
Bootstrapping trust in software defined networks

Nicolae Paladi1,∗, Christian Gerhmann2

1RISE SICS, Sweden
2Lund University, Sweden

Abstract

Software-Defined Networking (SDN) is a novel architectural model for cloud network infrastructure, improving
resource utilization, scalability and administration. SDN deployments increasingly rely on virtual switches
executing on commodity operating systems with large code bases, which are prime targets for adversaries
attacking the network infrastructure. We describe and implement TruSDN, a framework for bootstrapping
trust in SDN infrastructure using Intel Software Guard Extensions (SGX), allowing to securely deploy SDN
components and protect communication between network endpoints. We introduce ephemeral flow-specific pre-
shared keys and propose a novel defense against cuckoo attacks on SGX enclaves. TruSDN is secure under a
powerful adversary model, with a minor performance overhead.

1. Introduction

Renewed and widespread interest in virtualization –
along with proliferation of cloud computing – has spurred
a series of innovations, allowing cloud service providers
to deliver on-demand compute, storage and network
resources for highly dynamic workloads. Consequently,
more hardware and virtual components are added
to already large networks, complicating network
management. To help address this, SDN emerged as
a novel network architecture model. Separation of the
data and control planes is its core principle, allowing
network operators to implement high-level configuration
goals by interacting with a single network controller,
rather than configuring discrete network components.
The controller applies the configuration to the network
edge, i.e. to its global view of the data plane [16].
Data and control plane separation in SDN challenges
network infrastructure security best practices evolved
in the decades since packet-switched digital network
communication gained popularity [14, 20, 26].

In the cloud infrastructure model, SDN allows tenants
to configure complex topologies with rich network
functionality, managed by a network controller. The
availability of a global view of the data plane enables
advanced controller capabilities – from pre-calculating
optimized traffic routing to managing applications
that replace hardware middleboxes. However, these

*Corresponding author. Email: nicolae.paladi@ri.se

capabilities also make the controller a valuable attack
target: once compromised, it yields the adversary
complete control over the network [33]. The global
view itself is security sensitive: an adversary capable
of impersonating network components may distort a
controller’s global view and influence network-wide
routing policies [17].

Virtual switches are another category of security
sensitive components in SDN deployments. They execute
on commodity operating systems (OS) and are often
assigned the same trust level and privileges as hardware
switches – specialized network components with compact
embedded software [34] or application-specific integrated
circuits. Commodity OS are likely to contain security
flaws which can be exploited to compromise virtual
switches. For example, their configuration can be
modified to disobey the protocol, breach network
isolation and reroute traffic to a malicious destination or
compromise other network edge elements through lateral
attacks. Such risks are accentuated by the extensive
control a cloud provider has over the infrastructure of
its tenants.

Security and isolation of tenant infrastructure can
be strengthened by confining select SDN components
to trusted execution environments (TEE) and attesting
their integrity before provisioning security-sensitive data.
TEEs with strong security guarantees can be built using
SGX, a set of recently introduced extensions to the x86
instruction set architecture and related hardware [1, 22].
Earlier work used SGX to protect computation in cloud

1

EAI Endorsed Transactions
on Security and Safety Research Article

Received on 03 November 2017; accepted on 22 November 2017; published on 7 December 2017
Keywords: Integrity, Software Defined Networking, Trust, Virtual Switches
Copyright © 2017 Nicolae Paladi and Christian Gerhmann, licensed to EAI. This is an open access article distributed under
the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which
permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/XX.X.X.XX

EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

mailto:<nicolae.paladi@ri.se>

N. Paladi, C.Gehrmann

environments, by executing modified OS instances in
SGX enclaves [2] or a data processing framework in a
set of SGX enclaves [39]. However, while both of the
above efforts highlighted the need to secure network
communication, they did not address it.

1.1. Contribution

This paper makes the following contributions:

• We present TruSDN, a framework to bootstrap
trust in SDN infrastructure.

• We introduce flow-specific pre-shared keys for
communication protection.

• We propose a defense against cuckoo attacks [30],
based on properties of the enhanced privacy
ID (EPID) scheme [4] used for remote enclave
attestation.

• We describe the implementation and a performance
evaluation of TruSDN.

1.2. Organization

We introduce the system model in Section 2, describe the
adversary model in Section 3 and the design of TruSDN
in Section 4. In Section 5 we provide a security analysis,
describe the prototype implementation and performance
evaluation in Section 6 and review the related work
in Section 7. We discuss future work in Section 8 and
conclude in Section 9.

