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Abstract: Stabilization of delayed inertial neural networks based on impulsesl is 

investigated in this paper. Delay-dependent sufficient conditions of stabilization results 

are obtained as linear matrix inequalities via Lyapunov stability theory which involves 

the construction of Lyapunov-Krasovskii functional. Information of time-delay is taken 

into account to obtain these results. Here, time-delay is considered to be time-varying 

and the activation function is assumed to be sector bounded. Derived conditions can be 

validated via MATLAB. Finally, an example is provided to support the derived results. 
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1. Introduction: 

Past decades witnessed the dynamical analysis of various types of neural networks (NNs) 

namelyHopfield NNs, bidirectional associative memory (BAM) NNs, cellular NNs, Cohen-

Grossberg NNsand so on. In the year 1981, Babcock and Westervelt published an article on 

the dynamics of simpleelectronic NNs which initiated the research on inertial NNs (INNs). In 

their research work, theymentioned that inertial characteristics added to resistance and 

capacitance couplings can cause spontaneous oscillation, chaotic response and so on. 

Dynamics of INNs received much attention amongresearchers because of its both physical and 

biological significance, for details one cansee[1]-[3], [7]-[12] and therein. 

Meanwhile, time-delays which may occur during the process of storage of information 

and transmission in NNscan cause instability, oscillation in the dynamics of NNs. Hence, there 

is an increasing interest toinvestigate the dynamics of NNs with the inclusion of time-delays, 

for details see [4]-[8]. Onthe other hand, states of NNs are often condition to abrupt change at 

certain instants of time dueto the switching phenomenon, frequency change called impulse 

effects. Impulsive NNs belong to thespecial category which is the combination of continuous 

and discrete-time systems. Hence, it isnecessary to include the effects of impulses in the 

dynamics of NNs, see [13]-[15]. Sometimesimpulsive effects can destabilize stable systems 

which are considered as the destructive one but onthe other hand they can also be used to 

stabilize the de-stable systems. In this work, impulses areused to stabilize the de-stable 

systems. 

In [13], authors established distributed delay-dependent stability criteria for impulsive 

INNs inwhich they considered both discrete and distributed time-delays. Robust stability 

conditions for inertial BAM NNs with time-delays and uncertainties via impulsive effect are 

considered in [14]. Stabilityconditions of stochastic BAM NNs with Markovian jump,impulse 
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control and mixed time-delays is stated in [15]. Hence from the existing literature, it can be 

seen that stability analysis of INNs withimpulsive effects is taken in to account whereas the 

problem of stabilization of INNs via impulsivecontrol has not gained attention from the 

researchers. This motivates us to consider the problem ofimpulsive stabilization of time-

delayed INNs. 

Inspired by the above observations, stabilization problem of INNs based on impulsive 

controls isconsidered in this work. Here, the activation function of the neural network is 

assumed to be sector-bounded and the time-delay is taken to be time-varying. Sufficient delay-

dependent stabilization results aredeveloped for the considered problem based on the 

construction ofLyapunov-Krasovskii functional(LKF) involving some quadratic andintegral 

terms. Schur complement lemma is used in the derivation process to convert some 

nonlinearmatrix inequalities into linear matrix inequalities (LMIs). Obtained results can be 

easily solved through MATLAB software.An example is provided to check the validity of the 

developed theoretical results. 

This paper is structured as follows. In second section, the problem under study is 

formulated and related preliminaries are given. In the third section, sufficient delay-dependent 

impulsive stabilization conditions pertaining to impulsive control are presented. In the fourth 

section, a numerical example is given to illustrate the proposed results and the fifth section 

concludes the paper. 

Notations:In the entire paper, �� and ��×�denote, the n-dimensional Euclidean space 

and the set of all n × m real matrices respectively. The notation X ≥ Y(X > Y)means that X −  Y is positive-semidefinite (positive-definite), where both X and Y represent symmetric 

matrices; transpose of the matrix M is denoted by M�; identity matrix is represented byIwhich 

is of appropriate dimension and compatible with the corresponding expressions; ∥ · ∥ is the 

Euclidean norm in ��.PC(�−τ�, 0�,��)is the piece-wise continuous function;right-hand and 

left-hand limits of the function ψ(s)are represented byψ(s�)and ψ(s�) respectively; λ� ! (A), λ�#� (A) denote the maximumand minimum eigenvalues of the matrix Arespectively,  and for the matrices, if its dimension is not statedexplicitly, aresupposed to 

have compatible dimensions. 

