
gray-scale intensity, along with color and morphological
features, were applied for classification of six different
rice varieties [7]. The highest classification accuracy
(90.54%) was obtained when these features were
combined with a random forest model. Texture
features including GLCM and geometric features were
combined with a multiclass SVM to classify six varieties
of rice from western Odisha [19]. In [8], the authors
used a neural network and combined 15 texture
features in a GLCM, 13 morphological features, and 6
color features to classify nine rice varieties. In these two
studies, the GLCM was calculated from four directions
(00, 450, 900, 1350), and both studies achieved overall
classification accuracy of 92%.

For more classes, Haralick texture features of a GLCM
were extracted from edge images of bulk samples to
classify 15 paddy varieties [20]. However, the accuracy
rate was not high (87.8%). In [21], seven texture features
including brush ratio and six GLCM features (mean,
variance, uniformity, entropy, contrast, and correlation)
were combined with morphological features, color
features, and Fourier descriptors to classify 30 rice
varieties, giving accuracy of 89.1%.

To compare the effectiveness of some texture methods
for rice classification, the authors in [22] extracted
features including a GLCM, a grey-level run length
matrix, a grey-level size zone matrix, a neighborhood
grey tone difference matrix, and wavelet features.
In addition, three sets of texture features (SET-A,
SET-B and SET-C) were formed from four different
proposed schemes. The performance of feature SET-
B achieved average accuracy of 99.63% using a
backpropagation neural network. In [23], the authors
compared classification accuracy with six rice varieties

by using hand-crafted descriptors and convolutional
neural networks. The results show that the DenNet21
framework achieved the highest accuracy at 99.04%,
while the highest classification accuracy from hand-
crafted descriptors was 84.10%, obtained from a
histogram of oriented gradients.

Besides statistical methods such as histogram prop-
erties and co-occurrence matrixes, local binary pattern
(LBP) is widely used because of its simple implemen-
tation, improved high classification accuracy, and inde-
pendence from rotation. Some methods were developed
from LBP to enhance its robustness and discrimination
against image rotation and noise. Besides considering
sign features like the traditional LBP, the authors in
[24] proposed a completed LBP (CLBP) scheme by
combining sign, magnitude, and central value fea-
tures for rotation-invariant texture classification. The
authors in [25] proposed a method named feature-
based LBP (FbLBP) for rotation-invariant texture clas-
sification. FbLBP features are calculated from the sign
and magnitude, where magnitude includes the mean
and variance of the magnitude vector. The authors
in [26] developed a method of texture classification
named the binary rotation invariant and noise tolerant
(BRINT) method. Similar to CLBP, the BRINT method
includes three descriptors: sign, magnitude, and cen-
tral value. However, the number of sampled points is
restricted to eight on any radius for the sign descriptor.
Magnitude descriptors were computed with a locally
varying threshold. Moreover, these descriptors were
calculated with uniform patterns inspired by the LBP ri

P ,R
[27] method. Therefore, the robustness of the proposed
approach is to process effectively for image rotation
and noise. To overcome sensitivity to a noisy image
under LBP, the authors in [28] developed the median
robust extended LBP (MRELBP) by comparing medians
of regional images rather than raw image intensities.

