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Abstract. Task scheduling in heterogeneous multi-processor environments is a complex 

and challenging issue. This problem in distributed environment is identified to be the 
Multi-objective Optimization Problems (MOPs), involving the simultaneous fulfillment of 
several objectives. The complexity of solving MOPs using traditional combinatorial 
methods are high and hence the optimal solutions can be achieved by using Evolutionary 
Algorithms. This paper presents a NSGA –II (Non-dominated Sorting Genetic Algorithm) 
for an efficient scheduling of tasks in a heterogeneous multiprocessorsenvironment. Most 
of the existing research in this area considered task scheduling with a single objective or 

bi-objectives only. This scheduling problem is a minimization problem with multiple 
objectives considering three objectives namely Makespan (Completion Time), Flow Time 
(Response Time) and Reliability Cost(Fault Tolerance). This method is compared with 
existing Weighted Sum method (WS). From comparative analysis, NSGA-II provided 
better performance than WS in twelve different types of heterogeneous environment. 

Keywords: Scheduling, Multiple objectives, Optimization problem, NSGA, 

Combinatorial methods. 

1   Introduction 

In traditional computing systems, there will be a single processor which is responsible for 
satisfying all computational requirements. When the number of tasks to be serviced becomes 

high, most of the tasks have to wait in queues for processors. As the computational requirements 

grow day by day, multi-processor systems are preferred over single-processor systems. A multi-

processor environment comprises of a set of homogeneous or heterogeneous processors having 

same or different memory and processing capabilities, connected together using different 

network topologies. The different tasks generated are scheduled in those processors based on 

availability and requirements. The common challenging issue of multi-processor scheduling can 

be defined as allocation of tasks on a multi-processor environment, so as tooptimize multiple 

criteria like completion time [1, 11].  

Scheduling problems can be seen as Multi-objective Optimization Problem (MOPs). A MOP 

is satisfying more than one conflicting objectives simultaneously. The general objectives with 
respect to multi-processor scheduling may be Makespan, Reliability Cost, Flow Time, Load 

Balancing, Deadline Missing Time etc. Solving MOPs using traditional methods yield high 

complexity. Therefore using evolutionary methods for solving MOPs is preferred over traditional 

methods. 
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The algorithm used in this paper[2, 12, 13]  forscheduling problem is NSGA-II, a variant of 
Genetic algorithm (GA). In contrast to the weighted or aggregated sum approach, traditionally 

used in GAs, non-dominated sorting technique is been used, to ensure reaching Pareto-optimal 

solutions. Pareto-optimality is a concept in multi-objective problem solving, where the 

improvement of one objective should not worsen the other objectives. The solutions achieved 

which cannot be further improved, without worsening any of the objectives are called Pareto-

optimal solutions [2, 12, 13]. 

The general approach for multi-processor scheduling, considers either one or two objectives. 

In this paper, three conflicting objectives are considered namely makespan, flow time and 

reliability cost, which are to be minimized. The experiment is simulated and the results are 

compared with existing techniques for the same constraints. The term chromosome denotes the 

representation of solution in GA and is interchangeable with the term solution.   
The organization of the research paper asfollow: Section 2 explains Problem definition. 

Related works are discussed in Section 3.Section 4presents the algorithm design. Parameter setup 

and simulation results are elaborated in Section 5 and 6 respectively. The conclusion part of the 

paper is given in Section 7. 

 

2   Problem Formulation 
 

Distributed system is a collection of numerous processors connected with each other. If there 

are R tasks which are independent, Task = {Task1, Task2…, TaskR} that are to be allocated on S 

processors Processor = {Pr1, Pr2..., PrS}. The expected execution time of a same task running on 

different processors is not same because processors are heterogeneous. An ETC matrix is an R 

x S matrix in which Rrepresents total number of tasks and Srepresentstotal number of processors. 

A row in the ETC matrix indicates the estimated execution time for a given task on each machine. 

Similarly columns in the ETC matrix indicate that the estimated execution time of a given 
machine for each task.  