 

2. Formulation of the Problem and Preliminaries:  

 m$ #(t) = −a#m() (t) − b#m#(t) + ∑ c#.�./0 f.(m.(t)) + ∑ d#.�./0 f.(m.(t − τ(t))) + I#       (1) 

for i =  1, 2,· · · , n, where m$ #(t) denotes the inertial term of the i67neuron at time t, m#(t) 

is the stateof the i67neuron at time t. f.(∙)denotes the neuron activation function of i67neuron at 

time t andj (0)  =  0, j ∈ {1, 2,· · · , n}, τ (t) is the time-varying delay, I#represents the external 

input on the i67neuron at time t. a#andb#are positive constants, c#.and d#.are the connection 

weights related to the neurons without delays and with delays respectively. Initial condition of 

(1) is given by m#(s) = φ#(s)and m) #(s)  =  ψ# (s), for −τ� ≤ s ≤ 0 where φ#(s) and ψ# (s) 

are bounded and continuous. 

Now transform the second order differential equation model into a system of first order 

differentialequations using the transformation p#(t) = m() (t) + m#(t), i = 1,2, ⋯ , nand the 

resulting system isgiven as 

A m() (t) = −m#(t) + p#(t)p() (t) = −(a# − 1)p#(t) − �b# + (1 − a#)�m#(t) + ∑ c#.�./0 f.(m#(t)) + ∑ d#.�./0 f.(m#(t − τ(t))) + I# B
(2) 



with the initial conditions m#(s) = φ#(s) andp#(s) = φ#(s) + ψ# (s),  for −τ� ≤ s ≤ 0.Next, we intend to shift the equillibrium of system (2) to the origin by using the 

transformation x(t) = m(t) − m∗and y(t) = p(t) − m∗, where m(t) = �m0(t), m�(t),· · · , m�(t)�� , p(t) = �p0(t), p�(t),· · · , p�(t)��. Here (m∗, p∗) is the equillibrium point of (2). 

Therefore, the transformed system in matrix form canbe written as 

A x) (t)  =  −x(t)  +  y(t)y) (t) = Ay(t) −  Bx(t) +  Cf Gx(t)H +  Dg KxGt −  τ (t)HL .B(3) 

Initial conditions x(s) = ϕ(s) − m∗ and y(s) = ψ(s) +  ϕ(s) − p∗, where x(t) =�x0(t), x�(t),· · · , x�(t)��,y(t) = �y0(t), y�(t),· · · , y�(t)��are state vectors of (3), g(x(t)) =�g0Gx0(t)H, g�Gx�(t)H, ⋯ , g�Gx�(t)H��with g(x(t)) = f (x(t) + m∗) − f(m∗), A =diag{(a0 − 1), (a� − 1), ⋯ , (a� − 1)}, B = diag{b0 + (1 − a0), b� + (1 − a�), ⋯ , b� +(1 − a�)}, C = (c#.)�×�, D = (d#.)�×� and I =  diag{I0, I�, ⋯ , I�}. 

System (3) with continuous and impulsive control becomes 

OPQ
PR x)(t) =  −x(t) +  y(t) + E0u0(t),   t ≠ tV,Δx(t) = (F0 − I)x(t�) + E�u�(t),   t = tV,y) (t) = Ay(t) −  Bx(t) +  Cf Gx(t)H +  Dg KxGt −  τ (t)HL + EYuY(t),   t ≠ tV,Δy(t) = (F� − I)y(t�) + EZuZ(t),   t = tV ,

B             (4) 

whereu0, uY ∈ ℝ�\  are continuous control inputs andu�, uZ ∈ ℝ�]are impulse control 

inputs. E0, E�, EY, EZ, F0andF� are known constant matrices. ∆x(t)|6/6` = x(tV�) − x(tV�)and ∆y(t)|6/6` = y(tV�) − y(tV�). x(tV)andy(tV)denote the impulse at the moment tV. Here the 

discrete time sequence tVsatisfies0 = ta < t0 < t� < · · · < tV < · · ·and limV→etV = ∞. Both x(tV) and y(tV)are assumed to be rightcontinuous, i.e., x(tV) = x(tV�)and y(tV) = y(tV�). 