2. System Model

In this section we describe the SDN architectural
model and the SDN deployment layers. Furthermore, we
describe the use of TEEs based on Intel SGX.

2.1. Software Defined Networking

In this paper we target SDN in infrastructure cloud
deployments. The system model follows the architecture
presented in [5] and depicted in Figure 1.

The data plane includes hardware and software switch
implementations. Software switching is used in cloud
deployments due to its scalability and configuration
flexibility. Figure 2 illustrates the software switching
approaches for communication between two collocated
endpoints. In a typical switch implementation, its
kernel-space component is optimized for forwarding
performance, lacks decision logic and only forwards
packets matching rules in its forwarding information
base (FIB) [24]. The FIB comprises packet forwarding
rules deployed to satisfy network administrator goals.
Mismatching packets are discarded or redirected to
the control plane through the southbound API. While
the data plane uses complementary functionality of

both virtual and physical switches, the role of the
latter is often reduced to routing IP-tunneled traffic
between hypervisors [31]. In this paper we do not
address control of hardware switches and traffic routing
between hosts; we assume that the physical network
provides uniform capacity across hosts, based on e.g.
equal-cost multi-path routing [18], such that if multiple
equal-cost routes to the same destination exist, they
can be discovered and used to provide load balancing
among redundant paths. Overlay networks – e.g. VLANs
or GRE [13] – are used for communication between
endpoints. In this work, we focus exclusively on software
switching and use the term “switch” to denote a virtual,
software implementation. We refer to hardware switch
implementations as “hardware switches”.

In the control plane, high-level network operator goals
are translated into discrete routing policies based on
the global network view, i.e. a graph representation of
the virtual network topology. The main component of a
control plane is the network controller, which we define
as follows:

Network Controller (NC) is a logically centralized
component that manages network communication in a
given deployment by updating the FIB with specific
forwarding rules. The NC compiles forwarding rules
based on three inputs: the dynamic global network view,
the high-level configuration goals of the network operator,
and the output of the network management applications.

The NC is typically implemented as part of a
logically centralized network OS, which builds and
maintains the global network view and may include
a network hypervisor, to multiplex network resources
among distinct virtual network deployments.

Southbound API is a set of vendor-agnostic instruc-
tions for communication between data and control
planes. It is often limited to flow-based traffic control
of the data plane, with management done through a
configuration database [31].

Network operators use network management appli-
cations (NMAs), e.g. firewalls, traffic shapers, etc., to
configure the network using high-level commands.

2.2. Deployment layers

We next describe the deployment layers of SDN
infrastructure (Figure 3).

The hardware layer includes infrastructure for data
transfer, processing and storage and is comprised of
network hardware (including hardware switches and
communication channels), hardware server platforms
and data storage.

The infrastructure layer includes software components
for virtualization and resource provisioning to infras-
tructure users, referred to as tenants. For network re-
sources, this layer includes the network hypervisor, which
creates network slices by multiplexing physical network

2
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

Global network view

Network Management Applications/

Virtual Network Functions

F
o
rw
a
rd
in
g

P
la
n
e

C
o
n
tr
o
l
P
la
n
e

Network Hypervisor

Firewall Traffic Engineering Intrusion Detection ...

Southbound API (e.g. OpenFlow)

Routing and switching equipment

Network Operating System (e.g. NOX, Rosemary, Floodlight)

Figure 1. The SDN architectural model.

Host
NIC

Virtual machine BVirtual machine A

Hypervisor

Switch

1

2
3

4

Figure 2. Communication paths between collocated endpoints:
(1) virtual switch; (2) host-local, e.g. native bridging; (3) virtual
queues in the NIC.

infrastructure between tenants. Infrastructure providers
expose a slice (i.e. a quota) of network resources to the
tenants.

The service layer includes components controlled
by tenants. Network components operated by tenants
are grouped into network domains, comprising the
virtual network resources and topologies that logically
belong to the same organizational unit and network
slice, and perform related tasks or provide a common
service. The network hypervisor ensures that a tenant’s
control plane can only control switches in its own
slice. Within their slice, tenants have exhaustive
creation, destruction and configuration privileges over
components, such as instances of switches, the NC,
NMAs and network domains. We define three logical
communication segments (Figure 4): between the
network controller and switches (α segments); among the
switches on each host (β segments); between host-local
switches and network endpoints (γ segments).

