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Abstract. The Laplace Homotopy Analysis Method Via Modified Riemann-Liouville
Integral has been explored from a new perspective. The important items are assimilated,
and the result is proven using well-defined evidence. A combination of the homotopy
analysis approach and the suggested integral transform is used to find fractional
differential equations
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1 Introduction

Many researchers have recently become interested in the theoretical studies of various
integral transforms as a methodical mathematical strategy for converting fractional differential
equations into simple algebraic formulas. Chowdhury et al (2007) introduced MHPM to
handle the Lorenz system in the literature. The DTM was used by Mossa et al (2008) to solve
a non-linear differential equation.

Jumarie (2009) presented a fractional-order Laplace’s transform definition for functions
that are fractionally differentiable but not differentiable. Alomari et al (2011) modified the
DTM to achieve continuous and analytic solutions for each interval when solving non-linear
fractional differential equations. The Laplace transform was first introduced to the field by
Liang et al (2015).Medina et al (2017) an investigated the effect of the fractional Laplace
Transform incorporated in the RiemannLiouville Fractional Derivative. For various fractional
linear differential equations with constant coefficients, Silva et al (2018) studied the pleasant
fractional derivative. The integral trans-form is used in conjunction with the Homotopy
Analysis Method to solve nonlinear differential equations (HAM). Hariharan (2017) proposed
the homotopy analysis technique (HAM) for solving a few partial differential equations in the
literature. Mohammed et al (2017) used modified Laplace Homotopy Analysis to solve a
nonlinear system of fractional partial differential equations.

The Fractional Laplace Transform through Modified Riemann-Liouville derivative
[Jumarie (2009)] is the subject of this work. It is coupled with HAM, which was proposed by
Liao (1992), to create a novel hybrid approach called Laplace Homotopy Analysis

through Modified RiemannnLiouville Integral.Nonlinear fractional differential equations
can be solved using this hybrid approach.
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Edward Lorenz was the first to study the Lorenz system, which is a set of ordinary
differential equations. For specific parameter values and starting circumstances, it is renowned
for having chaotic solutions. The Lorenz attractor, in particular, is a collection of chaotic
Lorenz system solutions.

This research motivates to study the Fractional Laplace transform via Modified Riemann-
Liouville [Jumarie (2009)] and it is combined with HAM introduced by Liao (1992), which
provides the new hybrid technique Laplace Homotopy Analysis method via Modified
Riemannn-Liouville Integral.

Non-chaotic behaviour is obtained in this work by employing modal series solutions with
Rayleigh number R parameter values below the critical value. Throughout this study, we
assume o = 10, b=-8/3, and change the Rayleigh number R to get different dynamical
behaviours and assess the recommended approach. Pandemonium is well known to occur
around the critical parameter value R = 24.74. [10]

2 Preliminaries

This part contains the essential definitions for the study, as well as other fundamental
results that can be found in Jumarie (2009).

Definition 2.1: The Mittag—Leffler funeection which is a generalization of exponential
function is defined as

[oe] Zn
E@=) o (M)
Where (€ C, R ({) >0.
Definition 2.2: The continuous function g:R — R, t — g () has a fractional derivative
of order k(. For any positive integer k and for any ¢, 0 < {< 1, the Taylor’s series of
Fractional order can be expressed as

t+h il CBe),0<¢<1
gt+h and ®),0<{<
k=0
Where T'(1+{ k) = (Ck)!.
Definition 2.3: (Modified Riemann Liouville derivative) Let g:R — R, denote a
continuous (but not necessarily differentiable) function.
i. Assume that ¢(y) is a constant K. Then its fractional derivative of order { is
Dy =KI'(1-Qy%7<0, 2)
=0,{>0
ii. When ¢(y) is not a constant, then we will set

q(») = 4q(0) + (¢(») — q(0)),(3)
in which, for negative ¢, one has
D§(q(y) — q(0)) = DSq() = Dy (¢¢~ V().
4) Whenn< {<n+1, we will set
49 = @“PeN”n> 1. (5)
In order to find the fractional derivative of compound
functions, equation (6) is used.