Initial conditions ϕ(t), ψ (t) ∈  PC(�−τ�, 0�, ℝ�) arepiece-wise continuous functions at finite 

number of points. 

Next design the controllers u0, u�, uYand uZ as follows u0(t) = K0x(t), u�(t�) =  K�x(t�), uY(t) = KYy(t), uZ(t) = KZy(t�),(5) 

whereK0, K�, KY and KZ are control gain matrices to be designed. Also use the fact that ∆x(t) = x(tV) − x(tV�) and ∆y(t) = y(tV) − y(tV�) then system (4) becomes 

OPQ
PR x) (t) =  −h(t) +  y(t) + E0K0x(t),   t ≠ tV,Δx(t) = (F0 − I)x(t�) + E�K�x(t�),   t = tV,y) (t) = Ay(t) −  Bx(t) +  Cf Gx(t)H +  Dg KxGt −  τ (t)HL + EYKYy(t),   t ≠ tV,Δy(t) = (F� − I)y(t�) + EZKZy(t�),   t = tV.

B           (6) 

Next, we give assumptions, definition and lemma which are essential to obtain the results. 

Assumption 2.1:The neuron activation function ij  (·) in (6) is Lipschitz globallyin h(k), i(0) = 0and it follows that 

KiGh(k)H − l0h(k)Lm KiGk, h(k)H − l�h(k)L ≤  0, ∀  h(k) ∈ ℝo, 
wherel0 and l� are known real constant matrices of appropriate dimensions. 

Assumption 2.2: Time-varying delay p(k) satisfies 0 ≤ p(k) ≤ p�, p)(k) ≤ q < 1, 
wherep� and μ are constants. 



Definition 2.3: The equilibrium point of INNs with impulsive control and time-delay (6) is said to be exponentially stabilizableunder impulsive control with positive convergence rate α if there exists λ > 0 suchthat ∥ x(t) ∥� +∥ y(t) ∥�≤ λ e���(6�6�)Sup��]� � � a�∥ ϕ(s) ∥� +∥ ψ(s) ∥��, ∀  t ≥  ta. 
Definition 2.4: The function V: �0, ∞) × ℝ� × ℝ� → �0, ∞) belong to class Ωa if (1) the function V defined above is continuous on all of the sets �tV�0 , tV) × ℝ� ×ℝ�, ∀ t ≥  0 and it vanishes at V(t, 0,0), (2) V(t, x, y)is locally Lipschitzian, (3) foreveryk ∈ ℕ, lim(6,!�,��)→G6�̀,!,�HV(tV�, x, y)exists and it is finite and further lim(6,!�,��)→G6�̀,!,�HV(tV�, x, y)with V(tV, x, y) = V(tV�, x, y). 
 

3. Stabilization results for impulsive INNs:  

In this section, we derive the stabilization conditions for the time-delay INNs based on impulsive control. Here, control gain matrices introduced in (5) is taken as K0 = L0X�0,   K� = L�X�0,   KY = LYY�0,   KZ = LZY�0,                             (7) whereL0, L�, LY and LZ are unknown matrices to be determined. 
Theorem: System (6) is exponentially stable under the Assumptions 2.1 and 2.2 if there exist scalarsα, λ, positive-definitesymmetric matrices P0, P�, Q�and R, matrices L0, L�, LYand LZsuchthat the symmetric LMIs given below hold Ω0 < 0, Ω� < 0, ΩY < 0,                                                  (8) 
whereΩ0 = �Ω� S0 S�∗ −I 0∗ ∗ −I� , Ω� = �−X XF0� + L��E��∗ −X �,   ΩY = �−Y YF�� + LZ�EZ�∗ −Y � 
with the stabilizing gains given by (7). Here Ω� = (Ω��,�) ×  with  Ω�0,0 = −2X + Q� + 2α X + E0L0, Ω�0,Y = Y − XB�, Ω�0,Z = X(G0� + G�� ), Ω�{�,�} =−e����]Q�,Ω�Y,Y = −2AY + 2α Y + EYLY, Ω�Y,Z = C, Ω�Y,  = D, Ω�Z,Z = R − 2I, Ω� ,  = −(1 −μ)R, S0 = �G0X   0   0   0   0��,S� = �G�X   0   0   0   0�� and the rest of the entries of symmetric block are zero.  Proof: Stabilization results for system (6) can be obtained from the construction of LKF as follows 