However, the LBP methods only used two-valued
codes (0 and 1) with a threshold value at exactly the
central pixel, so they are sensitive to noise. Therefore,
the authors in [29] introduced a generalization of LBP
named local ternary pattern (LTP) to increase the
discriminant and decrease the sensitivity to noise in
uniform regions. Some recent research was based on
LTP in order to develop texture descriptors for the
pattern recognition problem. Some attempts proposed
extensions of LTP to solve the texture classification
problem [30]–[35]. Some texture descriptors based
LTP were proposed for face recognition, such as
prominent LTP [36], relaxed LTP [37], adaptive LTP
[38], co-occurrence of adjacent sparse LTP [39],
improved gradient LTP [40]. Other research was based
on LTP to develop texture descriptors for smoke
detection, medical image analysis, fingerprint vitality,
fall detection, and blur detection and segmentation
[41]–[48]. Different from LBP, traditional LTP features
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are calculated from three-valued code (-1, 0, and
1). However, these three-valued codes could be
assigned to other values, as they were in [30, 32,
37] when comparing the value between a central
pixel and a neighbor pixel against a threshold value.
Besides, selection of the suitable threshold value can
improve the accuracy rate in some research. The
authors in [38] set the threshold value of LTP for
face recognition automatically according to Weber’s
Law. In [33], the threshold value is the median
absolute deviation of the gray-level values in a
3×3 local region. While LTP features are calculated
with only sign components, the authors in [42]
proposed completed LTP (CLTP) approaches calculated
from sign components, magnitude components, and
central components for more discrimination. Instead of
comparing values of central pixels and neighbors in a
3×3 local region to obtain the binary pattern as LTP
method, the authors in [35] apply Frei-Chen masks in
eight directions, and the second derivative of a Gaussian
filter for the central pixel, and then calculated the lower
and upper components of the local directional ternary
pattern (LDTP). The authors in [39] combined LTP and
a GLCM to form a texture descriptor named CoALTP for
texture and face image retrieval. The approach applies
LTP to the given image, and then uses a GLCM in four
directions for upper and lower components of LTP. To
enrich texture information for uniform LTP, the authors
in [44] computed feature histograms from the upper
and lower binary patterns from eight orientations of
0, 45, 90, 135, 180, 225, 270, and 315 degrees to form
eight histograms. Then, a feature vector is formed by
concatenating these eight histograms.

A histogram of patterns is considered as extracted
features in these texture descriptors, but it usually
has computational complexity and is sensitive to
rotation. Therefore, the proposed method, called an
improved local ternary pattern (ILTP) [49] applies a
uniformity measure, as done in [50] to the binary
pattern, so this method could be resistant to rotation
sensitivity, and significantly decrease the total number
of extracted features. However, ILTP is considered for
gray-scale intensity while the color components of an
image contain a lot of useful content for classification.
Therefore, our study is based on ILTP to extend
color properties for rice images. The proposed method
considers not only gray-scale intensity but also R, G,
and B components to build a descriptor for rice variety
classification.

1.2. Main Contributions
In this study, an SVM is applied to texture features for
classification of 17 rice varieties planted in Vietnam.
This descriptor considers gray-scale intensity as well as
R, G, and B components to enhance the accuracy of rice

variety classification. In addition, this descriptor resists
noise and sensitivity to image rotation. The framework
of this study is illustrated in Fig. 1. Rice images are
pre-processed to separate them into individual rice
grains. A proposed texture method is applied to each
rice grain to generate a feature set of each rice variety.
These feature sets are used with the SVM to classify
17 rice varieties. To compare the classification ability of
the proposed descriptor with other texture descriptors,
experiments were carried out using the SVM and
some other texture descriptors from the literature for
classification of the 17 rice varieties.

Our main contributions are presented as follows.

• An image dataset of the 17 Vietnam rice varieties
is collected and acquired by scanner.

• We develop a texture descriptor based on the ILTP
method for not only gray-scale intensity but also
color properties of the 17 rice varieties.

• Experiments are performed to select parameters
for the texture descriptor, including a threshold
value and the radius of the neighborhood.

• Experiments are performed for classification of
these 17 rice varieties by an SVM using the pro-
posed descriptor and other texture descriptors
from the literature. The results show the proposed
approach achieved higher performance in com-
parison with the literature approaches.

The rest of this paper is organized as follows. LBP
and LTP is presented in Section 2. The proposed texture
color descriptor for rice varieties is presented in Section
3. Use of the SVM is detailed in Section 4 and its
performance is evaluated. Section 5 presents the image
dataset of the rice varieties under study, while the
experiment results are discussed in Section 6, followed
by conclusions in Section 7.

2. LBP and LTP
2.1. LBP
LBP describes the spatial structure of a local image
texture and was first introduced by Ojala et al. [51].
This descriptor is independent of rotation, has a simple
implementation, and extracts proper features to achieve
high classification accuracy [17]. LBP code of a given
pixel is only based on sign information computed by
comparing the pixel value with its neighbors, as seen in
equation (1):

LBPP ,R =
P−1∑
p=0

s(gp − gc)2p (1)

where gc is the gray-scale intensity of the central pixel,
gp is the value of its neighbors, P is the number
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Figure 1. Framework of classification for 17 rice varieties.

of neighboring points, and R is the radius of the
neighborhood.

