Color Correction Using Color Checkers

Senthilkumaran V
{vsk.amcs@psgtech.ac.in}

Department of Applied Mathematics and Computational Sciences, PSG College of Technology,
Coimbatore — 641 004*

Abstract. In this work, we present a simple but a different approach to correct colors of
digital photographs. Pictures taken on digital cameras do not portray the actual colors of
the photo that a naked eye can see. This is because of the surroundings and the lighting
conditions a photo is captured in. The problem of colors is solved here using an external
component called a color checker. The algorithm takes 2 inputs and gives a color
corrected output which helps photographers and a few other areas of work where pictures
play an important role. The method we propose has been tuned and tested on various
image data.The paper deals with image processing and machine learning for color
calibration and to detect the colorchecker on the target image and uses Python
programming language to get the output.

Keywords: Color Correction, Macbeth Colorchecker, Xrite, DotProduct, EigenValues,
Color Pixel Values, WhiteBalance, ColorCast.

1 Introduction

Photographs are a story that we fail to put in words. A picture holds a million emotions. A
camera in which the picture is taken is light sensitive [1]. The changes in colors of images are
dependent not only on the surface properties of the objects in the frame, but also depends
mainly on the lighting conditions which are like the angle the object is placed, the
illuminantcolors etc., and on the characteristics of the digital camera we use. Human vision
brilliantly captures the true colors but imaging devices do not do so because they cannot easily
adapt to the spectral responses to cope up with different conditions and as a result, the
digitised image creates an undesirable shift in the entire color range. The great spread of
digital cameras, be it Dslr’s or a simple phone camera have brought in a new era for digital
images depicting a huge variety of subjects. In this frame of reference, we have developed an
algorithm that makes it possible to recognize and remove a superimposed color in a digital
image. The algorithm is structured in two main parts:computing the color correction matrix
and subtracting or adding it to the captured image. Few other methods to this problem and the
advantages of this method are discussed in this paper. Future developments are also illustrated.

Color analysis deals with a major problem which is controlling the lighting condition
while clicking a picture.A particular color in the target frame appears to be measured as a
different color for pictures taken under the same environment. Fields like healthcare, space
research, food industries and other color-managed areas apply color calibration on a daily
basis.This work deals with a physical object that helps correct colors called the colorchecker.
The ColorCheckerColor Rendition Chart, this very well known chart with an array of 4 x 6
color patches, is an icon of the imaging industry. It was formally presented in a 1976 article by

ICCAP 2021, December 07-08, Chennai, India

Copyright © 2021 EAI

DOI 10.4108/eai.7-12-2021.2314537

C. S. McCamy and his colleagues from the Macbeth Company, a Division of Kollmorgen
Corporation at the time [4].

2. Background Study

The methods used in this paper revolve around colors, lighting and the algorithm is
all about matrices and eigenvalues.
2.1 The XRiteColor Checker
The XriteColor Checker is a device (color rendition chart) used in industries to solve
the problem of color correction. It is originally known as the Macbeth color checker. It is a
color calibration target of a rectangular framed cardboard arrangement of 24 squares (6x4) of
painted samples/colors/shades. This color checker will take care of the white balance too. We
have a neutral grey scale for white balance (it corrects the light and make it as white as
possible).Each of the 24 color patches represents the colors of natural objects, such as sky
blue, flesh tones and leaf green and each patch reflects light just like its real world counterpart
[1]. Each square is individually colored using a solid tone to produce pure, flat, rich color
without dots or mixed tints. Figure 1 shows the XRiteColor Checker.

CS LU LU U L L L T L

|

S
&
%

]

AN

99 LLLL L L

|
To3TRYDONTD

Figure 1. XriteColor Checker
2.2 White Balance

Whenever we do a photoshoot, we expect the pictures to come out realistically,
mostly similar to how we see it in person. For faithful reproduction, we adjust or remove
unrealistic color casts, so that objects which appear white in person are rendered white in our
photo is known as the White balance. Relative warmth or coolness of white light is referred to
as color temperature. The camera’s white balance has to take into account the "color
temperature” of a light source.Cameras can create unsightly blue, orange, or even green color
casts because our eyes are excellent at judging what’s white under different light sources, but
digital cameras often have great difficulty with auto white balance (AWB). A white balance

setting in a professional camera is a numerical value (Kelvin temperature). In order to improve
our photos under a wider range of lighting conditions, understanding digital white balance
plays a major role thereby avoiding these color casts [7].