VGt, x(t), y(t)H = x�(t)P0x(t) + y�(t)P�y(t) + ¢ e��(��6)6
6��]

x�(s)Qx(s)ds 
                                                         + £ e��(��6)66��(6) g�Gx(s)HRgGx(s)Hds,                                           (9) whereP0, P�, Q and R are unknown positive-definitesymmetric matrices of appropriate dimensions. From Definition 2.4, one can see that (9) is locally Lipschitz for each t ∈  �tV�0, tV)and V(t, 0,0) = 0. Moreover, all the conditions of Definition 2.4 hold and hence VGt, x(t), y(t)H ∈ Ωa for each t ∈ �tV�0, tV). Dini's upper right hand derivative of (9) along trajectory of (6) can be determined as follows: D�VGt, x(t), y(t)H ≤ 2x�(t)P0x)(t) + 2y�(t)P�y) (t) + x�(t)Qx(t) − e����]x�(t − τ�)Qx(t− τ�) 



+g�(x(t))Rg(x(t)) − (1 − μ)g�x(t − τ(t))Rg(x(t − τ(t))) 
−2α(¢ e��(��6)6

6��]
x�(s)Qx(s)ds + ¢ e��(��6)6

6��(6) g�Gx(s)HRgGx(s)Hds.  
(10) According to Assumption 2.1, we have 
§ x(t)gGx(t)H¨� �−(G0�G� + G��G0) G0� + G��∗ −2I � § x(t)gGx(t)H¨ ≥ 0.                 (11) 
Combining inequalities (10) and (11), we get D�VGt, x(t), y(t)H + 2α VGt, x(t), y(t)H ≤ ξ�(t)Ωξ(t) < 0(12) which implies that Ω < 0,                                                                   (13) ∀t ∈  �tV�0, tV)whereξ�(t) = �x�(t)    x�(t − τ�)    y�(t)    g�(x(t))    g�(x(t − τ(t))) � and Ω = GΩª,�H ×  with  Ω0,0 = −2P0 + Q + 2 α P0  + P0E0K0 − (G0�G� + G��G0),   Ω0,Y = P0 − B�P�,   Ω0,Z = G0� + G��, Ω�,� = −e����]Q, ΩY,Y = −2P�A + 2α P� + P�EYKY,   ΩY,Z = P�C,ΩY,  = P�D,   ΩZ,Z = R − 2I, Ω ,  = −(1 − μ)R. From (9), at t = tV, we have V(tV, x(tV), y(tV)) − V(tV�, x(tV�), y(tV�)) = x�(tV)P0x(tV) + y�(tV)P�y(tV) − x�(tV�)P0x(tV�) −y�(tV�)P� y(tV�) = x�(tV�){−P0 + (K��E�� + F0�)P0(F0 + E�K�)}x(tV�) +y�(tV�){−P� + (KZ�EZ� + F��)P�(F� + EZKZ)}y(tV�) which implies that  −P0 + (K��E�� + F0�)P0(F0 + E�K�) < 0                                 (14) −P� + (KZ�EZ� + F��)P�(F� + EZKZ) < 0. (15) One can notice that inequalities (13)-(15) are not LMIs and hence cannot be directly solved by using MATLAB LMI toolbox. So, we make use ofSchur complement lemma to convert the inequalities (14) and (15) as  
�−P0 (F0� + K��E��)P0∗ −P0 � < 0  − − (a) ,   �−P� (F�� + KZ�EZ�)P�∗ −P� � < 0  − −(¬). (16) 
Now pre- and post-multiply inequalities (16a&b) respectively by diag{X, X}and diag{Y, Y}on both sides and using the relation X = P0�0, we get Ω� and ΩY. Inorder to get Ω0, pre- and post-multiply both sides of (13) by diag{X, I, Y, I, I}, where Y = P��0 and also use the relation −2X(G0�G�)X ≤  XG0�G0X + XG��G�X. After some algebraic manipulations, one can get Ω0.  From inequality (12), one can get VGt, x(t), y(t)H ≤  e��� (6�6`�\)V(tV�0, x(tV�0), y(tV�0))for each t ∈ �tV�0, tV) and VGt, x(t), y(t)H ≤ e��� (6�6�)V(ta, x(ta), y(ta)).  From LKF, we get VGt, x(t), y(t)H ≥ λ0�∥ x(t) ∥� +∥ y(t) ∥��, where λ0 = λ�#�(P0) + λ�#�(P�) and VGta, x(ta), y(ta)H ≤ λ�Sup��]� � � a�∥ ϕ(s) ∥� +∥ ψ(s) ∥��, where λ� = λ� !(P0) +λ� !(P�) + τ�λ� !(Q) + τ�λ� !(R) and hence 



