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Abstract. Deep learning methods permit us to tackle signal processing challenges from a dissimilar 
perspective, which is currently overlooked in the composition of music in cinema industry. Audio is 
inherently added time-sensitive than movie. Audios are encoded using other past methods, resulting in 
data loss or temporal anomalies. This problem is alleviated by using an auto correlogram with a 3-
dimensional view, including time, power, and frequency, to improve accuracy. First, acoustic data should 
be competently encoded into a compressed format using RNN autoencoder by interrelating with the 
information. As a result of the compressed format, audio waves should be accurately represented. After 
that, audio waves are rebuilt into an audio structure with little data loss. The accuracy is improved by 
10% by using the RNN encoder and decoder. 
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1   Introduction 

Various customized characteristics calculated from raw audio data are often used in 
machine learning algorithms for audio processing. As a result, a great deal of effort has gone 
into emerging high-performing information sets for certain errands. Deep representation 
learning specific, has lately gotten a lot of press as a very effective substitute to using regular 
feature sets [1][2]. For many applications, such as speech recognition and music transcription, 
these approaches outperform feature engineering[2][3][4][17]. On the other hand, deep neural 
networks struggle with sequential data like audio since they often demand inputs with a fixed 
dimensionality In this line, machine translation has suggested RNNs (Recurrent Neural 
Networks) with sequence to sequence learning to understand fixed length illustrations of 
variable sequences length [5]. 

Time and accuracy are major problems in today's environment. As a result, any 
solution that can efficiently cut time and produce more accurate results is recognised and 
valued. When audios were encoded using different methods in the past, it resulted in data loss 
or temporal anomalies. As a result, we can provide more accuracy when reconstructing 
encoded audio files. To learn a representation (encoding), we utilise an auto encoder, and to 
categorise predictions, we employ LSTM networks. [2-3], [6–8][16].  

Previously, auto correlograms were shown in a 2D image with power and time on 
both axes. This work describes auto correlogram in 3D perspective to increase accuracy, 
encompassing time, power, and frequency. Raw audio files are compressed using a variety of 
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audio encoders. However, because of their temporal errors, these encoders cannot recreate the 
duplicate audio files. This research presents a novel audio compression technique that 
compresses temporal information while minimising data loss. By interacting with the 
knowledge/data store, acoustic sequence must be effectively encoded into a crushed format 
utilising RNN auto encoder. As a result of the compressed format, audio waves should be 
accurately represented. After that, audio waves are rebuilt into an audio format with little data 
loss.   

This article feeds audio data into an auto correlogram, which displays audio waves in 
three dimensions: power, time, and frequency. The RNN encoder then gives the output, which 
conducts consecutive input and output processes in the improving accuracy. The process is 
continued till the highest level of accuracy is achieved. Furthermore, this encoder can display 
temporal dynamic behaviour for a time series. 
 
2. Related Work 
 
Nicolas Boulanger-Lewandowski et al [9] investigate the challenge of representing symbolic 
polyphonic music sequences in a highly generic piano-roll form. Based on recurrent neural 
network distribution estimators, they provide a probabilistic model for detecting temporal 
relationships in large dimensional sequences. Their technique outperforms several classic 
polyphonic music models on a range of actual data sets. They also demonstrate in what way 
the musical language model shall be cast-off as symbol in increase polyphonic transcription 
accurateness. 
A spectrogram is a graph with three dimensions: time or RPM, frequency, and the frequency 
amplitude at a specific time. The intensity or colour of each point in the picture represents it. 
A spectrogram does not contain any information regarding the signal's actual or approximate 
phase. As a result, reversing the procedure and generating a replica of the original call from a 
spectrogram is impossible. 
Kyunghyun Cho et al[10] proposed Recurrent Neural Network Encoder-Decoder, a neural 
network architecture comprising two recurrent neural networks. The first RNN converts a set 
of symbols into a fixed-length vector visualisation, while the second RNN decodes the 
translation into a new set of symbols. This model's decoder and the encoder is trained together 
in optimised conditional probability order provided by the sequence source. Using the 
conditional probabilities of phrase pairings generated by the RNN Encoder-Decoder as an 
extra feature in the current log-linear model, the performance of the statistical machine 
translation system is shown to increase empirically. 
Shahin Amiriparian et al[3]. For unsupervised representation learning, propose a recurrent 
sequence to sequence autoencoder. They begin by extracting mel spectrograms from raw 
audio data. Second, they use these spectrograms in training  recurrent seq to seq autoencoder, 
a time-dependent frequency vector. Third, the learned representations of spectrograms are 
then extracted as feature vectors for the relevant audio occurrences in fully linked layer 
among decoder and encoder units. Finally, they use these feature vectors to train a multilayer 
perceptron neural network to predict class labels.  
Zhuotun Zhu et al[11][12]intended to utilize an autoencoder to acquire a 3-dimensional object 
representation based on projected depth pictures.  A 3-dimensional form is transmitted into a 
variety of depth pictures, which the learned autoencoder can elegantly recreate. The 
autoencoder-based 3-dimensional form model is a deep learning representation; that is a 
general representation instead of representations based on local descriptors, such as 



 
 
 

SIFT. This deep learning model and the local descriptors-based representation are 
complimentary. 
G. E. Hinton et al[13][3]present a method for effectively initializing the weights in deep auto - 
encoder networks such that they may learn low-dimensional codes that are far more successful 
than PCA in reducing data dimensionality. High dimensional information may be changed to 
low dimensional codes through training a multilayer network with small core layer to replicate 
high dimensional input vectors. Gradient descent may be cast-off to fine tune weights these 
"autoencoder" networks, but lone if initial weights remain close to decent fit. 
 