3. Related Works

There are many other methods that can solve the problem of color correction which is
discussed in this section. They have their own advantages and disadvantages over the
algorithm discussed in this paper, which depends on the necessity to use photographs and
digitise images.

3.1 Adobe Lightroom

We take a raw picture of the target and the reference XriteColorChecker and then
upload it to the adobeLightroom. We then convert the RAW file to DNG using a DNG
Converter. Then open the NG in the colorchecker calibration app and we save it as a profile.
Importing that profile into lightroom is the major step and we then apply it to all the pictures.
We can also check white balance if needed and at the end we copy the profile to all the related
pictures that needs to be color corrected [6]. This is indeed a good way to correct colors and it
produces the best results, but this depends on a few external software which makes us propose
this method described in our paper.

3.2 Pantone Card

Pantone Card is similar to an XriteColor Checker which works with our phone
cameras to measure and match colored objects, materials, and surfaces to their Pantone Color
equivalents. Placing the color correction card over the shade that needs to be matched is the
first step. Then we open Pantone’s smartphone app on our mobile divide and take a snhap of
the card.The app is designed such a way that it automatically performs color matching and
then returns the most similar shades [5]. This can be used to correct colorstoo the same way
we use the color checker. Figure 2shows the Pantone card.

Figure 2. Pantori‘e Card

3.3 Supervised Learning for Color Calibration

The image has a set of known color regions like a color checker and we need to find
the actual colors of the image. The actual colors of the 24 squares can be extracted from the
image using Python’s OpenCV. We take it as input, x. We know the colors of these 24 squares
from the Macbeth ColorChecker chart. We take it as output y. Using the extracted color of as
input(X) and actual colors of the known color region as output(Y), we need to find the
transformation relationship (function) between X and Y.Using the transformation relationship,
we can calibrate the color of the unknown regions in the image. This can be taken as a
machine learning’s regression problem that used regression analysis because the values are
continuous. This method uses multivariate regression for further results [3].

4. Dataset

In order to color correct images and produce best results, the algorithm needs 2 inputs,
one image is the target image with the color checker, and the other is the ideal colors checker
image, provided both the inputs are under the same lighting conditions. We can compare both
the data using the pixel values stored as csv format and then correct the color of the output
image. This method has been tried on a variety of objects and has been trained accordingly.
The RGB values of a color checker under ideal conditions are shown in Figure 3.

ColorChecker 2005 xyY (CIE D50) L*a*b* (CIE D50) Adobe Apple ProPhoto sRGB sRGB (GMB)
No. Color name x y Y L a* b* *

[illuminant 03457 0.3585 100 100 a o 255 255 255 | 255 255 255 | 255 255 255 | 255 255 155 | 155 255 255
1 04316 03777 10,08 | 37.99 13,56 1406 | 107 B2 70 94 63 51 8l 67 54 116 Bl 67 115 82 68
2 light skin 04197 03744 3495 | 65,71 18,13 17,81 | 184 146 129 183 128 109 159 135 114 199 147 129 | 194 150 130
3 blue sky 02760 03016 18,36 | 49,93 488 -2193] 101 122 153 74 103 139 94 102 133 91 122 156 98 122 157
4 03703 04499 1325] 4314 -13,10 2191 95 107 69 73 89 48 75 86 55 90 108 64 87 108 67
5 blue flower 02999 02856 2304 | 5511 B84 -2540] 128 127 173 1o 108 162 118 111 154 130 128 176 | 133 128 177
i | bluish green 02848 03911 41,78 | 70,72 -33,40 -0.20| 129 1BE 171 84 178 155 127 168 157 92 190 172 103 189 170
7 orange 0,5295 04055 31,18 | 62.66 36,07 57,10 | 201 123 56 211 102 30 167 118 54 22 124 47 214 126 44
8 purp 02305 02106 11,26 | 40,02 1041 4596 77 92 166 52 71 156 79 74 145 68 91 170 80 91 166
9 05012 03273 1938 | 51,12 48,24 1625 174 B1 97 180 59 79 141 83 BOY 198 82 97 193 90 9
10 03319 02482 6,37 | 30,33 2298 -21.59| B6 6l 104 73 2 88 68 49 B2 94 38 106 94 60 108
11| yellow green 03984 05008 4446 7253 -23,71 5726 167 IBE 75 145 177 39 144 170 74 159 189 63 157 188 64
12 | orange yellow 04957 04427 43,57 | 71,94 19,36 6786 | 213 160 55 220 143 19 181 152 60 230 162 39 224 163 46
13 02018 01652 5,75 | 28,78 1418 -5030] 49 65 143 26 47 131 57 50 120 35 63 147 56 61 150
14 g 03253 05032 23,18 | 5526 -38,34 3AT| 99 148 80 60 133 54 85 123 69 67 149 74 70 148 73
15 0.5686 03303 12,57] 4210 53,38 28,19] 155 52 59 159 29 43 120 59 46 180 49 57 175 54 60
16| vellow 04697 04734 5981 | 81,73 404 7982|227 197 52 | 232 187 0 199 188 66 | 238 198 20 | 231 199 31
17 @ 04159 02688 20,09 | 51,94 4999 -1457| 169 RS 147 174 60 134 143 85 127 193 L 151 187 86 149
18 02131 03023 1930 | 51,04 -2863 -2864| 61 135 167 [118 154 78 111 148 [136 170 8 133 161
19 | white 9.5 (.05 Iy) 03469 03608 9131 | 96,54 -0,43 1,19] 245 245 242 | 242 241 239 | 242 243 240 | 245 245 243 | 243 243 242
20 | neutral 8 (.23 D) | 03440 03584 5894 | 8126 064 -034| 200 201 200 | 189 191 191 | 189 190 191 | 200 202 202 | 200 200 200