dg=T(1+dq,0<{<1. (6)
Definition 2.4: If0 < { < 1,then

Dyy" =T+ DI ' +1-0y"%n>0, (7)
Or,if( =n+6,n€N,then
DIy =T+ DI 'n+1-n-0)y" "% 0<6<1, ()

3 Fractional Laplace Transform Via Modified Riemann-Liouville Integral

Definition 3.1: Let k(y) denote a function that vanishes for the negative value of y. Its
Laplace’s transformationL¢k(y) of order{defined by the following expression, where it is
finite:

Le[k()] = K, (s) = f E [~y ko)), (9)
0
= lim " E¢[-s*y Tk (dy)° (10)

where s € C,and E; is the Mittag-Leffler functionFu®/(k{)!.
Theorem 3.1: if L;[k(y)] = K;(s) then

Scaling property

OLelk(@)s = LkO)ls an
Shifting Property

(i0) Le[k (v — b)] = E¢(=s*b*) L [k (W], (12)

Frequency Shifting Property
(D)L [Eg (= yOk(]s = Le[k()]s4.(13)

Derivative Property

(0)Le [~y k)]s = D{Le [k()](14)
Laplace transform of fractional derivative

W)L [kE (3] = 5¢Le[k(3)] = T(1 + g (0). (15)
Theorem 3.2: Let the convolution of the two functions k(y) and I(y) of order {is given by

k() *10))g = f; k(v = WIE) (AW, (16)
then one has the equality
Le[(k () * L())¢] = Le kDL L] )
Coming up next are the main ends for the Laplace fractional change of standard functions,
as displayed in Table 1:

Laplace Fractional transform of standard functions
SN | &) Le[gO)] = G (s)

1 1 1
S_EF(( +1)
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8 E;[-i%a®y®] 1
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9 sin(a® "y 9
mr(f +1)
10 cos(acyc)
(s% + a?)$ re+1
11 sznh(a ) a r 1
EETOUER
12 cosh(acyg) s¢
mr(( +1)
13 EJa"y Isin[b"y"] b¢
(sf — a()Z{ + p2¢ I
+1)
14 EJa"y ]cos[b%y"] (s —a)
T—ayZ s b ¢
+1)
15 EJa"y Isinh[b*y*] b®
(sf — af)zz — b2¢ F((
+1)
16 Eé{a(yc]cos[b(yC] (s —a)’
(sf — a()Z{ — b2¢ F((
+1)

The Laplace transform will be utilized related to the

fractional homotopy analysis way to deal with tackle both linear and nonlinear differential
conditions (Fractional Homotopy Analysis method).

4 Fractional laplace homotopy analysis

METHOD (FLHAM)



Consider the fractional time nonlinear differential condition with the accompanying
beginning condition:

D%v(y,t) + R(y,0) + Nv(y,t) = q(v,0),v(y,0) = k(¥), (18)

¢
where D¢is the fractional differential operator DS = af—zR is the differential linear

operator, N is the differential non-linear operator and q(y; t) is source term.
To solve the non-linear partial differential condition,
Embrace the accompanying organized method:
Step 1: Apply fractional laplace transform, the equation (18),

[DSv(y, O] + Le[Rv(y, ©)] + Le [Nv(y, )] = Le[q (v, )] (19)
Step 2: Applying the derivative of fractional Laplace transform,
The condition (19), can communicate as

Le[v(, 0] = 2T + Dv(,0) + 3 L [Rv(y, O] + 7 Le [Nv(y, )] — % Le[q(, )] = 0.
(20)
Step 3: The nth order deformation equation
Vn(V,t) = XnVno1 (0, 1) + AL Ry (v 1 (0, £))], 21
Where,
1 1
Ry-1[vn-1(v, O] = [L¢[vn-1 0. O] = ZT(C + Dv (1, 0) + 7 Le[Rvp—1 (v, 0]

