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Abstract.This paper deals the existence of periodicity solutions for neutral 

integrodifferential evolution equation in Banach space. The results are obtained by using 

resolvent operators and a fixed point technique. The analysis begins with the almost 

periodic solution for the evolution equation. Further, the almost periodic solution of the 

integrodifferential evolution equation has been shown to be asymptotically almost 

periodic. Then controllability result has been shown to the same  system. 
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1   Introduction 

Recently, the study of periodicity is one of the most attractive topics in mathematical 

analysis. Almost periodicity is the generalization of classical periodicity. It performs a 

significant role in several fields including harmonic analysis, physics, and dynamical system. 

Bochner [4] was first introduced these functions, which begin with abstract differential 

equations with periodic functions. Zaidman [22] explained that the existence of almost 

periodic solution for abstract differential equation with ��-Semi group. Later, Guerekata [13] a 

studied the existence and uniqueness of almost automorphic solutions of semilinear evolution 

equations. 

 

Almost periodic solutions of differential equations and their natures have been studied so 

many authors [2, 3, 8-10, 15, 16] in the very beginning of this century. Almost periodic 

solutions of evolution problems and time dependent evolution equations has been discussed in 

Francois et al,[12]. The existence and uniqueness of a compact almost automorphic solution 

for dissipative differential equations in Banach spaces were discussed by Drisi et al.,[11]and 

Ding [7] proved asymptotically almost automorphic solution for the differential equations. 

The new existence theorem for semilinear evolution equations with the asymptotically almost 

automorphic mild solutions of the following form.  

 �′(�) = 	(�)�(�) + �(�, �(�)) 
has been proved by Cao [6]. By using measure of non compactness and generalization of 

Darbo’s fixed point theorem Benchohra et al. investigated the asymptotically almost 
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automorphic mild solutions for non autonomous semilinear evolution equations by Benchohra 

[5]. 

 

Controllability and almost periodic results for neutral impulsive evolution system, using 

analytic semigroup and fixed point principle has been studied by Radhakrishnan [20]. This 

fact that the present work is much more interested in authors. From these, our main 

contributions are highlighted as follows:   

� A new set of sufficient conditions are established for the periodicity results 

of the nonlinear neutral integrodifferential evolution system.  

� Most of the available literature, for the first time controllability with 

periodicity results involving resolvent operator, are have been investigated.  

� The mild solution of the system has been shown to be Asymptotically 

Almost Periodic Mild (AAPM) solution.  

� Subsequently, Controllability of the AAPM solution of the neutral 

integrodifferential evolution system has been proved.  

�  

The structure of the work is planned as follows, in the second section basic definitions, 

Lemmas are given. Section 3 deals with the periodicity result. In section 4 controllability 

result of the nonlinear neutral integrodifferential system has been discussed.  

2  Preliminaries 

In this paper, consider the neutral integrodifferential evolution equation with delay  

�[�(�) − �  ��� �(�, �)�(�)��] = 	(�)�(�) + �  ��� ��(�, �)�(�)��+�(�, ��),              � ∈ �,        �(0) +  (�) = ��, ! (2.1) 

    where � = ""�, the state �(⋅) takes values in a Banach space $. Here 	(�),�(�, %) and ��(�, %), 0 ≤ % ≤ � ≤ ' are closed and bounded linear operators defined on the common 

domain ((	) which is dense in $. �: � × ℬ → $,   are appropriated functions. The history ��: (−-, 0] → $, ��(.) = �(� + .), . ∈ (0, ∞),belongs to an abstract phase space ℬ defined 

axiomatically. 

Initially consider the linear integrodifferential equation,  "0(�)"� = 	(�)�(�) + �  ��� ��(�, %)�(�)��, (2.2) 

 �(0) = 1,          1 ∈ $. (2.3) 

Definition 2.1 A linear operator ℜ(�, �), 0 ≤ � ≤ � ≤ ' on $ which is bounded and it is 

said to be a resolvent operator of (2.2) - (2.3). The properties of resolvent operator can be 

found in [19].  