3. Proposed Methodology 
 

The schematic illustration of approach that is proposed are revealed in Figure 1. First, 
the input audio signal is given as input to the auto correlogram generator through the audio 
inputter. Next, the auto correlogram with three dimensional, namely time, frequency and 
frequency amplitude, will be generated. Next, the auto correlogram will be sent through the 
RNN encoder, producing a compressed audio file. When the compressed audio file is decoded, 
an original audio file is created and a denoised audio signal. 
 
3.1. Signal Processing:  
 
The fundamental frequency is computed using the Fast Fourier Transform (fft), Fundamental 
frequency is chosen when fft are at its maximum. When detrend (normalisation) is conducted 
before fft, the most might occur at zero frequency. 
 

 
Fig. 1 Schematic Representation of The Proposed System 

3.1.1. FFT Algorithm:  

 The the frequency and the time domains of composite notation, there is a single signal made 
of N complex points. Two numbers make up the imaginary parts and the  real parts in each of 
its difficult points. For example, For about difficult sample X, we are talking about the 
grouping of ImX and ReX. In additional words, every complex variable contains 2 integers. If 



 
 
 
 

two complex variables is integrated, Product's two components should are made up of four 
independent components. Single terms such as value, sample, point, and signal refer to the 
blend of imaginary and real portions. 

3.1.1.1.Steps of FFT Algorithm: 

i. The Fast Fourier Transform breaks down an N point time domain signal to a N 
single-point signals. 

ii. In second stage, the N frequency spectra associated with N time domain signals are 
measured. After then, N spectra is combined to form sole frequency spectrum. For 
FFT time-domain decomposition, a bit reversal sorting technique is typically utilised.  

iii. The FFT approach then proceeds to frequency spectra of one point time domain data. 
Because each point signals is now frequency spectrum rather than time-domain 
signal, this is case.  

iv. FFT's final step to integrate the N frequency spectra in same order that they were 
decomposed in the time domain. 

3.1.2. Fundamental Frequency 

It It is usually advantageous to express a specified sinusoidal or complex exponential signal in 
one of the following formats to determine its period, frequency, or angular frequency:  

sin(𝜔𝑡) = sin(2𝜋𝑓𝑡) = sin(2𝜋𝑡/𝑇) 

The fundamental frequency are the GCD of wholly frequency components present in the signal, 
and essential period is LCM of wholly distinct periods of components. 

3.2. Autocorrelation:  

As a function of delay, autocorrelation correlates the signal with a delayed replica of 
itself. Nonchalantly, it is the comparison of comments as function of their time lag. Figure 2 
shows auto correlogram that was developed. The autocorrelation analysis is numerical approach 
in discovering reiterating patterns, for example the detection of signal's missing fundamental 
frequency, which is indicated by its harmonic frequencies, or the appearance of periodic signals 
hidden by noise. It is often castoff in signal analysis in look at functions or data sequences, such 
as time domain signals. 

 Auto correlation of real or sophisticated random process is a Pearson correlation among the 
process's values at various times as a function of the two times or the time lag. Let {Xt} denote 
the random process, while t denotes the time interval .  Therefore, the value (or realisation) 
produced by a particular operation execution for time t is {Xt}. Assume that at time t, is a mean 
and variance of the process σt

2. The auto correlation function among times t1 and t2 is then 
defined as. 

𝑅(𝑡ଵ, 𝑡ଶ) = 𝐸[𝑋௧భ
𝑋௧మ

ᇱ] 
 where 𝐸is the expected value operator. Subtracting the mean before multiplication yields the 
auto-covariance function between times 𝑡ଵand 𝑡ଶ: 

𝐾(𝑡ଵ, 𝑡ଶ) = 𝐸ൣ(𝑋௧భ
− 𝜇௧భ

)(𝑋௧మ
− 𝜇௧మ

)ᇱ൧ = 𝐸ൣ𝑋௧భ
𝑋௧మ

ᇱ൧ −  𝜇௧భ
𝜇௧మ
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Fig 2Auto Correlogram  

3.3. RNN Autoencoders:  

 The framework are made up of two modules: one to read input sequence (auto correlogram) 
and to encode fixed-length vector (Compressed audio), while the other to decode fixed length 
vector and output anticipated sequence (i.e., Denoised Audio signal). Encoder Decoder LSTM 
developed particularly for seq2seq issues is moniker given to the framework for usage of the 
modules. The input and output layers of this LSTM are fully coupled, however because the 
encoder produces non-linearity, the activation functions used by the input and output layers 
may differ. At the same time, decoder will employ the linear projection to match the sequences 
of output and input. 