The problem is framed under the following assumptions: 

 The execution time values are known in advance. 

 Tasks are considered as non-preemptive. 

 A processor can serve a single task at a time. 

 At a time, every task is scheduled to a single processor. 

 

The work considered in this paper is the multi-objective optimization problem of allocating 

independent tasks on a set of available multiple processors in the distributed systemsin order to 

optimize Makespan, Reliability Cost and Flow Time simultaneously. 

 
The common standard optimization criterion is minimization of completion time 

(makespan) which is the total execution time of all tasks. Consider that Ci,j(i ε{1,2,...,R}, j ε 

{1,2,...,S}) is the execution time for performing  ith task in jth processor  and Wj (j ε {1,2,...,S}) 

is the previous workload of  Pj. Then Makespan can be calculatedusing the Eq. (1) 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  𝑚𝑎𝑥 { ∑ 𝐶𝑖,𝑗 + 𝑊𝑗  }, 𝑗𝜀 {1, 2 … 𝑆}                                                        (1)  

 

Reliability Cost (RC) is factor that defines the predicted rate of failure with respect to each 

processor that it is executing the tasks. Processor failures are considered to be independent in 

this paper, and it uses a Poisson process with a constant failure rate. Since the tasks are 



 

 

 

 

independent, failure in communication links between the processors are not considered. The RC 

of a task 𝐓𝐢on a processor 𝐏𝐣 is the product of  𝐏𝐣's failure rate (PFR) λj and𝐓𝐢 's execution time 

on 𝐣. The Reliability Cost can be defined in Eq. (2), where 𝐩𝐫(𝐓𝐢) = 𝐣represents that task 𝐓𝐢is 

allocated to 𝐏𝐣 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑡𝑦𝐶𝑜𝑠𝑡 = ∑ ∑ 𝜆𝑗𝐶𝑖𝑗(𝑇𝑖)

𝑝𝑟(𝑇𝑖)=𝑗

𝑆

𝑗=1
                                              (2) 

Flow time is manipulated as the summation of the finishing times of all tasks. It is used to 

measure the quality of service of the computing system. This can be defined in Eq. (3), where 

Fi,j  is the finishing time of taskTion a processor Pj 

𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒 = ∑ ∑ 𝐹𝑖,𝑗                                                                 (3)

𝑆

𝑗=1

 

 

3   Related Works 

 
Multi-objective scheduling problems are NP-hard generally. That is these scheduling 

problems are non-deterministic and it requires some polynomial time to solve. There have been 

many researches going on in such scheduling problems worldwide.  Kalyanmoy Deb [3] 

proposed a fast non-dominated sorting approach. The existing genetic algorithms had a 

complexity of O(MN3) where M representstotal number of objectives and N represents the size 

of the population. This high computational complexity is due to the comparisons made in non-

dominated sorting. The proposed approach with O(MN2) computational complexity, can give 

optimal solution and better results when compared to other Evolutionary Algorithms such as 

PAES and SPEA.  

The modified version of NSGA-II [2, 14] was recommended for task scheduling considering 

Makespan and Flow Time and compared it with NSGA-II.  From the results, the author found 

that the algorithm with controlled elitism preservesuniformly distributed solutions in the 
obtained non-dominated front. RituVermaet al., [4] implemented a GA for optimizing 

completion time in scheduling independent tasks multi-processor systems in a static 

environment. Rio et al.,[5] proposed a modified version of NSGA-II algorithm with lower 

runtime complexity. This algorithm used a faster non-dominated sorting procedure that sorts 

individuals based on each of the objectives, one after the other, till all objectives are considered, 

finding a position value for each individual. H.Izakian, A. Abraham [6] analyzed the well-known 

heuristics algorithms in scheduling of independent tasks on distributed systems based on 

makespan and flow Time and also suggested that using a min-max heuristic provided better 

results than other heuristics.  

