(γ, α_{β}) AND $(\alpha_{\gamma}, \alpha_{\beta})$ -Generalized Closed Mappings Intopological Spaces

G. SaiSundara Krishnan¹, N. Kalaivani², D. Saravanakumar³ {ssk.macs@psgtech.ac.in¹, drkalaivani@veltech.edu.in², drdstop@gmail.com³}

Department of Applied Mathematics & Computational Sciences PSG College of Technology, Coimbatore¹. Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India², Department of Mathematics, MSS WAKF Board College, Madurai, India³

Abstract. The Inthis paper the conceptsof(γ, α_{β}) and ($\alpha_{\gamma}, \alpha_{\beta}$)-generalized closed mappings are introduced and some of their properties are studied. Further(γ, α_{β}) and ($\alpha_{\gamma}, \alpha_{\beta}$)-homeomorphism are initiated and Investigated some of their properties.

Keywords: open set, α_{γ} -open set, $\tau_{\alpha_{\gamma}}$ -int, $\tau_{\alpha_{\gamma}}$ -cl , $\alpha_{\gamma}T_i$ spaces (i = 0, $\frac{1}{2}$, 1,2), (γ, α_{β}) - generalized closed Mappings, ($\alpha_{\gamma}, \alpha_{\beta}$) -generalized closed mappings. Mathematics Subject Classification: AMS(2000)54A05,54A10.

1 Introduction

The α -open sets, operation on topological spaces, $\tau_{\alpha-\gamma}$, $\tau_{\alpha-\gamma-1}$, $\tau_{\alpha-\gamma-1}$ - interior and $\tau_{\alpha-\gamma-1}$ -closure operators and $\alpha - (\gamma, \gamma')$ -open sets were introduced respectively by Njastad [7], Kasahara [4,5], Ogata [8,9]and Kalaivani, SaiSundara Krishnan[1,2,3]. In this paper, the concept of (γ, α_{β}) -generalized closed mappings and are $(\alpha_{\gamma}, \alpha_{\beta})$ -Generalized Closed Mappingsare introduced some of their properties are studied. Further their the corresponding homeomorphisms are introduced and characterize them using (γ, α_{β}) -generalized closed mappings.

2.(γ, α_{β})-GENERALIZED CLOSED MAPPINGS

Definition 2.1. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a(γ, α_{β})-generalized closed mapping [denoted as (γ, α_{β}) -ge cl ma] if and only if for each γ -closed set $H \in X_{tTS}$, the image f(H) is an α_{β} -generalized closed set (ge cl se) in Y_{tTS} .

Definition 2.2. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a (γ, α_{β}) -generalized open mapping [denoted as (γ, α_{β}) -ge op ma] if and only if for each γ -open set $H \in X_{TS}$, the image f(H) is an α_{β} -generalized open set (ge op se) in Y_{tTS} . **Definition 2.3.** A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a (γ, α_{β}) - closed mapping $[(\gamma, \alpha_{\beta}) - cl ma]$ if and only if for each γ -closed set $H \in X_{tTS}$, the image f(H) is an α_{β} -

closed set in Y_{tTS} . **Definition 2.4.** A ma $f: X_{tTS} \rightarrow Y_{tTS}$ is said to be a(γ, α_{β})- open mapping if and only if

for each γ -open set $H \in X_{tTS}$, the image f(H) is an α_{β} -open set in Y_{tTS} .

Remark 2.1. From the Definitions 3.1, 3.2, 3.3 and 3.4, we can conclude that every (γ, α_{β}) - closed (open)ma is a(γ, α_{β})- generalized closed (open) ma. But the converse need not be true.

The above Remark 3.1. follows from the example 3.1.