 

Fig 3. Rnn Encoder And Decoder 

 



 
 
 
 

4 Experimental Analysis 

 The python tool kit Deep Spectrum is used to extract features from audio. The RNN 
encoder-decoder is implemented using keras and tensorflow. 
 
4.1. Dataset:  
 
 ESC-50 (Environmental Sound Classification)[14] The dataset contains 2000 tagged 
environmental records that are uniformly distributed over 50 classes (i.e. 40 clips each class). 
For the sake of convenience, animal sounds, water sounds, natural soundscapes, inside/local 
resonances, human sounds, and outside/urban resonances have been split to five loosely 
defined main groupings (i.e., ten classes per category). The extraction algorithm attempted to 
keep sound occurrences in front with slight background clatter wherever possible. Ground 
footages, on the other hand, are distant after sterile. As a result, some recordings may still 
have audible background overlay. The collection exposures viewers to a variety of sound 
foundations, some of which are fairly common (dog barking, cat meowing, laughing), others 
of which are rather distinctive (brushing teeth, glass shattering), and finally, there's a spot 
where some distinctions and more subtle differences may be found (airplane noise and 
helicopter) [15] 

4.2. Data Model Structure:  

 Data sets store instances, which can correspond to either an entire audio file or a chunk 
of an audio file. For each instance, the following attributes represented in Table 1 are stored. 

Attribute 
(Variable Name) 

Value 
Required 

Dimensionality Description 

Filename 
(FILENAME) 

Yes - 
The name of the audio file from 
which the instance was extracted 

Chunk Number 
(CHUNK_NR) 

Yes - 

The index of the chunk which the 
instance represents. The filename 
and the chunk number attributes 
together uniquely identify 
instances. 

Nominal Label 
(LABEL_NOMIN
AL) 

No - 
Nominal label of the instance. If 
specified, the numeric label must 
be specified as well. 

Numeric Label 
(LABEL_NUMER
IC) 

No - 
Numeric label of the instance. If 
specified, the nominal label must 
be specified as well. 

Cross validation 
folds (CV_FOLDS) 

Yes 
Number of 
Folds 

Specifies cross validation 
information. For each cross 
validation fold, this attribute stores 
whether the instance belongs to the 
training split (0), or the validation 
split (1). We have chosen to 



 
 
 

TABLE 1: ESC-50 data model structure. 
 
4.3 Results: 
 

The audio signal of a ogg file “1-4211-A.ogg” of class “Fire Cackling” remains 
considered toward the audio wave signal besides the auto correlogram. The same is shown in 
Figure 4 and figure 5. The acoustic sign of a ogg file “1-4211-A.ogg” of class “Fire Cackling” 
is designed in Figure 4 to perceive the amplitude and time(sec). 
 

 
Fig 4. “Fire Cackling” Audio Wave Signal 

represent cross validation 
information in this way, since we 
have encountered data sets with 
overlapping cross validation folds, 
which can not be represented by 
simply storing the fold number for 
each instance. Please note that, 
while this attribute is required to 
have a value, this value is allowed 
to have dimension zero, 
corresponding to no cross 
validation information. 

Partition 
(PARTITION) 

No - 
The partition to which the instance 
belongs (0: training, 1: 
development, 2: test) 

Features 
(FEATURES) 

Yes Arbitrary The feature matrix of the instance 



 
 
 

 

 
Fig 5: Autocorelogram of “1-4211-A.ogg” of class “Fire Cackling” 

 
4.4. Analysis: 

Figure 6 depicts the prediction confusion matrix. The projected class is represented 
by the column, whereas the actual class is shown by the row. The diagonal represents the 
correct prediction of each class. The precision of the predicted class is shown in figure 7. 
 

Figure 7 shows that when participants chose the chainsaw class, 92.9 percent of the 
predictions were for chainsaw recordings. The existing method has an accuracy of 67% on the 
K-NN method,72% on the Random forest method, and 70% on the SVN method on average. 
Thus, this technique provided nearly 78% accuracy on average. Compared with previous 
approaches, the accuracy rate has been improved by more than 10%, as shown in Figure 8. 
 

 
 
 

Fig 6: Confusion Matrix of Prediction 



 
 
 

 
 

Fig 7: Precision of Predicted Class 

 

 
 

Fig 8: Accuracy Comparison of Various Methods 

5. Conclusion 
 
This study delivers improved accuracy when reconstructing encoded audio files. In addition, 
the novel auto correlogram approach, which offers a three-dimensional picture of the audio 
wave, was used to compress an audio file. As a consequence, the resulting audio wave will be 
more accurate than the previous auto correlogram technique's two-dimensional picture. The 
accuracy rate of the previous system is 70 to 75 percent, but when utilising this method, the 
accuracy rate is 75 to 80 percent, a nearly 10% improvement. The accuracy rate can be 
enhanced more in the future by learning representations from a large dataset. 
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