NSGA-II [7, 15] algorithm for solving multiobjective optimization problems with the 

performance measures task execution time, and the task transfer time in static environments was 
discussed. The author proved NSGA II provided better results than the multi-objective 

PSO.Kamaljit Kaur et al., [8] developed a new variant of genetic algorithm named Heuristics 

based Genetic Algorithm in homogeneous parallel system for static tasks scheduling. The author 

considered the minimization of completion time and increased the throughput of the system.  

MyungryunYoo, Mitsuo Gen [9] designed a new scheduling algorithm called multi-

objective hybrid GAfor allocating real-time tasks on heterogeneous multi-processorssystem. The 

author co-operatively used the GA and the simulated annealing for optimizing the delay and 



 

 

 

 

completion time. Peng-Yeng Yin [10] has developed a Hybrid PSO which optimizes the 
Reliability of the multiprocessor systems.The HPSO embeddedwith local search heuristic for 

improving the diversity and convergence of the algorithm.Most of the works are concentrating 

on two objectives simultaneously for various task scheduling problems in distributed systems. A 

very few research works have been implemented using three objectives. This paper presents tri-

objective optimization for scheduling tasks in multi-processor environments using NSGA-II. 

 

4    Design 

 
This work presented in this paper uses the NSGA-II, a variant of GA. The steps followed in 

NSGA-II are 

 Population Initialization  

Population is the set of all feasible solutions that can be arrived at, for a given problem. The 

first step of the algorithm is to initialize the population. Population initialization is providing all 
the initial possible solutions on which the genetic operations are to be performed. 

 Objective Function Evaluation 

The objective functions are to be evaluated to search the best solutions. The objective 

functions are with respect to Makespan, Flow Time and Reliability Cost.  

 Variation  

New offspring are generated by variation. Variation is an operation that causes some 

changes to the parent chromosomes to yield new chromosomes. Variation can be performed 

using crossover and mutation. 

 Non-dominated Sorting 

After the offspring are been created, the total solutions become 2 x N consisting both the N 

parents and the newly created N offspring. The solutions are to be filtered to a set of best N 
solutions. Non-dominated sorting is performed for this purpose.  

 Calculating Crowding Distance 

Many solutions may be of same rank and there may be a tie in choosing the solutions for 

next generations. Crowding distance is used to choose the best solution in case of a tie.  

These steps are applied in iterative phases. That is, after calculating crowding distance and 

forming new generation, steps from objective evaluation through crowding distance calculation 

continues. This iterative process gets over after termination conditions, such as optimal solution 

or certain number of generations, is achieved. The algorithm is described in Fig.1. The phases 

are explained in detailed below: 

 

4.1 Population Initialization  
This is a scheduling problem consisting of solutions that are schedules of tasks that are to 

be allocated to the processors. Therefore populations are represented using permutations. In 

Permutation-based encoding, the solution is a collection of numbers that indicates a position in 

a sequence. Thistype ensures that no task is allocated to more than one processor. 

 

4.2 Tri-Objective Calculation  
The objectives are evaluated in order to find whether the chromosome is eligible for further 

process. Three objective functions are been used, which are Makespan - the completion time of 

all  tasks as in Eq. (1) ; Flow Time - total execution time with respect to each task as in Eq. (2); 
Reliability Cost - factor that defines the predicted rate of failure with respect to each processor 

as in Eq. (3). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flowchart of NSGA II for task scheduling problem 

 

4.3 Variation 
Variation is a method to produce offspring from one or two parents. Variation can be 

performed by either crossover or mutation. Combining crossover and mutation can bring better 

results as mutation helps in maintaining diversity. 

Crossover is recombining the parents to get new offspring. It needs two parents and 

generates two or more offspring. Crossover method and crossover points are to be chosen. C1 
crossoveris the modified standard single point crossover that is used in this paper. Mutation is 

performed to preserve diversity of the algorithm and to avoid premature convergence. Shift 

mutation has been used in this paper. In shift mutation, the task at select point is removed and 

the tasks till the insert point are shifted by one position towards the select point. The task removed 

is placed at the insert point, where select point and insert point are randomly selected positions. 

 

4.4 Non-dominated Sorting 
After variation, N numbers of offspring are created from N number of parents. Therefore 

the number of solutions will become 2xN. Out of this, best N solutions are chosen by Non-

dominated sorting for moving to the next generation.  