The network components operated by tenants are
grouped into network domains, which comprise the
virtual network resources and topologies which logically
belong to the same organizational unit, belong to
the same network slice, and perform related tasks or
provide a common network service. Tenants create,
modify, destroy domains and manage the communication
flows between the network endpoints in their domain.
A tenant’s control plane can only communicate with
switches in its global network view, which is limited
to the respective network slice. Furthermore, on their
control plane, tenants can deploy network management
applications which operate on their global network view.

The user layer includes endpoint consumers of
network services, e.g. virtualization guests, containers
and applications in a network domain.

2.3. Trusted Execution Environments

The proposed solution relies on TEEs that both provide
strong isolation and allow remote code and data integrity
attestation. Such a TEE can be created using Intel
SGX enclaves (introduced in [1, 22]) during OS runtime
and relies for its security on a trusted computing base
(TCB) of code and data loaded at build time, processor
firmware and processor hardware. At build time, the
CPU measures the loaded code, data and memory
page layout. At initialization time, the CPU produces
a final measurement, after which the enclave becomes
immutable and cannot be externally modified. The CPU
maintains the measurement throughout the enclave’s
lifetime to later assert the integrity of the enclave
contents. Processor firmware is the root of trust (ROT)
of an enclave. It prevents access to the enclave’s memory
segment by either the platform OS, other enclaves, or
other external agents. Enclaves operate in a separate
memory region inaccessible to non-enclave processes,
called the enclave page cache (EPC). Multiple mutually
distrusting enclaves can operate on the platform. The
processor enforces separation of memory access among
enclaves based on the layout in the EPC map. Program
execution within an enclave is transparent to both the
underlying OS and other enclaves.

Remote attestation allows an enclave to provide
integrity guarantees of its contents [1]. For this,
the platform produces an attestation assertion with
information about the identity of the enclave and details
of its state (e.g. the mode of the software environment,
associated data, and a cryptographic binding to the
platform TCB making the assertion). For intra-platform
attestation (i.e. between enclaves on the same platform),
the reporting enclave (reporter) invokes the EREPORT

instruction to create a REPORT structure with the
assertion and calculate a message authentication code
(MAC), using a report key, known only to the target
enclave (target) and the CPU. The structure contains a

3
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

N. Paladi, C.Gehrmann

Software

Switch

Instance

VLAN 400

1.
1.
3
.1

1.
1.
3
.2

1.
1.
3
.3

1.
1.
4
.1

1.
1.
4
.2

VLAN 300

Switch

Compute Host 1

Compute Host 2

Compute Host 3

Switch

Compute Host n-2

Compute Host n-1

Compute Host n

Hardware Layer Infrastructure Layer

Service Layer

...

Configuration

Server

Software

Switch

Instance

VLAN 200

1.
1.
1.
1

1.
1.
1.
2

1.
1.
1.
3

1.
1.
2
.1

1.
1.
2
.2

VLAN 100

Tenant 1 Tenant 2

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

C
o
m
p
u
te

User Layer

Figure 3. Deployment Layers.

Compute
Task 1

Compute
Task 2

Compute
Task 3

Compute
Task 4

Compute
Task 1

Network
Controller

Software
Switch 1

Software
Switch 2

Figure 4. Logical communication segments: α: between the NC
and switches; β: among the switches on each host; γ between
host-local switches and network endpoints.

user data field, where the reporter can store a hash of
the auxiliary data provided. The target recomputes the
MAC with its report key to verify the authenticity of
the structure, and compares the hash in the user data

with the hash of the auxiliary data, to verify its integrity.
Enclaves then use the auxiliary data to establish a secure
communication channel. For inter-platform attestation
the remote verifier first sends a challenge to the enclave
platform, where the challenge is complemented with the
indentity of a quoting enclave (QE) and forwarded to the
reporter, which appends the challenge response to the
REPORT and attests itself to the QE. The QE verifies the
structure, signs it with a platform-specific key using the
enhanced privacy ID group signature scheme (EPID) [4]
and returns it to the verifier, to check the authenticity
of the signature and the report itself [1]. The use of the
EPID scheme is part of the SGX implementation and
allows to maintain the privacy of the platform which
hosts the enclave.

3. Threat Model

We now describe the adopted adversary model, as well
as the core security assumptions on which we base our
design. The adversary model we adopt can be described
by the capabilities of the adversary at the network and
platform levels respectively (overview in Table 1).