Example 2.1. Let $X_{tTS} = \{a, b, c\}, \tau = \{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}, Y_{tTS} = \{a, b, c\} \text{ and } \sigma = \{\varphi, Y_{tTS}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}.$

The operations γ , β on τ and σ are defined as $A^{\gamma} = \begin{cases} cl(A) \text{ if } b \in A \\ A \cup \{c\} \text{ if } b \notin A \end{cases}$ for every $A \in \tau$, then $\tau_{\alpha_{\gamma}} =$

 $\begin{cases} \varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\} \} \text{and} B^{\beta} = \begin{cases} B \ \cup \{a\} if B = \{a\}, \{b\} or \{c\}_{\text{forevery}} \\ B \ otherwise \end{cases}$ then $\sigma_{\alpha_{\beta}} = \{\varphi, Y_{tTS}, \{a, c\}, \{b, c\}\}. \end{cases}$

The mapping f is defined as f(a) = b, f(b) = c and f(c) = a. Then the image of every γ -closed(open set) is an α_{β} -generalized closed (open) set under the mapping f. Hence f is an (γ, α_{β}) -generalized closed (open) mapping. But f is not a (γ, α_{β}) -open mapping, since $\{a\}$ is a γ -open set in X_{TS} , but $f(\{a\}) = \{b\}$ is not an α_{β} -open set in Y_{TS} . Similarly, f is not a (γ, α_{β}) - closed mapping, since $\{b\}$ is a γ -closed set in X_{TS} , but $f(\{b\}) = \{c\}$ is not an α_{β} - closed set in Y_{TS} .

Theorem 2.1. A surjective mapping $f: X_{tTS} \to Y_{tTS}$ is a(γ, α_{β})-generalized closed mapping if and only if for each subset B of Y_{tTS} and each γ -open set U of X_{tTS} containing $f^{-1}(B)$, there exists an α_{β} -generalized open set V of Y_{tTS} such that B \subseteq V and $f^{-1}(V) \subseteq U$.

Proof: Necessary Part: Suppose that f is a (γ, α_{β}) -generalized closed mapping. Let B be a subset of Y_{tTS} and U is a γ -open set of X_{tTS} containing $f^{-1}(B)$. Put V = $Y_{tTS} - f(X_{tTS} - U)$. Then V is an α_{β} -generalized open set in Y_{TS} , B \subseteq V and $f^{-1}(V) \subseteq U$.

Sufficient Part: Let F be a γ -closed set of X_{tTS} . Put B = $Y_{tTS} - f(F)$, then $f^{-1}(B) \subseteq X_{tTS} - F$ and $X_{tTS} - F$ is a γ -open set in X_{tTS} . There exists an α_{β} -generalized open set V of Y_{tTS} such that $B = Y_{tTS} - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X_{tTS} - F$. Therefore, $f(F) = Y_{tTS} - V$ and hence f(F) is an α_{β} -generalized closed set in Y_{tTS} . This proves that f is a (γ, α_{β}) -generalized closed mapping.

Remark 2.2. Necessity of Theorem 2.1. is proved without assuming that f is surjective. Therefore, we can obtain the following Corollary.

Corollary 2.1. If $f: X_{tTS} \to Y_{tTS}$ is a (γ, α_{β}) -generalized closed mapping, then for any β closed set F of Y_{tTS} and for any γ -open set U of X_{tTS} containing $f^{-1}(F)$, there exists an α_{β} open set V of Y_{tTS} such that $F \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: By Necessity of Theorem 3.1, there exists $an\alpha_{\beta}$ -generalized *open setW* of Y_{tTS} such that $F \subseteq W$ and $f^{-1}(W) \subseteq U$. Since F is $a\beta$ -closed set, By Definition of the α_{β} -generalized closed set, we have $F \subseteq \sigma_{\alpha_{\beta}}$ -int(W).Put $V = \sigma_{\alpha_{\beta}}$ -int(W), then $V \in \sigma_{\alpha_{\beta}}$, $F \subseteq V$ and $f^{-1}(V) \subseteq U$.

Definition 2.4. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be an (α_{γ}, β) -generalized continuous mapping [denoted as (α_{γ}, β) -ge con ma] if and only if for each β - closed set $B \in Y_{tTS}$, the inverse image $f^{-1}(B)$ is an α_{γ} - generalized closed set in X_{tTS} .

Theorem 2.2. Let $f: X_{tTS} \rightarrow Y_{tTS}$ be a bijective mapping. Then the following statements are equivalent:

(i) *f* is a(γ , α_{β})-generalized open mapping;

(ii) *f* is a (γ , α_{β})-generalized closed mapping;

(iii) f^{-1} is an (α_{β}, γ)-generalized continuous mapping.