1 1
+ 7 LeNvna (0, 0] = Z Lela D)),

Where,
{O n<l1
“ln>1.
5. Application
Consider the well-known Lorenz system in this study.
Déx = o(y(®) - x(1)) (22)
Dy = Rx(t) —y(t) —x()z(t) ~ (23)
DSz = x(t)y(t) + bz(t) (24)

where convective velocity, temperature differential between descending and ascending
flows, and mean convective heat flow are proportional to x, y, and z, and o, b, and the so
called bifurcation parameter R are real constants. With the initial condition x(0) = c1; y(0) =
c2; z(0) =c3.

d’x

T a(y(®) —x(@®) (25)

dsy

=7 = Re(t) = y(®©) —x(®)z(®) (26)
d_tf = x()y(t) + bz(t) @7)

with the initial condition x(0) = ¢;,y(0) = ¢5,2(0) = ¢;5. Apply Ly on both sides of the
equation (25)



df
L [d—t’;] = Le[o(y(®) - x®)] (28)

sSLe[x(0)] = T(¢ + Dx(0) = o[L;(y(©) —x(®))] (29)
s Le[x ()] = T + 1Dx(0) = 0[L¢(ym-1(8)) = L (xm-1(®))] (30)
The nth order deformation equation for x(t) is defined as

1 1
Rn[xn—l(t)] = [L([xn—l(t)] - S_{F(( + 1)x(0)(1 - )(n) - S_EOL( [Yn—l(t)]
1
+ 2oLl ®] BD)

1
Rn[)’n—l(t)] = [L{ [yn—l(t)] - S_{F(( + Dy(0)(1 — xn)

1 1
— S_ERL( [(xn—1(t)] + S_ZL( [Yn—l(t)]

1 m—1
F—L [Z xi(t)zm_l_i(t)ﬂ (32)
i=0

m-1
1 1
Rulz1(®)] = [Lg[01 (O] = TG + D201 = ) = 7 L Y. %O i(0)]

1
— = bLelza1(0)] (33)
On both sides of the equation (31),(32) , and (33), use the
inverse fractional Laplace transform

Xn(t) = XnXn-1(t) + hL_l[Rn(xn—l(t)] (34)
yn(t) = Xnyn—l(t) + hL_l[Rn(yn—l(t)] (35)
zp(t) = ann—l(t) + hL_l[Rn(Zn—l(t)] (36)
On solving the (34) (35) (36) equations for n=1, 2, 3, 4,.......
4
x1(t) = ho(—c, + Cl)ﬁ
t¢
y1(6) = —h(Re; — ¢, — 5103)m
¢
7, (t) = —h(cic; + sz)m

t¢ t%

3 3 2 o v p220
x,(t) = [ho(—c, + Cl)—F({ D + h%0(Rcy — ¢; — ¢1€3) CT D + h®c?(—c,
t2¢
ta)mg 1y
t$ 5 t¢ i
y2(t) = [A(Rey — ¢ — C153)m+ 2 (Rey = caCics) r@¢+1) "
, 2 , t2¢
—Rh*0(—c, + Cl)m—+n— h*(Rcy — ¢y — ¢1C3) 2r2( + 1)
£28 t2¢

— h2¢;(cq¢5 + beg) + h%20(—c, + ¢1)cs T2

2r2(¢+1) @+



Fig. 1: The h-curve for the Lore
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Similarly x3, x4,....... y3,y4,....... and z3,z4,....... can be assessed, and a sequence of
solutions can be found as follows:
N
x©=) %® G
n=0
N
yO=Yn® @8
n=0
N
20)= ) #m® (39
n=0
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nz system of equation x(t) (1a), y(t) (1b) and z(t) (1c) with

the convergence region for the auxiliary parameter (h € [-1; O]).
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Fig. 2: The Non chaotic Solution curves for Lorenz system of equation when ¢

=1,0.98,0.96,0.94 respectively (2a), (2b), (2c), (2d).
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Fig. 3: The Chaotic Solution curves for Lorenz system of equation when ¢
=1,0.98,0.96,0.94 respectively (3a), (3b), (3¢),(3d)

To decide the values of h we plot the h—curve for the equation (37),(38) and (39) in
various figures from 11 — 13.From these figures, it is noted that the convergence region of h
lies between the range h € [-1, 1].