3.1. Network infrastructure

For SDN infrastructure, we adopt the adversary model
introduced in [9] and extended with SDN-specific
attack vectors in [26]. We assume a powerful adversary
(Adv), which controls the cloud deployment network
infrastructure; it can intercept, record, forge, drop
and replay any message on the network, and is only
limited by the constraints of the employed cryptographic

methods. Particularly, the Adv may forge messages
that do not match any of the rules installed in the
FIB. Furthermore the Adv may create own instances of
switches and launch Sybil attacks [10] and launch other
types of topology poisoning attacks [17] to distort the
global network view. Finally, Adv can store arbitrary
quantities of intercepted communication and attempt its
decryption with encryption keys intercepted or leaked
at a later point. It can analyze the traffic patterns in
the network through passive probing and may disrupt or
degrade network connectivity to achieve its goals [8]. We
explicitly exclude Denial-of-Service attacks on the SDN
infrastructure.

3.2. Platform

For platform security, we consider a powerful adversary,
similar to [2, 39], that may control the entire software
stack in the cloud provider’s infrastructure.

On the hardware level, we assume the processor
is correctly implemented and remains uncompromised;
furthermore, we assume a reliable and secure source
of random numbers (which can be provided by the
CPU). Adv has full control over the remaining hardware,
including memory, I/O devices, periferials, etc. Similarly,
Adv fully controls the software stack, including the
platform OS and the hypervisor. This implies that Adv
may pause indefinitely the execution of the code in the
TEE and return arbitrary values in response to OS
system calls. However, a deployment orchestrator and
NC execute under tenant control, on a fully trusted
platform and software stack. We exclude side-channel
attacks. While some side-channel attacks – e.g. timing,
cache-collision, controlled channel attacks – can be
mitigated through software modification [42], preventing
other side-channel attacks – such as power analysis –
requires hardware modifications. An Adv with advanced

4
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

Table 1. Summary of the Adv capabilities in relation to the adversary model.

Type Network Platform
Included Intercept, record, forge, drop,

replay messages;
Analyze the traffic patterns;
Disrupt or degrade network connectivity;
Launch topology poisoning attacks

Control non-processor hardware;
Control software stack OS, hypervisor;
Pause execution;
Deploy arbitrary software components;
“Cuckoo attack”: Forward function calls
to compromised SGX enclaves;
Return arbitrary values to system calls

Not included,
mitigations known

Side-channels: cache-collision,
controlled channel;
Attacks on shielded execution;

Excplicitly excluded Denial-of-Service (DoS) attacks Side-channels: power analysis; DoS attacks

capabilities may leverage its full control over the OS to
utilize the class of known attacks on shielded execution;
while we do not address such attacks, they have known
countermeasures [2, 6].

SGX, similar to other trusted computing solutions, is
vulnerable to cuckoo attacks [30]. In one attack scenario,
malware on the target platform forwards the messages
intended for the local SGX enclave (SGXE

L) to a remote
enclave under Adv ’s physical control (malicious enclave,
SGXE

M). Having physical access to SGXE
M , Adv can

apply hardware attacks to violate its security guarantees.
As a result, Adv controls all communication between the
verifier and SGXE

L , with access to an oracle that provides
all of the answers a benign SGXE would, but without
its expected security properties.

Briefly, the adversary model for platform security
largely matches the remote administrator capabilities of
an infrastructure cloud provider.

4. Solution Description

In this section we present TruSDN, a framework for
bootstrapping trust in SDN deployments. Its goal is to
allow tenants to securely deploy computing tasks and
create virtualized network infrastructure deployments,
given the adversary model defined in Section 3. To satisfy
this goal, the framework must satisfy the following set of
requirements:

• Authentication: communication in the domain
must the authenticated, and a secure enrollment
mechanism for data plane components must be in
place.

• Topology integrity: the NC must be protected from
network components that attempt to distort the
global network view.

• Component integrity: integrity of switches must be
attested prior to enrollment and the cryptographic
material required for their network access must be
protected with a hardware ROT.

• Confidentiality protection of domain secrets:
network domain secrets – such as VPN session keys
– should not be revealed to the Adv .

• Protected network communication: network com-
munication in the tenant domain must be confi-
dentiality and integrity protected.

4.1. TruSDN overview

We begin by introducing the building blocks of TruSDN
(Figure 5).