The sign function s(x) generates binary values and is
defined in equation (2):

s(x) =
{

1 if x ≥ 0
0 otherwise

(2)

The output binary values are multiplied by the
weights according to indexed neighbors to obtain a
decimal number for the LBP. This operator is carried
out for all local patterns of the image, and then, LBP
values are constructed to form the histogram. However,
the LBP descriptor is variant to rotation, because when
an image is rotated, indexing of neighboring pixels
changes. In order to eliminate the operator’s sensitivity
to rotation, a method for a rotation-invariant LBP ri

P ,R
[27] was proposed. The bit rotation is applied to the
output binary pattern, and an intermediate LBP value
is computed for each rotation. Finally, the LBP value
is determined as the minimum value of all immediate
LBP values. The rotation operator is computed with
equation (3):

LBP ri
P ,R = min

{
ROR(LBPP ,R, i)|i ∈ [0, ..., P − 1]

}
(3)

where ri represents the rotation invariant operator, and
ROR(LBPP ,R, i) denotes the local binary pattern rotated
circularly to the right i times.

However, this approach has a high computational
complexity, especially when increasing the number of
neighboring points. Therefore, another improvement

by Ojala et al., named uniform MLBP [50] was
proposed. In that approach, a uniformity, U , represents
the number of changes from 0 to 1 (and vice versa) in
the output binary pattern. U is calculated as seen in
(4). For example, the U value equals 0 in 00000000
and 11111111 patterns but equals 4 in the 11110110
pattern.

U (LBPP ,R) = |s(gP−1 − gc) − s(g0 − gc)|+
P−1∑
p=1

∣∣∣s(gp − gc) − s(gp−1 − gc)
∣∣∣ (4)

Relying on the U value, the patterns are categorized
into two groups: uniform patterns and non-uniform
patterns. Uniform patterns include patterns that have a
U value less than or equal to UT , whereas non-uniform
patterns have a U value more than UT . Up next, labels
0 to P are assigned to uniform patterns, and P + 1 is
assigned to non-uniform patterns, as seen in equation
(5):

MLBP riu2
P ,R =


P−1∑
p=0

s(gp − gc) if U (LBP ) ≤ UT

P + 1 otherwise
(5)

2.2. LTP
Although LBP is a simple method, and is rotation
invariant, it is sensitive to noise. Therefore, LTP [29]
is an extension of LBP to improve robustness in local
coding. Instead of using two-valued codes, 0 and 1, like
LBP, LTP uses three-valued codes (-1, 0, and 1) to assign
to neighbors when comparing their values to the central
pixel, as seen in equations (6) and (7):

LT PP ,R =
P−1∑
p=0

s_LT P (gp − gc)3p (6)

s_LT P (x) =


1 if x ≥ t
0 if |x| < t
−1 if x ≤ −t

(7)

where s_LT P (x) is the threshold function, and t is the
threshold defined by the user.

By using three-valued codes, LTP code has more dis-
criminative features than LBP. However, the dimension
of the built LTP histogram is very large when using 3n

value codes. For simplicity, the ternary code is divided
into the upper and lower codes in equations (8) and (9):

LT P lower
P ,R =

P−1∑
p=0

sL(gp − gc)2p,

sL(x) =
{

1 if x ≤ −t
0 otherwise

(8)
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LT P
upper
P ,R =

P−1∑
p=0

sU (gp − gc)2p,

sU (x) =
{

1 if x ≥ t
0 otherwise

(9)

where sL(x) and sU (x) denote the threshold functions to
calculate lower and upper LTP patterns, respectively.

These two histograms of upper and lower LTP
patterns are connected to form a single histogram. In
order to decrease the number of bins in the histogram,
the authors in [49] proposed an improved local ternary
pattern (ILTP) texture descriptor for bark classification.
After the ternary code is divided into upper and lower
codes, this method is based on uniformity measure
U to label both upper and lower LTP patterns, as
in the uniform MLBP method [50]. Therefore, upper
patterns are classified into two groups: uniform and
non-uniform. Similarity, lower patterns are classified
as uniform and non-uniform. In the results, upper
patterns are labeled 0 to P + 1. Also, lower patterns are
labeled 0 to P + 1. Finally, feature vectors are calculated
as the occurrence probability of the labels of the upper
and lower LTP patterns. An example of calculating the
ILTP pattern with R = 1 is presented in Fig. 2.