∥ x(t) ∥� +∥ y(t) ∥�≤ λ e���(6�6�)Sup��]� � � a�∥ ϕ(s) ∥� +∥ ψ(s) ∥��, λ = ®]®\. Hence by definition of exponential stability, system (6) is stable exponentially with stabilizing gains (7). This completes the proof of the theorem. 
 

Remark: This research work investigates the stabilization analysis of INNs with time-delays under the influence of impulsive controls. Here information of both time-varying delay and its derivative is considered. Even though the stabilization problem of INNs with both discrete and distributed delay under impulsive control is investigated in �13�, information on the bound of discrete delay is not considered in �13�. This work is focused to derive stabilization results of INNs which include the data on both time-delay and its derivative. 
4. Numerical Example:  

This section presents a numerical example through which we can see the  validity of the derived results. 
Example: Consider system (6) with the following parameters 

A = diag{4, 4}, B = diag{12, 11}, C = ¯ 0.3 0−0.6 −0.4° , D = ¯0.2 0.30.4 0.7° , E0 = 0.3I, E� =  0.2I, EY = EZ = 0.2I, F0  = F� =  0.1I , G0 =  0.2I , G� =  0.1I , τ� =  0.6, μ =  0.2, α =  0.1, Now, the delay-dependent stabilization conditions obtained in Theorem 3.1 is solved through MATLAB LMI solvers for the above parameters and it can be seen that the considered system (6) is exponentially stabilizable. Feasible matrices that occur in the corresponding conditions of Theorem 3.1 are given below X = ¯10.39 −0.31−0.31 11.26° , Y = ¯68.92 −1.68−1.68 68.16 ° ,   Q = ¯37.76 00 37.76° , R = ¯4.61 2.172.17 7.97° . Stabilizing gains are given by K0 = ¯−15.32 −0.380.15 −12.72° , K� = KZ = ¯−0.5 00 −0.5° , KY = ¯16.65 0.02−0.04 16.12° , λ0 =  0.10, λ� =  27.23, λ = 266.36. Hence we get ∥ x(t) ∥� +∥ y(t) ∥�≤ 266.36 e�a.�6Sup�a.±� � � a�∥ ϕ(s) ∥� +∥ ψ(s) ∥�� which shows that system (6) is exponentially stabilizable. 
 

5. Conclusion:  

 In this work, stabilizability problem of INNs with time-delay under impulsive control is investigated Both time-varying and constant type of time-delay is taken into account and the corresponding results are presented. LKF involving exponential terms are utilized in the process of obtaining stabilization results. Those conditions are checked using MATLAB through LMI solvers. The problem considered in this research work can be further extended with the incorporation of multiple time-delays in the place of single delay and also with parameter uncertainties. 
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