Trusted Execution Environments: TruSDN uses
TEEs that guarantee secure execution in the given
adversary model, assuming the CPU and executed code
are correctly implemented.

Protected Compute Tasks: Security sensitive com-
pute tasks (CT) are deployed in TEEs. Such tasks
include all operations that tenants aim to protect from
the Adv . However, CTs rely on the untrusted OS for I/O
and support functionality.

Protected Data Plane: Switches are deployed in
TEEs – they route traffic between CTs according to
forwarding rules communicated through secure channels
and maintained in the FIB. The FIB of the switches,
and the key material necessary to establish the secure
channels are stored in TEEs.

Attested code in TEEs: An orchestrator under
tenant control attests the TEEs during network
infrastructure deployment, to ensure integrity of the
deployed code and data before keys or key material are
provisioned to the respective TEE.

In a typical deployment scenario, the tenant invokes
an orchestrator to deploy a switch bootstrap application
on the hosts in the tenant’s domain. The bootstrap
application invokes a host-local SGX driver to build an
SGX enclave containing a switch. Next, the orchestrator
attests the created enclave (as described in Section 2.3)
prior to enrolling the switch with the NC. The

5
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

N. Paladi, C.Gehrmann

Host 1

Compute Task 1.1

TEE1.1

Compute Task 1.2

TEE1.2 Host 2

Compute Task 2.1

TEE2.1

Compute Task 2.2

TEE2.2

Network
Controller

TEE2.3

Protected compute tasks

TEE1.3

Protected data plane

Trusted Execution EnviromentsSecure Communication Channels

O
rc

h
e
st

ra
to

r

Attested code
in TEEs

Figure 5. Illustration of core building blocks of TruSDN.

orchestrator uses the enclave’s public key from the
attestation quote to securely transfer the enclave-specific
integrity and confidentiality protection session keys used
to establish a protected communication channel between
the NC and the TEE. Finally, the NC communicates any
remaining security-sensitive payload to the created TEE,
e.g. the initial FIB. Next, CTs are deployed in TEEs
on the host and the switch forwards packets between
the CTs, matching them against the rules in the FIB.
Mismatching packets are forwarded to the NC, which
may update the FIB with new rules. For clarity, we
assume the orchestrator and NC are collocated on a
platform under tenant control and view both as a single
component, further referred to as “NC”.

Secure Communication: TruSDN protects the com-
munication between CTs, between switches and the NC,
as well as among the switches, in the above adver-
sary model. Communication security is ensured using
confidentiality and integrity protection keys provisioned
to authenticated network components and endpoints
executing in TEEs. Furthermore, TruSDN leverages SDN
principles to introduce a novel mechanism – per-flow
communication protection using ephemeral flow-specific
pre-shared keys (PSKs).

4.2. Cryptographic Primitives

We now define the cryptographic primitives and
notations used in the remainder of this paper. We denote
by {0, 1}n the set of all binary strings of length n, and
by {0, 1}∗ the set of all finite binary strings. In a set U ,
we refer to the ith element as ui, and use the following
notation for cryptographic operations:

• Given an arbitrary message m ∈ {0, 1}∗, we
denote by c = Enc (K,m) a symmetric encryption
of m using the secret key K ∈ {0, 1}∗. The
corresponding symmetric decryption operation is
m = Dec(K, c) = Dec(K,Enc(K,m)).

• We denote by pk/sk a public/private key pair
for a public key encryption scheme. We denote
by c = Encpk (m) the encryption of message m
with the public key pk, and the decryption by
m = Decsk(c) = Decsk(Encpk(m)).

• We denote a digital signature over a message m by
σ = Signsk(m) and the corresponding verification
of a digital signature by ν = Verifypk(m,σ), where
ν = 1 if the signature is valid and ν = 0 otherwise.

• We denote a Message Authentication Code (MAC)
using a secret key K over a message m by
µ = MAC(K,m).

We next describe key sharing and communication
protection mechanisms on the identified logical segments.
Table 2 summarizes the keys used by TruSDN.

4.3. SDN Trust Bootstrapping and Secure
Communication

The first step in deploying a TruSDN infrastructure
is to launch a set of trusted switches for connectivity
and topology building. The NC requests the creation of
switch enclaves to deploy switches in TEEs on hosts in
its domain. Switches are deployed based on parameters
provided by the NC in plaintext (application code
and configuration). Next, the NC attests the integrity
of switch enclaves and only enrolls the successfully
attested ones (Figure 6). A TEE Ei is attested following
the protocol introduced in [1]. With TruSDN however,
the reporter generates an enclave-specific public-private
keypair and submits its public key EKpk

i along with the
attestation data; a hash of the public key is stored in the
user data field. The switch enclave is only enrolled to
the global network view if its reported state matches the
one expected by NC.