3. Proposed texture color descriptor for rice
varieties classification
The ILTP descriptor can improve classification accuracy
compared to other texture methods for bark classifi-
cation [49]. However, authors have only applied this
approach to analysis of texture features for gray-scale
intensity, but have not yet considered the color prop-
erties of images. Therefore, the descriptor proposed
in this study not only inherits the attributes of ILTP
but also analyzes color properties of rice grains. The
procedure with the texture color under the proposed
method is illustrated in Fig. 3.

Color images of each rice grain are converted to gray,
R, G, and B components, called Ik , where k = 0, 1, 2, 3.
The ILTP method is applied to each gray, R, G, and B
component individually. Consider a local region with P
neighbors at central pixel (i, j), and radius R for image
component Ik . Let LbP ,R(h) and UbP ,R(h), respectively,
denote the lower binary code and the upper binary code
of the pattern, where h = 0, 1, 2, ..., P − 1. LbP ,R(h) and
UbP ,R(h) are calculated with the following equations:

UbP ,R(h) = sU (gh − gc) (10)

and
LbP ,R(h) = sL(gh − gc) (11)

for which sU and sL are computed with equation (8) and
(9).

Uniformity measure U is computed for upper and
lower patterns individually, as seen in equations (12)
and (13):

U (ULT PP ,R) =
∣∣∣UbP ,R(P − 1) −UbP ,R(0)

∣∣∣+
P−1∑
h=1

∣∣∣UbP ,R(h) −UbP ,R(h − 1)
∣∣∣ (12)

U (LLT PP ,R) =
∣∣∣LbP ,R(P − 1) − LbP ,R(0)

∣∣∣+
P−1∑
h=1

∣∣∣LbP ,R(h) − LbP ,R(h − 1)
∣∣∣ (13)

Up next, upper patterns and lower patterns are
labeled from 0 to P + 1 with equations (14) and (15):

U_I(i, j)kP ,R =


P−1∑
h=0

UbP ,R(h) if U (ULT PP ,R) ≤ UUT

P + 1 otherwise
(14)

and

L_I(i, j)kP ,R =


P−1∑
h=0

LbP ,R(h) if U (LLT PP ,R) ≤ ULT

P + 1 otherwise
(15)

Let FL_IkP ,R
= (fl0, fl1, ..., fl(P+1)) and FU_IkP ,R

=

(fu0, fu1, ..., fu(P+1)), respectively, be the occurrence
probability of labels assigned to lower and upper
patterns. Elements of feature vectors fle and fue, where
e = 0, 1, 2, ..., P + 1, are calculated with equations (16)
and (17):

fle =
Ncle
Ntotal

(16)

and
fue =

Ncue
Ntotal

(17)

where Ncle and Ncue denote the number of lower and
upper patterns, respectively, that are assigned label e
of component image Ik , and N total is the total number
of pixels in the rice grain image. The output feature
vector of each image component Ik is generated by
concatenating the two feature vectors FL_IkP ,R

and FU_IkP ,R
.

Also, output of the gray, R, G, and B components
are concatenated into a vector that describes the total
texture color features of each rice grain.

In the ILTP procedure, uniform patterns are labeled
0 to P while all non-uniform ones are labeled P + 1.
In order to increase the distinction between texture
patterns, the number of non-uniform patterns should
occur in a smaller proportion. We refer readers to [52],
where the authors selected a value for UT equal to P /4,
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Figure 2. An example calculation of ILTP patterns for a given pixel when UT = 2.
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Figure 3. The analysis procedure for texture color using the proposed method.

and where the number of patterns labeled P + 1 was
very low. For selecting threshold value t and number of
neighbors P , the trial-and-error method is used in our
work, which improves the classification accuracy of the
rice varieties.