U AR A 0,3432 03581 3632] 6677 073 -050] 160 161 162 | 144 146 146 | 145 146 146 | 161 163 163 | 160 160 160

neutral 5(.70 D) 0,3446 03579 19,15 50,87 -0,05 -027] 120 120 120 Jlor 102 102 |02 102 102 |12 120 122 2z 122 a2

[COEET(RERTW 03401 03548 883 [3566 042 -123| B4 85 86 | 65 66 68 | 66 66 68 | B2 B4 86 | 85 85 85

black 2 (1.5 D) 03406 03537 3,11] 2046 -0,08 -0.97 52 53 54 37 37 38 37 37 I8 49 49 51 52 52

Figure 3. Color coordinates of an ideal color checker

5. Methodology

Different input images are passed through the algorithm written to produce a color
corrected output. The algorithm goes through different phases which majorly includes the
detection of the color checker and the matrix calculation. The algorithm takes help of image

processing where we have numerical values called “pixels” and they represent an image.These
matrix entries are the pixel values which forms a whole image (Figure 4).The algorithm is as
follows:

Input-1: Picture of the target image with the colorchecker.

Input-2: Picture of the colorchecker alone as a reference under the same lighting
conditions.

Step 1: Take a picture of the target image along with the colorchecker on any digital
lens

Step 2: Take a picture of the color checker alone under the same surroundings and
the same lighting conditions.

Step 3: An algorithm to detect the coordinates of the color checker is devised.

Figure 4. ColorChecker Detection

Step 4: Find the color coordinates (or) the r,g,b values of all the 24 colors

Step 5: Repeat step 4 and 5 for input-2 also

Step 6: Store the pixel values (color coordinates) of both the inputs in a csv file
Step 7: Compute the dot product of the 2 pixel valued matrices.

Step 8: Correct input - 1 with the color corrected matrix.

Step 9: Convert the pixel valued matrix to a corrected image.

Output: Color Corrected target image.
The workflow of this paper and the algorithm is depicted as a flowchart in Figure 5.

5.1 Color Checker Detection
The target image (input-1) contains the color checker. In order to get the color pixels
of each color in the checker, we need to find their coordinates. So we devise an algorithm to
find the X, y coordinates and then compute the RGB values at that point. This method will
return ‘found’ when it finds a checker on the image and it will return an image overlaid with
circles on each patch of the color. The outer circle is the "reference" value, the inner circle is

the average value from the actual image. The coordinates as output is stored as a csv file and
its first 24 lines contains the x, y values of each color locations and the average values. [2]

X, ¥, I, g, b (csv format)

In addition to this, the size of the color square of the checker is also stored in the last two
lines. The alignment of the color squares are in order of the typical MacBethcolor checker
("dark skin™ top left, "black" bottom right).

INPUTS

|
¥ ¥
Image of
TARGET with
Color Checker

Image of the
color checker

Color Checker
Detection

Getr,g,b values
of all colors in
the color checker

¥

Compute Color
Correction
Matrix

!