Having attested enclave Ei, NC communicates an
Enrollment message (Table 3) with the enclave-specific
pre-shared key Kα

i and domain-specific pre-shared key

Kβ
j , encrypted with an ephemeral key K ′i. Switches

within a domain use Kβ
j to protect communication on

β segments. The NC appends a MAC of the message
calculated with K ′′i and encrypts the keys K ′i, K

′′
i with

EKpk
i .

Once switches are deployed and enrolled, tenants may
configure the network topology using the NC to update
the switch FIBs. Communication on α segments – e.g.
FIB updates or unmatched packets forwarded to the

6
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

Table 2. Summary of keys used in the TruSDN framework.

Key Created by Access Usage
Kα
i NC NC, switch Enclave-specific session, segment α

Kβ
j NC NC , switch Domain-specific session, segment β

K′ NC NC, switch Ephemeral session key
K′′ NC NC, switch Ephemeral MAC key

EKpk
i switch public Public key of the switch enclave

EKsk
i switch switch Private key of the switch enclave

CKpk
i CT public Public key of the compute task

CKsk
i CT CT Private key of the compute task

QEpk vendor public Public key of the quoting enclave

QEsk vendor vendor, QE Private key of the quoting enclave
SKγ

ij NC NC, CTi, CTj Ephemeral flow-specific pre-shared key

BE NC API E QE

1.n

2.QEi, n

3.m = REPORT, EKpk
i

4.σ = Signsk(m)

5. σ, m

TruSDN.ObtainQuoteTruSDN.ObtainQuote Obtain Enclave Quote

6.Verifypk(m,σ)

ν

7.Attest Emi

Enrollment message

ack

8. Updated Global View

TruSDN.EnrolTruSDN.Enrol Attest and Enrol Enclave

Figure 6. TruSDN enclave attestation and enrollment: (1.) Random nonce n is (2.) supplemented with the host QE
identity; (3.) Quote m produced by the enclave is (4.) signed by the QE. (6.) The verifier checks the signature of the QE,
(7.) attests the integrity of the enclave and (8.) only enrolls the enclave upon success. BE: back-end.

Table 3. Enrollment message sent by the NC upon switch enrollment.

m = Enc(K′
i, (K

α
i , K

β
j)) µ = MAC(K′′

i ,m) Enc(EKpk
i , (K′

i, K
′′
i)

NC – is protected using the session key Kα
i (e.g. using

TLS [12]), which never leaves the TEE.
Similarly, a secure channel is established among the

switches within the same domain, using the pre-shared
key Kβ

j , to protect communication between switches on

different hosts (e.g. TEEs 1.2 and 2.3 in Figure 5). Kβ
j

never leaves the TEEs, has a limited validity time and is
periodically redeployed by the NC. On β segments, traffic
may traverse multiple hardware switches, forwarded to
the host over tunnels deployed on top of a standard
routing protocol (e.g. [18]).

Next, the tenant may deploy CTs in TEEs and attest
their integrity using the very same scheme and principles
as for the switch deployment described above. The CTs

and the network controller use the Enrollment message to
establish a secure communication channel (e.g. TLS).

Once the NC has deployed and attested the TEEs
with switches and CTs, intra-host communication (i.e.
between two CT enclaves on the same host) is
straightforward (Figure 7): when a packet m sent from
C1 (e.g. a TLS ClientHello message) reaches the local
host switch A, it attempts to match m against a FIB
entry; if no suitable flow rule f is present, the switch
forwards Enc(Kα

A,m) to NC, which processes the packet,
generates and deploys on the CTs C1, C2 a flow-specific
pre-shared key SKγ

12 and finally updates the switch FIB
with f , after which steps 2 and 3 are ignored; once the
FIB is updated, the switch forwards m to C2, which

7
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

N. Paladi, C.Gehrmann

C1 Switch A C2 NC

1. m

2. Enc(Kα
A,m)

4. Enc(CKpk
1 , SKγ

12)

5. Enc(CKpk
2 , SKγ

12)

3. Enc(Kα
A, f)

6. m

7. Handshake protocol continued, SKγ
12 as PSK

Figure 7. Intra-host communication with TruSDN.

continues the message exchange and uses SKγ
12 to protect

the communication with C1, using e.g. TLS with a PSK
ciphersuite[12].