Regarding the dimension of the feature vector,
the number of features decreased owing to applied
uniformity measure U for ternary patterns. In the
proposed method, the number of features equals 2(P +
1) for each component image. Therefore, the number
of features in the total vector equals 8(P + 1). The
proposed descriptor is calculated in Algorithm 1.

The advantages of the proposed descriptor are as
follows.

• Inheriting the advantages of the LTP and ILTP
methods, the proposed method is invariant to
rotation, decreases sensitivity to local impulse
noise, decreases the number of extraction fea-
tures, and extracts high discriminative features.

• Besides extracting texture features for gray-scale
intensity, the proposed method extends texture
analysis to color properties.

• Extracted features from the proposed method are
quite effective for classification of rice varieties,
which is presented in the results section and in
comparisons with the literature.

4. Support vector machine and evaluation of its
performance

4.1. Support vector machine
The support vector machine [53, 54] is a classifier that
uses a decision boundary, namely, a hyperplane, to
separate data into two classes. Two sides of these two
classes are generated by support vectors, and a margin
is defined as the shortest distance from one side to the
other. The equation of the hyperplane is presented as
(18).

6

P  Z + q = 0 (18) 
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Algorithm 1 Calculating the proposed descriptor

1: Input: Rice color image size MxN , P , R, UUT , ULT .
2: Separate rice image into gray, R, G, and B

components: Ik , where k = 1, 2, 3, 4.
3: for k = 1 to 4
4: for i = 0 to (M − 2R)
5: for j = 0 to (N − 2R)
6: Calculate lower binary code LbP ,R,
7: upper binary code UbP ,R.
8: Calculate U (ULT PP ,R), U (LLT PP ,R).
9: if U (ULT PP ,R) ≤ UUT

10: U_I(i, j)kP ,R =
P−1∑
h=0

UbP ,R(h).

11: else U_I(i, j)kP ,R = P + 1.
12: if U (LLT PP ,R) ≤ ULT

13: L_I(i, j)kP ,R =
P−1∑
h=0

LbP ,R(h).

14: else L_I(i, j)kP ,R = P + 1.
15: end for
16: end for
17: Calculate FIk_U , FIk_L.
18: Concatenate FIk_U , FIk_L.
19: end for
20: Concatenate FI_U , FI_L.
21: Return: Total feature vector.

where P = {p1, p2, ..., pv} is a weight vector, in which v
is the number of attributes; Z is an input vector, and
q is a scalar. Let two input attributes be A1 and A2,
and training tuples are 2-D, where z1, z2, respectively,
are the values of attributes A1 and A2 for Z. If q is
considered an additional weight, p0, equation (18) can
be rewritten as follows:

p0 + p1z1 + p2z2 = 0 (19)

The support vectors of each class can be written as

p0 + p1z1 + p2z2 = 1 for yi = +1 (20)

and
p0 + p1z1 + p2z2 = −1 for yi = −1 (21)

where yi corresponds to the respective class. The best
hyperplane and support vectors are searched so that the
margin is achieved at the maximum value. The optimal
hyperplane is searched by minimizing equation (22):

1
2
∥P ∥2 (22)

such that

yi (P zi + q) ≥ 1 ,∀i (23)

The maximum marginal hyperplane can be written as

d(ZT ) =
l∑

i=1

yiαiZiZ
T + q0, (24)

where yi is the class label, ZT is a test sample, αi and q0
are numeric parameters, and l is the number of support
vectors.

When the data are linearly inseparable, the original
training data are transformed into a higher-dimension
space to find a linear separating hyperplane by applying
nonlinear mapping. In order to decrease computation
complexity in the higher dimension, kernel function
K(Zi , Zj ) is used as follows:

K(Zi , Zj ) = φ(Zi)φ(Zj ) (25)

where φ(Zi) is the nonlinear mapping function.
The radial-basis kernel function is applied in our

work, as seen in equation (26).

K(Zi , Zj ) = e−∥Zi−Zj∥2/2σ2
(26)

where Zi is the center, and σ is a free parameter defined
by the user.

A one-versus-all approach can be applied in cases
of multi-class classification. n SVM binary classifiers
are applied to train for n classes. A positive value is
assigned to class i, and a negative value is assigned
to the rest through training. The positive distance is
computed for each testing sample. Finally, a sample is
categorized into the class that has the largest positive
distance.