Definition 2.2 [13] A function 6 ∈ 7(ℛ, 9) is almost periodic if for every : > 0 there 

exists a relatively dense subset of ℛ, denoted by ℐ(:, 6, 9), such that  ∥ 6(� + >) − 6(?) ∥@< :, ? ∈ ℛ,  > ∈ ℐ(:, 6, 9). 
Definition 2.3 [13]  A function 6 ∈ 7([0, ∞), 9) is asymptotically almost periodic if there 

exists an almost periodic function BC(⋅) and B� ∈ 7�([0, ∞), 9) such that 6(⋅) = BC(⋅) + B�(⋅).  The following developed integral solution is based on the works [1, 18].  

Definition 2.4  A function DE: [0, '] → $, F = 1,2 and it is addressed by  



 

 

 

 

DC(�) = H  �
�� �(�, �)�(�)�� 

and  

D�(�) = H  �
�� ��(�, �)�(�)�� 

in (2.1). Then the function �: [0, '] → $ will be a mild solution of equation (2.1) on [0, '] if and only if �(0) = �� −  (�), DC is differentiable on [0, '], DCI ,D� ∈ ℒC([0, '], $) 

and the following integral equation  

�(�) = ℜ(�, 0)[�� −  (�)] + �  �� ℜ(�, �)[DCI (�) + D�(�)]��+ �  �� ℜ(�, �)�(�, �K)��,      � ∈ �, L (2.4) 

 is satisfied.  

3  Periodicity Results 

The following assumptions are needed to establish our results.   

(H1) The function  : $ → $ is a continuous and there exist a constants MN , O� > 0 such that  

 ∥  (BC) −  (B�) ∥≤ MN ∥ BC − B� ∥ ,   PQ-   BC, B� ∈ $, 
       and ∥  (0) ∥≤ O�. 
(H2)  (a) For each � ∈ �, the function �(�,⋅): ℬ → $ is continuous.  

      (b) The function � is continuous and there exists a constant M" > 0 such that  

 ∥ �(�, �C) − %(�, ��) ∥≤ M" ∥ �C − �� ∥, � ∈ [0, ']. 
 (c) There exists a continuous function �N ∈ 7([0, '], [0, ∞]) and a non-decreasing    

         continuous function RN: ℛS → ℛS such that  

 ∥ �(?, T) ∥≤ �N(?)RN(∥ T ∥ℬ). 
(H3)  The functions DC(�), D�(�) are continuous and there exists a constant MU� > 0, such  

       that ∥ DCI (T) + D�(T) ∥≤ MU�(T), T ∈ �.  

 

The following frames present the existence result of periodicity,  

Theorem 3.1  If V(⋅): [0, ∞) → $ is defined by  

 Γ(�) = �  �� ℜ(�, �) �  K� ��(�, �)�(:)  �:�� = �  �� ℜ(�, �)D�(�)�� � ≥ 0, then Γ(�) is almost periodic function.  

Proof. Using the assumptions,  

 Γ(�) = �  �� ℜ(�, �)[D�(�)]ℒY�� 

 ∥ Γ(� + Z) − Γ(�) ∥≤ �  �S[� ℜ(� + Z, �)[D�(�)]ℒY�� − �  �� ℜ(�, �)[D�(�)]ℒY �% ∥ 

 ≤ �  �S[� ∥ ℜ� + Z, %) ∥∥ D�(�) ∥ℒY �% − �  �� ∥ ℜ(�, �) ∥∥ D�(�) ∥ℒY �� 

 ≤ OCsup ∥ D�(�) ∥ℒY (� + Z) − OCsup ∥ D�(�) ∥ℒY (�) 

 ≤ OCZ  _� 

 ≤ `, 
where ` = OCZ  _�,  _� = sup ∥ D�(�) ∥ℒY . Hence the function Γ(�) = �  �� ℜ(�, �)D�(�)�� is almost periodic. This completes the proof.   



 

 

 

 

Theorem 3.2  Suppose that the assumptions (a1) and (a3) are satisfied, then mild 

solution �(⋅) of the neutral integrodifferential evolution system (2.1) is asymptotically almost 

periodic function. 