Color
Corrected
OUTPUT

Figure 5. Work-Flow

6. Results And Analysis

The aim of this paper is to bring out and reproduce the original colors of an image as seen
from a human eye. We compute Color Correction Matrix (CCM) ‘A’. We can describe it as a
4x3 matrix A which approximate the following equation:

“Let P be a referencecolor checker matrix (24 x 3) and C be a color checker matrix to
correct (24 x 3).”

P=[C1]A

Results observed here in Figure 9 and 10 shows a prodigious difference in the input and
output. Figure 6 shows the snippet of the code written in python where the dot product is
computed and the color correction matrix is printed. Figure 7 shows the type of variable the
CCM is and how the matrix is calculated. Figure 8 shows the format in which the CCM is
stored. Figure9 and 10 are calculated and trained on different inputs and that is why the
numerical values of the CCM vary.

source XYz hm = np.append(source xvz, np.ones((24, 1)), axis=1)
ccm = np.linalg.pinv(source xyz hm) .dot (reference xyz)

print ("CCM: ")
Figure 6. Code Shippet

PS D:\tri3d\webglshift\color_correction\colorcorrectionmatrix> python computeCCM.py data/xrite_photo_actual.csv data/xrite_overlay_rendered.cs

lorcorrectionmatrix>

Figure 7. Color Correction Matrix

A B C D
1 1 1.597667 -0.30919 0.933348
2 | -0.53326 1.30948 -1.67546
5 | -0.04434 -0.15581 2.182076
4 1 -23.1037 -24.7029 -29.2919
5

Figure 8. CSV format of the matrix
REFERENCE FORCED INPUT COLOR

CORRECTED

T

Figure 9 Result

Favino BEFORE ColorChecker Passport Favino AFTER ColorChecker Passport

Figure 10 Color Calibration

7. Conclusion And Future Work

ColorCheckers, be it any color targets can be captured by digital cameras, lens and other
color input bias, and the performing image affair can be compared to the original map, or to
reference measures, to check the degree to which image accession reduplication systems and
processes compare the mortal visual systems. It also can be used to color correct one print
with the map in it (that may have a special color cast, for case thanks to a lighting
achromatism difference) to a different" reference™ print with the map in it. Because of its wide
vacuity and use, its careful design, and its thickness, and because comprehensive
spectrophotometric measures are available, the ColorChecker has also been used in academic
exploration into motifs similar as spectral imaging.

This work model gives a decent color corrected output taking in account of a few
conditions, like lighting, camera angles and more. The method described in this paper uses an
external, physical object - a colorchecker which is pretty expensive in the market. So in the
future, we can optimise a few steps and also try to create a fully automated way to correct
colors instead of depending on a materialistic thing. We should try to reproduce the original
colors or try to print the colors rather than buying a whole new product. Also the colorcheck
detection algorithm is pretty technical and we can work on improving it. Other methods such
as using a pantone card, or using the method of histogram matching or using other
unsupervised or deep learning algorithms can be taken into account to yield best results.

References

(1]

[2]

(3]
(4]
B3]
(6]
[7]

Gasparini, F., &Schettini, R. (2003, September). Color correction for digital photographs. In 12th
International Conference on Image Analysis and Processing, 2003. Proceedings. (pp. 646-651).
IEEE.

Ferndndez, P. D. M., Pefig, F. A. G., Ren, T. I, & Leandro, J. J. (2019). Fast and robust multiple
colorchecker detection using deep convolutional neural networks. Image and Vision
Computing, 81, 15-24.

Rizzi, A., Gatta, C., & Marini, D. (2003). A new algorithm for unsupervised global and local color
correction. Pattern Recognition Letters, 24(11), 1663-1677.

Varghese, D., Wanat, R., &Mantiuk, R. K. (2014). Colorimetric calibration of high dynamic range
images with a ColorChecker chart. Proceedings of the HDRI.

Ciocca, G., Marini, D., Rizzi, A., Schettini, R., &Zuffi, S. (2003). Retinexpreprocessing of
uncalibrated images for color based image retrieval. Journal of Electronic Imaging, 12(1), 161-172.
Marini, D., &Rizzi, A. (2000). A computational approach to color adaptation effects. Image and
Vision Computing, 18(13), 1005-1014.

Barnard, K., Cardei, V., &Funt, B. (2002). A comparison of computational color constancy
algorithms. I: Methodology and experiments with synthesized data. IEEE transactions on Image
Processing, 11(9), 972-984.