4.2. Evaluation of classifier performance
Accuracy classification. In order to evaluate classification
performance, overall accuracy (ACC) is applied in this
study:

ACC =
No._of _samples_correctly_classif ied

T otal_samples
× 100%

(27)

Confusion matrix. A confusion matrix is used to evaluate
the ability to recognize samples from classes of the
classifier. Table 1 is an example of a confusion matrix
with two classes named C1 and C2.

Table 1. An example confusion matrix with two classes

Predicted class

C1 C2

Actual class
C1 CM11 CM12
C2 CM21 CM22

where CMij indicates the number of samples in class
Ci that were labeled by the classifier as class Cj .
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5. Image dataset of the 17 varieties of rice
5.1. Rice samples
Seventeen rice varieties planted in Vietnam were used
for classification in our work: DT8, HT1, IR4625,
IR50404, IR6976, ML48, MO6162, OM108, OM3673,
OM4218, OM429, OM4900, OM5451, OM6976,
OM8108, OMCS2012, and RVT. After removing some
infected grains, each rice variety included 200 samples,
with five grains for each sample. The samples of the 17
rice varieties are presented in Fig. 4.

5.2. Image acquisition
In some research applying image processing for
classification of rice varieties, the authors used a
camera to photograph the rice. But that method usually
requires setting up a chamber for capturing the images.
Therefore, the authors in [55, 56] used a high-resolution
scanner to capture rice grain images. In our work, a
scanner set to a resolution of 2400 dots per inch (dpi)
was used to scan images of the 17 varieties of rice.

5.3. Image pre-processing
Visual Studio C++ and the Open Source Computer
Vision (OpenCV) library were used for image process-
ing in this study. Rice images were scanned contain-
ing five rice grains of the same variety. Because this
study extracted features for each grain, the rice regions
were extracted from a blue background using chroma
separation, and then, each grain was separated into an
individual rice image. Rice image and results after the
pre-processing steps were presented in Fig. 5.

6. Results and discussion
6.1. Classification accuracy for the 17 rice varieties
To evaluate classification ability of the proposed
descriptor, extracted features were combined with SVM
to classify the 17 rice varieties. 3400 rice samples are
divided randomly into 50% for training and 50% for
testing. Parameters of the SVM were selected to enhance
classification accuracy with the rice varieties. The cost
parameter was selected from 10 values of 2d , where d =
1, 2,...,9. The kernel function is a radial function.

In order to find a suitable radius for R parameter
of the proposed descriptor, an experiment was carried
out with the R value ranging between 1 and 7.
Classification accuracy with the 17 varieties of rice is
presented in Table 2. As seen in Table 2, the lowest
accuracy rate obtained was 72.94% with R = 1, and
this rate significantly increased when the radius of the
neighborhood became larger. With the considered R
values, the highest accuracy achieved was 95.47% with
R = 6.

Because the proposed method extracts texture
features for gray, R, G, and B components, the number
of features is four times that of the ILTP method.
Despite increasing the number of features, compared
to the original ILTP method, color properties of rice
varieties are considered in the proposed descriptor.

Table 2. Classification accuracy with the 17 varieties of rice when
changing P , R.

No. P, R Number of features ACC (%)

1 8, 1 80 72.94
2 16, 2 144 85.94
3 24, 3 208 89.71
4 32, 4 272 93.76
5 40, 5 336 94.94
6 48, 6 400 95.47
7 56, 7 464 95.23

In addition, the threshold value used to calculate
lower and upper binary code can be affected for
discrimination of the feature sets. Therefore, to enhance
classification accuracy of the rice varieties under the
proposed method, a selected threshold value for t was
considered for the best result. The experiment was
carried out with t = 3, 5, 7, 9, and 11 for the proposed
method, with R = 6. The obtained descriptors used
the SVM to classify the 17 rice varieties. The results
are in Table 3. With the threshold values in Table 3,
the highest classification accuracy was 95.53% with a
threshold value of 9.

Table 3. Rice classification accuracy when changing the
threshold value.