The solution curve of the Lorenz system are displayed in figure 7 — 8 for the different
values of . (i.e,{’ = 0.94,0.96,0.98,1) and for a comparison with A.K.Alomari et al [1].we set &
= 10, b = —8/3 we take initial conditions x(0) = —15.8, y(0) = —17.48, z(0) = 35.64 as in [1].
Which demonstrates the excellence of the proposed Lorenz system.

TABLE I: Numerical results of Non Chaotic Solution for Lorenz system of equation
when x(#),y(f),z(¢) for the fractional parameter {'= 1 that are compared among the two methods

LHAM, HAM.
X(t) y(® z(t)
t LHAM | HAM | LHAM | HAM LHAM | HAM
0 10 10 0 0 10 10
0.1 | 12112 | 12.805 | 7.67927 | 7.3261 14.8467 | 15.2658

0.2 38.4705 | 41.1666 | 2.53492 1.16086 34.2577 | 35.8881
0.3 88.1468 | 94.1153 | -14.7983 | -17.8402 67.7334 | 71.3427
0.4 160.717 | 171.207 | -44.0691 | -49.415 115.031 | 121.374
0.5 255.899 | 272.143 | -85.1156 | -93.3944 175.984 | 185.808
0.6 373.479 | 396.7 -137.819 | -149.653 250.469 | 264.512
0.7 513.288 | 544.7 -202.084 | -218.094 338.385 | 357.381
0.8 675.182 | 715.992 | -277.834 | -298.633 439.647 | 464.326
0.9 859.042 | 910.449 | -365.003 | -391.203 554.184 | 585.271
1 1064.76 | 1127.96 | -463.533 | -495.743 681.932 | -1531.32

TABLE II: Numerical results of Non Chaotic Solution for Lorenz system of equation
when x(),y(f),z(¢) for the fractional parameter {'= 0.98 that are compared among the two
methods LHAM, HAM.

x(0) y(©) 2(0)

t LHAM HAM LHAM HAM LHAM HAM

0 -15.8 -15.8 -17.48 -17.48 35.64 35.64
0.1 | -6.1754 -6.1754 17.7329 17.7329 36.2734 36.2734
0.2 | 26.0584 26.0584 81.5131 81.5131 1.94479 1.94479
0.3 | 80.9014 80.9014 173.861 173.861 -67.3458 -67.3458
0.4 158.354 158.354 294.776 294.776 -171.598 -171.598
0.5 | 258415 258.415 444.258 444.258 -310.813 -310.813
0.6 @ 381.086 381.086 622.308 622.308 -484.99 -484.99
0.7 | 526.365 526.365 828.925 828.925 -694.128 -694.128
0.8 | 694.254 694.254 1064.11 1064.11 -938.229 -938.229
0.9 | 884.753 884.753 1327.86 1327.86 -1217.29 -1217.29
1 1097.86 1097.86 1620.18 1620.18 -1531.32 -1531.32




TABLE III: Numerical results of Non Chaotic Solution for Lorenz system of equation
when x(#),y(7),z(f) for the fractional parameter { = 0.96 that are compared among the two
methods LHAM, HAM.