Proof. Assume that the mild solution �(�) = b(�) + c(�), where  

 b(�) = �  �� ℜ(�, �) �  K� ��(�, :)�(:)  �:�� = �  �� ℜ(�, �)D�(�)�� 

 c(�) = ℜ(�, 0)[�� −  (�)] + �  �� ℜ(�, �)DCI (�)�� 

 + �  �� ℜ(�, �)�(�, �K)��. 
 By the Theorem 3.1 the defined function b(�) is almost periodic function and c(�) ∈ 7�([0, ∞), $). Hence the mild solution �(�) is asymptotically almost periodic function.  

4  Controllability 

 In this section, controllability of neutral integrodifferential evolution system has been 

discussed. Control theory arises from the most modern applications. It is one of the most 

interdisciplinary fields of research. Further, it is a mixture of several mathematical concepts 

and techniques. In control theory, the problem of controllability is to find an objective can be 

reached by some suitable control function. It occurs when a system described by a state �(�) 

is controlled by a given differential equation. Balachandran [1] appeared on the problem of 

controllability nonlinear and integrodifferential systems in Banach spaces using fixed point 

principles. Controllability of an integrodifferential evolution and neutral evolution system with 

nonlocal initial condition and infinite delay presented in[21]. Theory of partial neutral 

integrodifferential with delay equations has been studied by several authors [14, 17] in Banach 

spaces. The notion of controllability is of royal significance in mathematical control theory. 

Control theory is a part of applied mathematics that considers the fundamental laws carrying 

the analysis and design of control systems. 

 

    Consider an integrodifferential neutral evolution system with bounded delay  

�[�(�) − �  ��� �(�, �)�(�)��] = 	(�)�(�) + de(�) + �  ��� ��(�, �)�(�)��+�(�, ��),              � ∈ �,        �(0) +  (�) = ��, ! (4.1) 

 Here d is a bounded linear operator from f into $ and the control function e(⋅) is given 

in ℒ�(�, f), a Banach space of admissible control functions with f as a Banach space the 

interval � = [0, ']. Based on the definition (2.4) the following integral solution is formed. 

Definition 4.1 If d is a bounded linear operator and e is the control function of the 

system (4.1) then the following integral equation  

�(�) = ℜ(�, 0)[�� −  (�)] + �  �� ℜ(�, �)[DCI (�) + D�(�)]��+ �  �� ℜ(�, �)[de(�) + �(%, �K)]��,      � ∈ �, L (4.2) 

 is the mild solution for the system (4.1).  

 Next, to prove the control formula the following assumption is needed.   

(H4) The linear operator h: ℒ�(�, f) → $ is defined by  

 he = �  i� ℜ(', �)de(�)��, 
has an induced inverse operator h�C which takes values in ℒ�(�, f)/_k-h and there 

exists a positive constant l such that ∥ dh�C ∥≤ N.  



 

 

 

 

Definition 4.2 [1] The system (4.1) is said to be controllable on the interval � iff, for 

every ��, �i ∈ $, there exists a control e ∈ ℒ�(�, f) such that the solution �(⋅) of the system (4.1) satisfies �(0) = ��,    �(') = �i . 
Theorem 4.3 For �i ∈ $, define the control  

e(�) = h�C{�i − ℜ(', 0)[�� −  (�)] − �  i� ℜ(', �)[DCI (�) + D�(�)]��− �  i� ℜ(', �)�(�, �K)��}(�) L (4.3) 

 transfers initial state �� to final state  

�(') = ℜ(', 0)[�� −  (�)] + �  i� ℜ(', �)[DCI (�) + D�(�)]��+ �  i� ℜ(', �)[de(�) + �(�, �K)]��,      � ∈ �, L (4.4) 

 at time a=b.  

Proof : By substituting this control (4.3) in equation (4.4), then the folowing equation is   

 obtained at � = '. 
 �(') = ℜ(', 0)[�� −  (�)] + �  i� ℜ(', �))[DCI (�) + D�(�)]�� 

 + �  i� ℜ(', �)dh�C{�i − ℜ(', 0)[�� +  (�)] − �  i� ℜ(', �)[DCI (�) + D�(�)]�� 

 − �  i� ℜ(', �)�(�, �K)}(�)�� + �  i� ℜ(', �)�(�, �K)�� 

 = ℜ(', 0)[�� −  (�)] + �  i� ℜ(', �)[DCI (�) + D�(�)]�� 

 +hh�C{�i − ℜ(', 0)[�� +  (�)] − �  i� ℜ(', �)[DCI (�) + D�(�)]�� 

 − �  i� ℜ(', �)�(�, �K)} + �  i� ℜ(', �)�(�, �K)�� = �i .  