No. Threshold value t ACC (%)

1 3 94.76
2 5 95.47
3 7 95.41
4 9 95.53
5 11 94.59

From results of the above experiments on the
proposed method, we selected 6 as the radius of
neighborhood R and t = 9 for the threshold value. Fig.
6 is the confusion matrix from classification of the 17
rice varieties when using the proposed texture color
descriptor and the SVM. In the confusion matrix, the
classification accuracy of OM5451 and IR6976 was 83%
and 87%, respectively, lower than other varieties. The
number of samples of class OM5451 was mislabeled to
OM429, IR6976, and IR50404 quite much, respectively
ten, three, and three samples. Similarity, five and six
samples of class IR6976 were incorrectly assigned to
OM4218, OM6976, respectively. As can be seen in Fig.
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Figure 4. The 17 rice varieties samples used for classification.

Figure 5. Rice image pre-processing.

4, the external observation of OM5451 was quite similar
to OM429, IR6976, and IR50404, while IR6976 was a
lot like OM4218 and OM6976. Therefore, the number
of mislabeled samples of these two varieties were quite
higher than others.

6.2. Comparing with other machine learning methods
for classification the 17 rice varieties
Other machine learning methods like Random Forest
[57], Naïve Bayes [58], Decision Tree [59], and K-
nearest neighbor [60] were combined with the proposed
features for classification of seventeen rice varieties.
The results were showed in Table 4. In Table 4,
the classification accuracy of Random Forest, Naïve
Bayes, Decision Tree, and K-nearest neighbor was
85.9%, 61.3%, 54.6%, and 66.4%, respectively. The
results show that using SVM combined with the
proposed features gives higher ACC than other machine
learning methods for classification of the seventeen
rice varieties. The results were achieved due to

good performance of SVM, combined with selecting
parameters of SVM in the experiment so that the
classification accuracy was improved.

Table 4. Classification accuracy of other machine learning
methods for classification of 17 rice varieties.

No. Machine learning methods ACC (%)

1 Random Forest 85,9
2 Naïve Bayes 61,3
3 Decision Tree 54,6
4 K-nearest neighbor 66,4
5 SVM 95.53

6.3. Comparisons in the literature
To evaluate the effectiveness of the proposed descriptor
compared to other methods in the literature for rice
variety classification, we used some texture descriptors
from the literature with the SVM to classify the 17
rice varieties. In these experiments, the parameters of
the SVM were just as they were with the proposed
method. However, in some extended LTP methods, the
threshold values were not reported in the articles, so
we used a threshold value of 5 for those methods.
Comparison of the classification accuracies is presented
in Table 5. As seen in Table 5, the accuracy with the
proposed method was higher than the other methods
from the literature. Regarding the number of features,
although our proposed descriptor has more than the
ILTP method, they are significantly fewer than other
methods, such as CoALTP and CLTP. From Table 5, we
can see that the proposed descriptor can significantly
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Figure 6. The confusion matrix from classification of the 17 rice varieties.

enhance the accuracy in classification of the rice
varieties compared to ILTP. When increasing the radius
of neighborhood R to 6, the accuracy from ILTP was
90.06%, lower than that of the proposed descriptor.

Regarding classification of the rice varieties, a
comparison with research from the literature in this
area is shown in Table 6. The classification accuracy and
the number of classes in our work are higher than other
research except for [21]–[23]. Although the authors had
more classes in [21], the classification accuracy is lower.
The classification accuracy in [22, 23] was higher, but
the research was conducted with only six and eight
classes, respectively.

7. Conclusion

In this study, texture analysis based on ILTP is extended
for color properties to classify 17 rice varieties. The
proposed descriptor considers gray, R, G, and B
components of the rice varieties. The extracted features
are combined with SVM for classification of 17 rice
varieties commonly planted in Vietnam. To improve
classification accuracy, the radius of neighborhood
R and threshold value t were considered in the
pattern coding procedure of the proposed method. The
classification accuracy from the SVM when using the
proposed descriptor was 95.53%, higher than ILTP
or other texture descriptors from the literature. The
result shows that the proposed method can enhance
classification accuracy of rice varieties when extended
for color properties of rice grains. In the future, the
proposed descriptor will be combined with shape and

morphological features to enhance the accuracy of rice
varieties classification.
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