Communication between CTs C1 and C3 deployed on
distinct hosts is similar, with the only notable difference
that the NC updates the FIB of the local switches on
both hosts where C1, C3 are deployed.

In the above scenarios TruSDN leverages two aspects
of the SDN model – (1) the deployment has a central
authority (the NC) and (2) the first packet of a flow
is forwarded to the central authority – to deliver on
demand ephemeral PSKs to communication endpoints.
This allows to relax the need for high-quality entropy
being available to CTs (a known issue in virtualized
environments [36]). Furthermore, this approach ensures
communication security without compromising packet
visibility – having control over the keys used to protect
communication between the CTs allows the NC to
maintain fine-grained insight into the traffic.

4.4. Preventing Cuckoo Attacks

To prevent cuckoo attacks [30], we propose a solution
that leverages cryptographic properties of the EPID
scheme used by the QE [4] and the SIGn and Message
Authentication (SIGMA) protocol [41], which are both
part of the Intel SGX implementation. The EPID scheme
supports two signature modes: fully anonymous mode
– the verifier cannot associate a given signature with
a particular member of the group; pseudo-anonymous
mode – the verifier can determine whether it has verified
the platform previously. The unlinkability property
distinguished in the two modes depends on the chosen
base. A signature includes a pseudonym Bf , where B
is the base chosen for a signature and revealed during
the signature; f is unique per member and private.
For a random base R, the pseudonym is Rf – in this
case the signatures are unlinkable. For a name base,
the pseudonym is Nf , where N is the name of the
verifier – in this case the signatures remain unlinkable
for different verifiers, while signatures with a common
N can be linked. For privacy reasons, the EPID scheme
currently implemented in Intel SGX accepts name base

pseudonyms only from verifiers authorized by the EPID
authority [37], which is done by provisioning qualified
verifiers with an X.509 certificate – e.g. an intermediate
certification authority (CA) certificate – signed by the
EPID authority acting as root CA.

We propose the following algorithm to prevent cuckoo
attacks. At deployment time, the EPID authority issues,
to an authorized verifier VP , an intermediate CA verifier
certificate for the platforms in the cloud provider’s
data center. Next, VP attests its platforms following
the SIGMA protocol and publishes a list of resulting
platform EPID signatures and the signature name base,
BN
P . To guard against cuckoo attacks, tenants first

request VP to issue an X.509 certificate and enable
them to become authorized verifiers. Next, tenants
choose the same pseudonym base BN

P (and a private
f), follow the SIGMA protocol, and verify that the
resulting signature is linkable to a signature in the
published list. The cloud provider has multiple tools to
protect platform privacy and prevent untrusted tenants
from fingerprinting the platform infrastructure, e.g.
limiting the validity of issued certificates, changing the
name base, etc. Considering that the EPID scheme
is currently not implemented in the SGX emulation
software we used for prototyping, we intend to describe
the implementation of the above algorithm in a follow-up
report.

5. Security Analysis

In this section we analyze the security properties of the
proposed framework in the adversary model described
in Section 3. On the network level, many of the
Adv capabilities are thwarted by first authenticating
the switches deployed on the data plane, as well
as the network edge (i.e. the compute tasks that
generate or receive the network traffic), in combination
with confidentiality and integrity protection of the
traffic on the three identified segments. Authenticating
the network components prevents topology poisoning
attacks (a countermeasure mentioned in [17]), while
confidentiality and integrity protection of all of the
network traffic in the deployment prevents the Adv

8
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

from either learning the contents of the exchanged
packets or successfully forging packets. The Adv may in
this case still intercept and record messages. However,
collecting encrypted traffic does not yield the Adv any
more information about the contents of the exchanged
packets. Similarly, the Adv does not gain an advantage
by simply dropping or replaying messages, since these
actions would at most simply reduce the channel capacity
(as would the ability of the Adv to disrupt network
connectivity). Finally, the proposed framework does not
prevent the Adv analyzing the traffic patterns and does
not prevent it from fingerprinting the components of the
deployment, making it vulnerable to rule scanning and
denial of service attacks. While the goals of TruSDN did
not include this, such traffic analysis could be prevented
using anti-fingerprinting techniques, as proposed in [3].