Proof: (i) \Rightarrow (ii)The proof follows from the Definitions 2.1, 2.2.

(ii) \Rightarrow (iii) Let *F* be a γ -open set in X_{tTS} and let *B* be an α_{β} -closed set in Y_{tTS} such that $B \subseteq f(F)$. This implies that $f^{-1}(B) \subseteq F$. Then by(ii) and corollary 2.1, there exists an α_{β} -open set *V* of Y_{tTS} such that $B \subseteq V$ and $f^{-1}(V) \subseteq F$. Therefore $B \subseteq \tau_{\alpha_{\beta}}$ -int(*V*) and $V \subseteq f(F)$ and hence $B \subseteq \tau_{\alpha_{\beta}}$ -int(*f*(*F*)). Thus(f^{-1})⁻¹(*F*) = *f*(*F*) is an α_{β} - generalized open set in Y_{tTS} . Then by definition 2.4, f^{-1} is an(α_{β}, γ)-generalized continuous mapping.

(iii) \Rightarrow (i) Let *D* be a γ -open set in X_{tTS} . Then $X_{tTS} - D$ is a γ -closed set in X_{TS} . Since f^{-1} is an (α_{β}, γ) -generalized continuous mapping, $(f^{-1})^{-1}(X_{tTS} - D)$ is an α_{β} -generalized

closed set in Y_{TS} . But $(f^{-1})^{-1}(X_{tTS} - D) = f(X_{tTS} - D) = Y_{tTS} - f(D)$. Thus f(D) is an α_{β} -generalized open set in Y_{tTS} . This proves that f is a (γ, α_{β}) -open mapping. Hence the proof.

Definition 2.6. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be an (α_{γ}, β) - homeomorphism, if f is bijective, (α_{γ}, β) - continuous mapping and f^{-1} is an (α_{β}, γ) - continuous mapping.

Remark 2.2. From Theorem 4.3[2], every bijective, (α_{γ}, β) - continuous mapping and (γ, α_{β}) -closed mapping is an (α_{γ}, β) - homeomorphism.

Theorem 2.3. Let $f: X_{tTS} \to Y_{tTS}$ be an (α_{γ}, β) -homeomorphism. If X_{tTS} is a γ - $T_{\frac{1}{2}}$ space, then Y_{tTS} is an α_{β} - $T_{\frac{1}{2}}$ space.

Proof: Let $\{y\}$ be a singleton set of Y_{tTS} . Then there exists a point x of X_{tTS} such that y=f(x). It follows from the assumption and Proposition 4.10(i)[8] that $\{x\}$ is γ -open or γ -closed. By Theorem 2.1, we have $\{y\}$ is an α_{β} -open set or an α_{β} -closed set. Then by Theorem 2.2, Y_{tTS} is an α_{β} - $T_{\frac{1}{2}}$ space.

Definition 3.7.A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be $\operatorname{an}(\alpha_{\gamma}, \beta)$ -generalized-homeomorphism if f is bijective, (α_{γ}, β) - generalized continuous ma and f^{-1} is an (α_{β}, γ) -continuous ma.

Remark 3.3. From the Theorem 2.2, Every bijective, (α_{γ}, β) -generalized continuous and (γ, α_{β}) -generalized closed mapping is an (α_{γ}, β) -generalized homeomorphism.

Remark3.4. It is evident that (α_{γ}, β) - homemorphismmapping imply (α_{γ}, β) -generalized homemorphism mapping. But the converse is not true. It is evident from the following example.

Let $X_{tTS} = \{a, b, c\}$, $\tau = \{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}, Y_{tTS} = \{a, b, c\}$ and $\sigma = \{\varphi, Y_{tTS}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}.$

The operations γ , β on τ and σ are defined as $A^{\gamma} = \begin{cases} cl(A) & \text{if } b \in A \\ A \cup \{c\} & \text{if } b \notin A \end{cases}$ for every $A \in \tau$,

then $\tau_{\alpha_{\nu}} =$

 $\{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\} \text{ and } B^{\beta} = \begin{cases} B \cup \{a\} \text{ if } B = \{a\}, \{b\} \text{ or } \{c\}_{\text{for every } B \in \sigma, \\ B \text{ otherwise} \end{cases}$ then $\sigma_{\alpha_{B}} = \{\varphi, Y_{tTS}, \{a, c\}, \{b, c\}\}.$

The mapping f is defined as f(a) = b, f(b) = c and f(c) = a. Here f is an (γ, α_{β}) generalized homeomorphism. But $f^{-1}(\{a, b\}) = \{c, a\}$ is not an γ -closed set in X_{tTS} for the α_{β} -closed set $\{a, b\}$ of Y_{tTS} .