x() y(® z(t)
t LHAM HAM |[LHAM HAM LHAM HAM
0 |10 10 0 0 10 10

0.1 |15.295 14.0435 [7.94651 [7.17223 |15.295 |16.2133
0.2 [35.5032 45.7982 [2.40102 |-0.529008 [35.5032 [38.9782
0.3 169.6115 1103.203 |-15.3279 |-21.71 69.6115 [77.1807
04 |117.143 185341 |-44.7415 |-55.8294 |117.143 |130.293
0.5 177777 291.606 |-85.5242 |-102.543 |177.777 |197.961
0.6 [251.276 421.549 |-137.446 |-161.598 [251.276 [279.92
0.7 [337.448 574.81 |-200.329 |-232.799 [337.448 |375.958
0.8 |436.136 (751.095 |-274.023 |-315.982 436.136 485.899
0.9 [547.203 950.15 |-358.406 |-411.012 |547.203 |609.594
1 670.532 1171.76 |-453.369 |-517.77  [670.532 |-1531.32

TABLE IV: Numerical results of Non Chaotic Solution for Lorenz system of equation
when x(7),y(f),z(¢) for the fractional parameter {= 0.94 that are compared among the two
methods LHAM, HAM.

X(t) y(® z(H
t LHAM | HAM | LHAM HAM LHAM | HAM
0 10 10 0 0 10 10

0.1 12.9953 = 15.4907 | 8.20776 6.93477 15.7878 = 17.2969
0.2 | 41.7532 | 50.9384 | 2.22729 -2.45825 36.8311 | 42.3856
0.3 | 933793 | 113.064 | -15.9186 -25.9604 71.5903 @ 83.4944
04 | 166.644 | 200.452 | -45.4889 -62.7352 119.363 = 139.808
0.5 | 260.751 | 312.181 | -86.0223 -112.258 179.689 = 210.79

0.6 | 375.117 | 447.573 | -137.188 -174.149 252.223 | 296.04

0.7 | 509.28 | 606.093 | -198.727 -248.114 336.697 | 395.242
0.8 | 662.863 | 787.303 | -270.433 -333.912 432.885 | 508.138
0.9 | 835.547 | 990.831 | -352.129 -431.342 540.6 634.504
1 1027.06 = 1216.35 | -443.664 -540.23 659.676 = 774.151

TABLE V: Numerical results of Chaotic Solution for Lorenz system of equation when
x(1),y(1),z(¢) for the fractional parameter {'= 1 that are compared among the two methods

LHAM, HAM.
x(1 y() 2()
t LHAM | HAM LHAM | HAM LHAM HAM
0 -15.8 -15.8 -17.48 -17.48 35.64 35.64

0.1 | -9.7304 | -9.7304 | 10.6004 | 10.6004 | 41.8903 41.8903
0.2 | 11.8384 | 11.8384 67.2031 | 67.2031 | 24.4124 24.4124
0.3 | 48.9064 | 48.9064 | 152.328 | 152.328 | -16.7937 | -16.7937




04 | 101.474 | 101.474 | 265.976 | 265.976 | -81.728 -81.728
0.5 | 169.54 | 169.54  408.145 | 408.145 | -170.391 | -170.391
0.6 | 253.106 | 253.106 578.838 | 578.838 | -282.781 | -282.781
0.7 | 352.17 | 352.17 | 778.052 | 778.052 | -418.9 -418.9
0.8 | 466.734 | 466.734 | 1005.79 | 1005.79 | -578.747 | -578.747
0.9 | 596.798 | 596.798 @ 1262.05 | 1262.05 | -762.323 | -762.323
1 742.36 | 742.36 | 1546.83 | 1546.83 | -969.626 | 774.151

TABLE VI: Numerical results of Chaotic Solution for Lorenz system of equation when
x(2),y(8),z(t) for the fractional parameter { = 0.98 that are compared among the two methods
LHAM, HAM.

x(t) y(® z(t)
t LHAM | HAM | LHAM HAM LHAM | HAM
0 10 10 0 0 10 10
0.1 | 145384 | 15364 | 9.75975 | 9.26264 17.2731  17.8248

0.2 | 47.9105 | 51.1228 | 1.51521 -0.418838 43.6977 @ 45.8443
0.3 109.045 | 116.156 | -23.8592 | -28.1408 88.6316 | 93.3838