Yes 
Termination 

Population 

Initialization (n) 

 

ObjectiveFunction 

Evaluation 

 

Crossover and 

Mutation(n) 

 

Non-dominated 

Sorting (2n) 

Crowding Distance 

Calculation 

New 

Population (n) 

Is 

termination 

condition 
reached? 

No 



 

 

 

 

In contrast to the traditional weighted sum method, non-dominated sorting ensures no 
objective is completely dominating any other objectives. Non-dominated sorting helps us to 

achieve Pareto-optimal solutions. The solutions are ranked based on the number of solutions it 

dominates and the number of solutions which dominates it. The N solutions with best ranks get 

a chance to survive to the next generation. 

4.5 Calculating Crowding Distance 
Among the 2N solutions, the best N solutions become the parents in next generation. After 

non-dominated sorting, two or more solutions may be in same rank. In sorting out the best N 
solutions, there may be a tie between two or more solutions that reside in the same rank. The 

crowding distance (CD) is done by arranging the set of chromosomesin ascending order based 

on objective values. The CD value of a particular chromosome is calculated by taking the average 

distance of its two adjacent chromosomes. The boundary solutions have the lowest and highest 

objective values. These are set to infinite crowding distance values so that they constantly get 

selected. This procedure is performed for each objective function. To find out the best solution 

in such cases, crowding distance of those solutions are calculated and the one having the least 

crowding distance is awarded the next step. 

The result of the NSGA-II algorithm is compared with the weighted sum method. The 

procedure to calculate the weighted sum is explained as follows: 

The weighted sum method follows the same algorithm except the non-dominated sorting. 
Instead of non-dominated sorting, the solutions based on three objectives are consolidated giving 

weights to each objective. Then the objective function will become a single value. The 

calculation of weights W1, W2 and W3 for three objectives is performed using Eq. (4), Eq. (5) 

and Eq. (6) respectively.  

                                                  𝑤1
𝑖(𝑡) = 𝑟𝑎𝑛𝑑𝑜𝑚(𝜆)/𝜆                                                                       (4) 

                                                   𝑤2
𝑖 (𝑡)

= (1 − 𝑤1
𝑖(𝑡)) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝜆)/𝜆                                                               (5) 

                                                               𝑤3
𝑖 (𝑡)

= 1 − 𝑤1
𝑖(𝑡) − 𝑤2

𝑖 (𝑡)                                                                      (6) 

Here w1, w2, w3 are the respective weights of the three objectives. The function random (λ) 

produces a uniformly distributed random number between 0 and λ, i = 1... λ¸ Where λ is the 

population size, and t is the iteration index. The fitness function is calculated using the formula 

as in Eq. (7). 

Minimize  wsi(t) = w1
i (t) ∗  Ms + w2

i (t) ∗  RC + w3
i (t) ∗  FT                   (7) 

Where Ms is the makespan value, RC is the Reliability Cost value and FT is the Flow Time 

value and wsis the fitness value based on aggregated sum method of the chromosome. 

 

5   Experimental Setup 
    The experiment is simulated in C language in Linux platform considering 10 processors 

and 30 tasks for thousands of generations. Table 1 gives the population size, crossover and 
mutation details. 

Table 1 Test Parameters 

Parameters Values 
Size of the population 50 

Iteration Count 1000 

crossover and mutation       

probability 
0.5 



 

 

 

 

 
 The execution time of the tasks is represented using the Expected Time to Compute (ETC) 

matrix. The processors considered here are heterogeneous in two ways i) Machine heterogeneity 

[1] which is a value that represents the variation in execution time of a task in different processors 

ii) Task heterogeneity [1] which represents the variation in execution time different tasks in a 

processor. Consistency of the processors is also considered. The processor may be consistent, 

inconsistent or semi-consistent. ETC for each task is derived from various heuristics with respect 

to consistency, machine and task heterogeneities.  