Theorem 3.4. A mapping $f: X_{tTS} \to Y_{tTS}$ be a bijective and (α_{γ}, β) -generalized continuous mapping.

Then the following statements are equivalent:

(i) f is an (γ , α_{β})-generalized open mapping.

(ii) f is an (γ , α_{β}) -generalized closed mapping.

(iii) f is an (γ , α_{β})-generalized homeomorphism

Proof. Followsfrom the Theorem3.3, Definition2.5 and Remark2.4.

3. ($\alpha_{\gamma}, \alpha_{\beta}$)-GENERALIZED CLOSED MAPPINGS

Definition 3.1. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized closed mapping [denoted as $(\alpha_{\gamma}, \alpha_{\beta})$ -ge cl ma] if and only if for each α_{γ} -generalized closed set H

 $\in X_{tTS}$, the image f(H) is an α_{β} -generalized closed set (ge cl se) in Y_{tTS} .

Definition 3.2. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized open mapping [denoted as $(\alpha_{\gamma}\alpha_{\beta})$ -ge op ma] if and only if for each α_{γ} -generalized open set $H \in$

 X_{TS} , the image f(H) is an α_{β} -generalized open set (ge op se) in Y_{tTS} .

Definition 3.3. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a $(\alpha_{\gamma}, \alpha_{\beta})$ - closed mapping [($\alpha_{\nu}, \alpha_{\beta}$) -cl ma] if and only if for each α_{ν} -closed set $H \in X_{tTS}$, the image f(H) is an α_{β} closed set in Y_{tTS}

Definition 3.4. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be a $(\alpha_{\gamma}, \alpha_{\beta})$ - open mapping if and only if for each α_{γ} -open set $H \in X_{tTS}$, the image f(H) is an α_{β} -open set in Y_{tTS} .

Remark 3.1. From the Definitions 3.1, 3.2, 3.3 and 3.4, we can conclude that every $(\alpha_{\nu}, \alpha_{\nu})$ α_{β})- closed (open) mapping and (α_{γ} , α_{β}) - generalized closed (open) mapping are independent.

Remark 3.2. From the Definitions 3.1, 3.2, 3.3 and 3.4, we can conclude that every $(\alpha_{\nu}, \alpha_{\nu})$ α_{β})-generalized closed (open) mapping is a (γ, α_{β}) - generalized closed (open) mapping. But the converse need not be true.

The above Remark 3.2. follows from the example 3.1.

3.1. Let $X_{tTS} = \{a, b, c\}$ $, \tau = \{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}, Y_{tTS} =$ Example $\{a, b, c\}$ and $\sigma = \{\varphi, Y_{tTS}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}.$

The operations γ, β on τ and σ are defined as $A^{\gamma} = \begin{cases} cl(A) \text{ if } b \in A \\ A \cup \{c\} \text{ if } b \notin A \end{cases}$ for every $A \in \tau$,

then $\tau_{\alpha_{\nu}} =$

 $\left\{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\right\} \text{ and} B^{\beta} = \left\{\begin{matrix} B & \cup \{a\} ifB = \{a\}, \{b\} or \{c\} \\ B \text{ otherwise} \end{matrix}\right\} \text{ for every } B \in \sigma,$ then $\sigma_{\alpha_R} = \{\varphi, Y_{tTS}, \{a, c\}, \{b, c\}\}.$

The mapping f is defined as f(a) = b, f(b) = c and f(c) = a. Then the image of every γ -generalized closed is an α_{β} -generalized closed set under the mapping f. Hence f is a (γ, α_{β}) - generalized closed mapping. But ^f is not a $((\alpha_{\gamma}, \alpha_{\beta})$ -generalized open mapping, since {a} is a γ -open set in X_{TS} , but $f(\{a\}) = \{b\}$ is not an α_{β} -open set in Y_{TS} . Similarly, f is not a (γ, α_{β}) - closed mapping, since $\{b\}$ is a γ -closed set in X_{TS} , but $f(\{b\}) = \{c\}$ is not an