 Hence the proof.  

Theorem 4.4  If the assumptions (a1) − (a4) are satisfied. Then the existence of an 

asymptotically almost periodic mild solution to the evolution system, (4.1) is controllable.  

Proof : Consider the Banach space b = �(�, $) with the norm ∥ � ∥= sup{|�(�)|: � ∈ �}. 
and Set ℬ� = {� ∈ �: ∥ � ∥< -}. Using (a3) for an arbitrary function �(⋅) ∈ �(�, $), and 

define an operator Ω as, 

 (Ω�)(�) ≤ ℜ(�, 0)�� +  (�) + �  �� ℜ(�, �)DCI (�) + D�(�)�� 

 + �  �� ℜ(�, �)dh�C{�i − ℜ(', 0)[�� +  (�)] 
 − �  i� ℜ(', �)[DCI (�) + D�(�)]�� + �  i� ℜ(', �)�(%, �K)�%}(�)�� 

 + �  �� ℜ(�, �)�(�, �K)��. 
 Now the operator Ω is subdivided into two operators ΩC and Ω� on ℬq, we have  

 (ΩC�)(�) = ℜ(�, 0)�� +  (�) 

 + �  �� ℜ(�, �)dh�C{�i − ℜ(', 0)[�� +  (�)] 
 − �  i� ℜ(', �)[DCI (�) + D�(�)]�� + �  i� ℜ(', �)�(%, �K)�%}(�)�� 

 (Ω��)(�) = �  �� ℜ(�, �)[DCI (�) + D�(�)]�� 

 + �  �� ℜ(�, �)�(�, �K)��. 
 Next, to show that when using the control e(�), the operator Ω = ΩC + Ω� has a fixed 

point �(⋅). This fixed point is the solution to system (2.1), implying that the system is 

controllable. For any �, � ∈ ℬ� , we get  

 ∥ ΩC�(�) + Ω��(�) ∥≤∥ ℜ(�, 0) ∥∥ �� +  (�) ∥ + �  �� ∥ ℜ(�, �) ∥∥ DCI (�) +                               D�(�) ∥ �� + �  �� ∥ ℜ(�, �) ∥∥ dh�C ∥ {∥ �i ∥ −∥ ℜ(', 0)[�� +  (�)] ∥ 



 

 

 

 

 − �  i� ∥ ℜ(', �) ∥∥ DCI (�) + D�(�) ∥ �� 

 + �  i� ∥ ℜ(', �) ∥∥ �(%, �K) ∥ �%}(�)�� 

 + �  �� ∥ ℜ(�, �) ∥∥ �(�, �K) ∥ ��. 
 ≤ OC ∥ �� ∥ +MN(�) + O� + OCMU�� + OCl�{∥ �i ∥ −OC ∥ �� ∥ −MN(�) 

 +O� + OCMU�' − +OC�N(%)�N(')} + OC�N(?)�N(�) 

 < -. 
 Thus Ω deduce to -. Next to prove that Ω� is continuous and compact. Since Ω� is 

uniformly bounded on ℬ� . This follows from the inequality  

 (Ω��)(�) ≤ �  �� ∥ ℜ(�, �) ∥∥ DCI (�) + D�(�) ∥ �� 

 + �  �� ∥ ℜ(�, �) ∥∥ �(�, �K) ∥ �� 

 ≤ r∗, 
where r∗ = OCM�(�) + OC�N�N(�). Let {�q} be a sequence in ℬ� , such that �q → � in ℬ�  then �(�, �qK) → �(�, �K) and DCI (�q) + D�(�q) → DCI (�) + D�(�) as t → ∞ because the 

function � and DC, D� are continuous on � × $. Now for each � ∈ �, we have  

 ∥ Ω��q(�) − Ω��(�) ∥≤ �  �� ∥ ℜ(�, �) ∥∥ DCI (�q) + D�(�q) ∥ �� 

 − �  �� ∥ ℜ(�, �) ∥∥ DCI (�) + D�(�) ∥ �� − 

 + + �  �� ∥ ℜ(�, �) ∥∥ �(�, �qK) ∥ �� − �  �� ∥ ℜ(�, �) ∥∥ �(�, �K) ∥ �� 

 → 0       ?%         t → ∞, 
which shows that Ω� is continuous. Next we prove that {Ω��(�): � ∈ ℬ�} is relatively 

compact in $ for all � ∈ $. Obviously {Ω�(0): � ∈ ℬ�} is compact.  