0.4 197.445 | 209.942 | -66.0136 | -73.5382 151.758 | 160.11

05 | 312775 | 332.13 | -124.722 | -136.375 232.861 | 245.794
0.6 | 454.786 | 482.454 | -199.819 | -216.477 331.776 | 350.265
0.7 | 623.275 | 660.702 | -291.171 -313.706 448.373 | 473.384
0.8 | 818.074 | 866.698 | -398.671 -427.947 582.539 | 615.033
0.9 1039.04 | 1100.29 | -522.226 | -559.103 734.181 | 775.112
1 1286.04 | 1361.34 | -661.754 | -707.091 903.216 | 615.033

TABLE VII: Numerical results of Chaotic Solution for Lorenz system of equation when
x(1),y(1),z(9) for the fractional parameter = 0.96 that are compared among the two methods

LHAM, HAM.
x(t) y(® z(t)

t LHAM | HAM LHAM HAM LHAM | HAM

0 10 10 0 0 10 10

0.1 | 15.1429 | 16.9522 10.0782 8.98843 17.9128 | 19.1219
0.2 | 49.9584 | 56.8052 1.24451 -2.87955 | 45.4098 | 49.9851
0.3 | 112.265 | 127.178 -24.6996 -33.6825 | 91.1899 | 101.156
0.4 | 201.084 | 226.994 -67.0605 -82.6669 | 154.631 | 171.946
0.5 | 315.77 | 355.537 -125.398 -149.352 | 235.317 | 261.892
0.6 | 455.84 | 512.276 -199.392 -233.386 | 332.934 | 370.647
0.7 | 620.913 | 696.787 -288.79 -334.492 | 447.231 | 497.934
0.8 | 810.67 | 908.718 -393.387 -452.445 | 578.002 | 643.523
0.9 | 1024.84 | 1147.77 -513.008 -587.053, | 725.068 | 807.216
1 1263.2 | 1413.69 -647.503 -738.149 | 888.276 | 615.033




TABLE VIII: Numerical results of Chaotic Solution for Lorenz system of equation when
x(1),y(1),z(9) for the fractional parameter ¢ = 0.94 that are compared among the two methods

LHAM, HAM.
x(0) y(© 2()
t LHAM | HAM LHAM HAM LHAM | HAM
0 10 10 0 0 10 10

0.1 | 15.8212 | 18.7946 | 10.3855 | 8.59375 18.6138 | 20.6007
0.2 | 52.155 | 63.099 | 0915056 -5.67976 | 47.2329 | 54.5463
0.3 | 115.672 | 139.126 | -25.6283 | -39.762 93.8828 | 109.556
0.4 | 204.93 | 245.212 | -68.2145  -92.4884 | 157.65 | 184.568
0.5 | 318.993 | 380.271 | -126.201 | -163.127 | 237.93 | 278.88
0.6 | 457.17 | 5435 -199.125 | -251.147 | 334.276 | 391.967
0.7 | 618.916 | 952.054 | -286.626 = -356.137 | 446.333 | 523.417
0.8 | 803.786 | 908.718 | -388.414 | -477.76 573.808 | 672.889
09 | 10114 | 119642 | -504.241 | -615.733 | 716.451 | 840.091
1 1241.43 | 1466.98 | -633.898 | -769.812 | 874.049 | 672.889

The observation from Tables I, II, III, IV, V, VI, VII, VIII show that the suggested
approach has a high level of agreement with HAM this study shows that LHAM is a good
mathematical tool for tackling fractional Laplace Homotopy Analysis Method problems. The
above tables clearly shows the changes in the Non Chaotic and chaotic situations in Lorenz
system of equation with the fractional parameter {'= 1, 0.94, 0.96, 0.98.

6. Conclusion

In this present work continuous solution for fractional

Lorenz system of equation is obtained by Fractional Laplace Homotopy Analysis Method
Via Modified Riemann-Liouville Integral. This solutions are exactly coincide with the
solution of A.K.Alomari et al [1].
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