Theorem 3.1. A surjective mapping $f: X_{tTS} \to Y_{tTS}$ is a $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized closed mapping if and only if for each subset B of Y_{tTS} and each α_{γ} - open set U of X_{tTS} containing f^{-1} (B), there exists an α_{β} -generalized open set V of Y_{tTS} such that B \subseteq V and f^{-1} (V) \subseteq

Proof: Necessary Part: Suppose that f is an $(\alpha_{\nu}, \alpha_{\beta})$ -generalized closed mapping. Let B be a subset of Y_{tTS} and U is an α_{γ} - open set of X_{tTS} containing f^{-1} (B). Put V = $Y_{tTS} - f(X_{tTS} - U)$. Then V is an α_{β} -generalized open set in Y_{TS} , B \subseteq V and f^{-1} (V) \subseteq U.

Sufficient Part: Let F be a α_{v} - generalized closed set of X_{tTS} . Put B = Y_{tTS} - f(F), then $f^{-1}(B) \subseteq X_{tTS}$ - F and X_{tTS} - F is a α_{γ} - generalized open set in X_{tTS} . There exists an α_B -generalized open set V of Y_{tTS} such that $B = Y_{tTS} - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X_{tTS} - F$.

 $[\]alpha_{R}$ -closed set in Y_{TS} .

Therefore, $f(F) = Y_{tTS}$ V and hence f(F) is an α_{β} - generalized *closed set* in Y_{tTS} . This proves that f is a (γ, α_{β}) -generalized closed mapping.

Remark 3.2. Necessity of Theorem 3.1. is proved without assuming that f is surjective. Therefore, we can obtain the following Corollary.

Corollary 3.1. If $f: X_{tTS} \to Y_{tTS}$ is a (γ, α_{β}) -generalized closed mapping, then for any β closed set F of Y_{tTS} and for any α_{γ} -open set U of X_{tTS} containing $f^{-1}(F)$, there exists an α_{β} open set V of Y_{tTS} such that $F \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: By Necessity of Theorem 3.1, there exists $an\alpha_{\beta}$ -generalized *open setW* of Y_{tTS} such that $F \subseteq W$ and $f^{-1}(W) \subseteq U$. Since F is a β - *closed set*, By Definition of the α_{β} - generalized *closed set*, we have $F \subseteq \sigma_{\alpha_{\beta}}$ -int (W). Put $V = \sigma_{\alpha_{\beta}}$ -int (W), then $V \in \sigma_{\alpha_{\beta}}$, $F \subseteq V$ and $f^{-1}(V) \subseteq U$.

Theorem 3.2. If $f: X_{tTS} \to Y_{tTS}$ is a (γ, β) -continuous mapping, $(\alpha_{\gamma}, \alpha_{\beta})$ - closed mapping and *H* is an α_{γ} -generalized closed set in X_{tTS} , then f(H) is an α_{β} - generalized closed set in Y_{tTS} .

Proof: Let V be any β -open set of Y_{tTS} containing f(H). Then $H \subseteq f^{-1}(V)$ and $f^{-1}(V)$ is a γ -open set in X_{tTS} . Since H is α_{γ} -generalized closed set in X_{tTS} , $\tau_{\alpha_{\gamma}}$ - $cl(V) \subseteq f^{-1}(V)$ and hence $f(H) \subseteq f(\tau_{\alpha_{\gamma}}cl(H)) \subseteq V$. Since f is $(\alpha_{\gamma}, \alpha_{\beta})$ -closed mapping and $\tau_{\alpha_{\gamma}}$ - cl(H) is an α_{γ} -closed set in X_{tTS} , this implies that $f(\tau_{\alpha_{\gamma}}cl(H))$ is an α_{β} -closed set in Y_{tTS} and hence $\sigma_{\alpha_{\beta}}cl(f(H)) \subseteq f(\tau_{\alpha_{\gamma}}cl(H)) \subseteq V$. Therefore f(H) is an α_{β} - generalized closed set in Y_{tTS} .