The ETC matrix values for inconsistent type are completely random in NSGA-II. The 

consistent and semi-consistent ETCs are obtained from the inconsistent using same method for 

NSGA-II and weighted sum method. For consistent ETC, the values of the matrices are arranged 

in ascending order based on the first objective for all columns. For semi-consistent ETC, the 
values for certain columns are arranged in ascending order based on the first objective and the 

remaining columns are left as before. 

Therefore there are twelve cases of ETC matrices which are used for experimentation.  

6  Implementation Results 
The algorithm is been simulated for thousand generations and the results are plotted. The 

Figure 2 to Figure 8 represents the best solutions collected from weighted sum and NSGA-II at 

thousandth generation. The three axes denote the three objectives. In these figures, ns refer to 
non-dominated sorting and ws refer to weighted sum method. 

The results are prepared based on task and machine heterogeneities of the processors. Figure 

2 presents the solutions of low task and low machine heterogeneity for weighted sum and NSGA-

II with respect to inconsistent ETC. 

 
Figure 2 NSGA-II and weighted sum solutions inconsistent low task and low processor heterogeneity 
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Figure 3 NSGA-II and weighted sum solutions inconsistent low task and high processor 

heterogeneity 

Figure 3 presents the solutions of low task and high processor heterogeneity for weighted 

sum and NSGA-II with respect to inconsistent ETC. 
Figure 4 presents the solutions generated at thousandth generation of high task, high 

processor heterogeneity for weighted sum and NSGA-II with respect to inconsistent and ETC. 

The solutions from NSGA-II show signs of Pareto-optimality and lesser objective function 

values than those of weighted sum method. 

 

Figure 4 NSGA-II and weighted sum solutions inconsistent high task and high processor 
heterogeneity 
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Figures 5 and 6 presents the solutions generated at thousandth generation of low 
task, low processor heterogeneity and low task, high processor heterogeneity for 

weighted sum and NSGA-II with respect to consistent, ETC, respectively. 

 

Figure 5 NSGA-II and weighted sum solutions consistent low task and low processor heterogeneity 

 

Figure 6 NSGA-II and weighted sum solutions consistent low task and high processor heterogeneity 

Figures 7 and 8 present the solutions generated at thousandth generation of low task, high 

processor heterogeneity and high task, high processor heterogeneity for weighted sum and 

NSGA-II with respect to consistent, ETC, respectively. 

1000

1200

1400

1600

1400
1600

1800
2000

2200

3

4

5

6

7

 

Makespan

Consistent Low Task Low Machine Heterogeniety

Flow Time

 

R
e
lia

b
ili

ty
 C

o
s
t

ws cltlm

ns cltlm

0

1

2

3

x 10
5

1

2

3

x 10
5

0

200

400

600

800

1000

 

Makespan

Consistent Low Task High Machine Heterogeniety

Flow Time

 

R
e
li
a
b
il
it
y
 C

o
s
t

ws clthm

ns clthm



 

 

 

 

 
 

Fig 7 NSGA-II and weighted sum solutions semi-consistent high task and high processor 
heterogeneity 

 

Figure 8 NSGA-II and weighted sum solutions semi-consistent low task and high processor 
heterogeneity 
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From the figure 7 and figure 8, it is inferred that the solutions from NSGA-II show signs of 
Pareto-optimality and lesser objective function values than those of weighted sum method. 

 

 Conclusion 

 
An efficient scheduling of tasks in a multiprocessor system using NSGA-II is presented in 

this paper. The experimental results proved that the NSGA-II with non-dominated sorting 

technique provided better results than weighted sum method in all the twelve types of 

heterogeneity with respect to tasks and machines. The algorithm provided solutions with 
objective values that are much minimized with respect to multiple objectives such as makespan, 

flow time and reliability cost simultaneously. Results are presented in the graph shown that the 

Pareto-optimality by the curves formed by the solutions of NSGA-II. This shows no objective is 

given priority over the others and the solutions are Pareto-optimal. The work can be further 

extended to test with large number of tasks with processors and also for dependent tasks, which 

takes the problem to a different context.  
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