Let � > 0 be fixed for each u ∈ (0, �) and � ∈ ℬ�  define the operator Ω�v  by                        Ω�v�(�) ≤ �  ��v� ℜ(�, �)[DCI (�) + D�(�)]�� + �  ��v� ℜ(�, �)�(�, �K)��. 
 As DC and D� are completely continuous obviously the set {Ω�v�(�): � ∈ ℬ�} is pre 

compact in $ for every u, 0 < u < � and as it is compact at � = 0 we have relatively 

compactness in $ for all � ∈ �. Moreover, for every � ∈ ℬ�  we have 

 ∥ Ω��(�) − Ω�v�(�) ∥≤ �  ��v� ∥ ℜ(�, �) ∥∥ DCI (�) + D�(�) ∥ �� 

 + �  ��v� ∥ ℜ(�, �) ∥∥ �(�, �K) ∥ �� − �  �� ∥ ℜ(�, �) ∥∥ DCI (�) + D�(�) ∥ �� 

 + �  �� ∥ ℜ(�, �) ∥∥ �(�, �K) ∥ �� 

which tends to zero as u → 0. Hence the set {Ω�v�(�): � ∈ ℬ�} is precompact in $. Now � ∈ �,  �, T ∈ ℬ� , then  

 ∥ ΩC�(�) − ΩCT(�) ∥=∥ ℜ(�, 0) ∥∥ �� − T� ∥ +∥  (�) −  (T) ∥ 

 + �  �� ∥ ℜ(�, �) ∥∥ dh�C ∥ {∥ �i − Ti ∥ −∥ ℜ(', 0)[�� − T� +  (�) −  (T)] ∥ 

 + �  i� ∥ ℜ(', �) ∥∥ �(%, �K) − �(%, TK) ∥ �%}(�)�� 

 ≤ [OC + MN + OC�l[1 + OC + MN + OC'M"] + �OCM"] ∥ � − T ∥ 

 ≤ Δ ∥ � − T ∥. 

Since Δ < 1,  which shows that ΩC is a contraction mapping.  

Now let us prove that Ω��, � ∈ ℬ�  is equicontinuous. Let �C, �� ∈ $, �C < �� and let � ∈ ℬ�  then  

 ∥ Ω��(�C) − Ω��(��) ∥≤ �  �Y� ∥ ℜ(�, �) ∥∥ DCI (�) + D�(�) ∥ �� + �  �Y� ∥ ℜ(�C, �) ∥∥ �(�, �K) ∥ �� 

 − �  �x� ∥ ℜ(��, �) ∥∥ DCI (�) + D�(�) ∥ �� + �  �x� ∥ ℜ(��, �) ∥∥ �(�, �K) ∥ �� 



 

 

 

 

 ≤ �  �Y� ∥ ℜ(��, �) − ℜ(�C, �) ∥∥ DCI (�) + D�(�) ∥ �� 

 + �  �Y� ∥ ℜ(��, �) − ℜ(�C, �) ∥∥ �(�, �K) ∥ �� 

 as �C → �� the right hand side of above inequality tends to zero. The set Ω�(ℬ�) is 

equicontinuous. Thus we have prove that Ω�(ℬ�) is relatively compact for � ∈ $. By Arzela-

Ascolis theorem, Ω� is compact. Hence by the Kranoselskii’s theorem, there exists a fixed 

point � ∈ ℬ�  such that (ΩC + Ω�)� = � which is a solution of equation (4.1). Hence (ΩC + Ω�)�(') = �i, which implies that the given system is controllable. 

 

5  Conclusion 

 
In this paper, the author achieved the existence of the asymptotically almost periodic 

solution to the nonlinear neutral integrodifferential evolution system. Moreover, controllability 

result is also proved for the same system by using the Kranoselskii’s fixed point theorem. 
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