Definition 3.4. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be an $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized continuous mapping [denoted as $(\alpha_{\gamma}, \alpha_{\beta})$ -ge con ma] if and only if for each , α_{β} -generalized *closed setB* $\in Y_{tTS}$, the inverse image $f^{-1}(B)$ is an α_{γ} -generalized *closed set* in X_{tTS} .

Theorem 3.3.Let $f: X_{tTS} \rightarrow Y_{tTS}$ be a bijective mapping. Then the following statements are equivalent:

(i) f is an $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized open mapping;

(ii) f is an ($\alpha_{\gamma}, \alpha_{\beta}$) -generalized closed mapping;

(iii) f^{-1} is an $(\alpha_{\beta}, \alpha_{\gamma})$ -generalized continuous mapping.

Proof: (i) \Rightarrow (ii) The proof follows from the Definitions 3.1, 3.2.

(ii) \Rightarrow (iii) Let F be a α_{γ} - generalized open set in X_{tTS} and let B be an α_{β} closed set in Y_{tTS} such that $B \subseteq f$ (F). This implies that $f^{-1}(B) \subseteq F$. Then by (ii) and corollary 4.1, there exists an α_{β} -open setV of Y_{tTS} such that $B \subseteq V$ and $f^{-1}(V) \subseteq F$. Therefore $B \subseteq \tau_{\alpha_{\beta}}$ -int(V) and $V \subseteq f(F)$ and hence $B \subseteq \tau_{\alpha_{\beta}}$ -int (f(F)). Thus $(f^{-1})^{-1}(F) =$ f(F) is an α_{β} - generalized open set in Y_{tTS} . Then by definition 3.4, f^{-1} is an $(\alpha_{\beta}, \alpha_{\gamma})$ - generalized continuous mapping.

(iii) \Rightarrow (i) Let *D* be a α_{γ} - generalized open set in X_{tTS} . Then $X_{tTS} - D$ is an α_{γ} generalized closed set in X_{TS} . Since f^{-1} is an $(\alpha_{\beta}, \alpha_{\gamma})$ -generalized continuous mapping, $(f^{-1})^{-1} (X_{tTS} - D)$ is an α_{β} -generalized closed set in Y_{TS} . But $(f^{-1})^{-1} (X_{tTS} - D) = f$ $(X_{tTS} - D) = Y_{tTS} - f(D)$. Thus f(D) is an α_{β} -generalized open set in Y_{tTS} . This proves that f is a $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized open mapping. Hence the proof.

Definition 3.6. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be an $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized homeomorphism, if f is bijective, $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized continuous mapping and f^{-1} is an $(\alpha_{\beta}, \alpha_{\gamma})$ - generalized continuous mapping.

Remark 3.4. From Theorem 3.4, every bijective, $(\alpha_{\gamma}, \alpha_{\beta})$) - generalized continuous mapping and $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized closed mapping is an $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized homeomorphism.

Definition 3.7. A mapping $f: X_{tTS} \to Y_{tTS}$ is said to be an $(\alpha_{\gamma}, \alpha_{\beta})$ -homeomorphism if f is bijective, $(\alpha_{\gamma}, \alpha_{\beta})$ -continuous mapping and f^{-1} is an $(\alpha_{\beta}, \alpha_{\gamma})$ -continuous mapping.

Remark 3.5. Every $(\alpha_{\gamma}, \alpha_{\beta})$ - homeomorphism is (α_{γ}, β) -homeomorphism. But the converse need not be true.

Remark 3.6. From the It is evident that $(\alpha_{\gamma}, \alpha_{\beta})$ -homemorphism mapping and $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized homemorphism mapping are independent.

Remark 3.7. It is evident that $(\alpha_{\gamma}, \alpha_{\beta})$ - generalized homemorphism mapping imply (α_{γ}, β) -generalized homemorphism mapping but the converse need not be true.

Let $X_{tTS} = \{a, b, c\}$, $\tau = \{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}, Y_{tTS} = \{a, b, c\}$ and $\sigma = \{\varphi, Y_{tTS}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}.$

The operations γ , β on τ and σ are defined as $A^{\gamma} = \begin{cases} cl(A) & \text{if } b \in A \\ A \cup \{c\} & \text{if } b \notin A \end{cases}$ for every $A \in \tau$, then $\tau_{\alpha_{\nu}} =$

 $\{\varphi, X_{tTS}, \{a\}, \{c\}, \{a, c\}, \{a, b\} \} \text{ and} B^{\beta} = \begin{cases} B \cup \{a\} \ if B = \{a\}, \{b\} or \{c\}_{\text{for every } B \in \sigma, \\ B & otherwise \end{cases}$ then $\sigma_{\alpha_{\beta}} = \{\varphi, Y_{tTS}, \{a, c\}, \{b, c\} \}.$

The mapping f is defined as f(a) = b, f(b) = c and f(c) = a. Here f is an (γ, α_{β}) generalized homeomorphism. But $f^{-1}(\{a, b\}) = \{c, a\}$ is not an γ -closed set in X_{tTS} for the α_{β} -closed set $\{a, b\}$ of Y_{tTS} .

Theorem 3.4. A mapping $f: X_{tTS} \to Y_{tTS}$ be a bijective and $(\alpha_{\gamma}, \alpha_{\beta})$ -generalized continuous mapping.

Then the following statements are equivalent:
(i) *f* is an (α_γ, α_β) -generalized open mapping.
(ii) *f* is an (α_γ, α_β) -generalized closed mapping.
(iii) *f* is an (α_γ, α_β) -generalized homeomorphism
Proof. Follows from the Theorem 3.3, Definition 3.6 and Remark 3.4.

Conclusion 4: In this paper the (γ, α_{β}) -generalized homeomorphism $((\alpha_{\gamma}, \alpha_{\beta}) -$ homeomorphism) introduced and characterize it using (γ, α_{β}) - generalized closed (open) mappings $((\alpha_{\gamma}, \alpha_{\beta})$ -generalized closed (open) mappings). Final some of its properties are studied and the proposed mappings is compared with already existing mappings.

References

- N. Kalaivani, G.SaiSundara Krishnan, Operation Approaches on α-γ-open sets in Topological Spaces, Int. J. of Mathematical Analysis, (2013), No.10. pp.491-498.
- [2] N. Kalaivani, D. Saravanakumar and G. SaiSundara Krishnan, On (α -γ, β)- continuous mappings andα -(γ, β)- continuous mappings in topological spaces, Int. J. Mathematical Sciences and Applications, Vol. 1, pp. 341-347, Jan 2012.
- [3] N. Kalaivani, D. SaravanakumarandG. SaiSundara Krishnan, On α -(γ , γ')- open sets and α -(γ , γ')-Ti spaces, ICAMM-2014, PSG College of Technology, Coimbatore, Jan 2014.
- [4] Kasahara, S 1973, 'Characterizations of compactness and countable compactness', Proceedingsof the Japan Academy Series A, Mathematical Sciences, vol. 49, pp. 523-524.
- [5] Kasahara, S 1979, 'Operation compact spaces', Mathematica Japonica, vol. 24, pp. 97-105.
- [6] Maki, H &Noiri, T 2001, 'Bioperations and some separation axioms', Scientiae MathematicaeJaponicaevol.4, pp. 165-180.
- [7] O.Njastad, On some Classes of nearly open sets, Pacific I. Math 15, (1965) 961- 970.
- [8] Ogata, H 1991a, 'Operation on topological spaces and associated topology', Mathematica Japonica, vol. 36, pp.175-184.
- [9] Ogata, H 1991c, 'Remarks on operation-compact spaces', Memoirs of the faculty of Science Kochi University Series A Mathematics, vol. 15, pp. 51-63.
- [10] G. Sai Sundar Krishnan and K. Balachandran, On a Class of ^γ -preopen sets in a Topological space, East Asian Journal, 22 (2006), No 2, pp 131-149.
- [11] C. Amuthadevi, D. S. Vijayan, Varatharajan Ramachandran, "Development of air quality monitoring (AQM) models using different machine learning approaches", Journal of Ambient Intelligence and Humanized Computing, https://doi.org/10.1007/s12652-020-02724-2