On the platform level, the security of the proposed
framework relies to a large extent on the security
properties of Intel SGX enclaves. This allows to protect
the execution of switches and network edge components
deployed in TEEs from the capabilities of an Adv
controlling non-processor hardware, the software stack
of the OS and the hypervisor. Similarly, pausing
execution of switches executing in TEEs, while possible,
would have no further effect than degrading network
connectivity, already discussed above. While the Adv
may attempt to deploy own arbitrary components
on the data plane or the network edge in order to
launch Sybill attacks, the integrity of such components
would not be successfully attested, unless they are
identical to legitimate components, which are assumed
to be executing correctly – rendering Sybill behavior
impossible. The Adv is prevented from launching cuckoo
attacks by enabling tenants to verify the platforms,
as described in Section 4.4. As presented in Table 1,
several relevant classes of attacks are not addressed by
TruSDN, but have known mitigations, namely cache-
collision, controlled channel and attacks on shielded
execution (addressed in [39, 42]). The capability of the
Adv to return arbitrary values to system calls, while not
addressed in this work, can be mitigated by a validation
component as described in [2].

6. Implementation and Evaluation

We now describe the implementation and evaluation of
TruSDN.

6.1. TruSDN Implementation

The TruSDN prototype deployment follows the design
presented in Section 4 and is illustrated in Figure 8.
Host 1 and Host 2 are instances of Ubuntu OS
15.04. In each instance, we deployed Linux Containers1,

1Linux Containers Project Website: https://

linuxcontainers.org/

similarly based on Ubuntu OS 15.04. Containers create
an environment with own process and network space,
implemented using namespaces, with a distinct user ID,
network stack, mount points, file systems, processes,
inter-process communication, and hostname. We chose
containers to facilitate prototype implementation, using
their lightweight process isolation. Containers are part
of the untrusted OS and this implementation choice is
orthogonal to the security of TruSDN. Compute tasks are
deployed in TEEs created using SGX enclaves (Figure 8):
enclaves E1, E2, E4, E5 are placed respectively within
containers C1, C2, C3, C4. The switches are deployed in
TEEs created using SGX enclaves (enclaves E3, E6 in
Figure 8).

Considering that platforms with hardware and
software support for SGX were not publicly available
at the time of writing, we used OpenSGX [19] to
emulate the TEEs. It is a software SGX emulator
and a platform for SGX development, implemented
using binary translation of QEMU and emulating
Intel SGX hardware components at instruction level.
It includes emulated hardware and OS components,
enclave program loader, the OpenSGX user libraries,
debugging and performance monitoring support. The
emulator allows to implement, debug, and evaluate SGX
applications, but does not support binary compatibility
with Intel SGX. Furthermore, OpenSGX does not
implement all instructions, e.g. debugging instructions.
While OpenSGX does not provide security gurantees,
it allows us to obtain performance estimates for
the proposed approach. We used mbedTLS2 v1.3.11
(distributed with the emulator) for attestation of the
SGX enclaves. We used OpenSSL v1.0.2d (distributed
with the emulator) to set up protected communication
channels between the CT enclaves and the local switches,
and among switches within the same domain.

An SDN network controller is deployed in a third
instance (Host 3). We used the Ryu3 SDN framework,
due to its flexibility and versatile APIs.

6.2. TruSDN Evaluation

We now analyze the performance impact, present
evaluation results and discuss aspects that cannot be
measured with the current prototype.

Sources of Performance Impact. TruSDN introduces
several potential sources of performance impact (Ta-
ble 4). We distinguish between transient performance
overhead, which occurs occasionally (e.g. TLS key nego-
tiation) and continuous performance overhead, present
throughout the infrastructure operation. We do not con-
sider the one-time cost of infrastructure deployment, e.g.

2mbed TLS project website https://tls.mbed.org/
3Ryu SDN framework: https://osrg.github.io/ryu/

9
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

https://linuxcontainers.org/
https://linuxcontainers.org/
https://tls.mbed.org/
https://osrg.github.io/ryu/

N. Paladi, C.Gehrmann

SGX Enclave

E1

eth0

veth0
veth1

br1

br0 tep0

SGX Enclave

E3

Host 1

eth0

SGX Enclave

E2

Container

C2
Container

C3

eth0

veth0
veth1

br1

br0 tep0

SGX Enclave

E6

Host 2

eth0

SGX Enclave

E4

eth0

SGX Enclave

E5

Container

C4

Container

C1

1.1.1.1 1.1.2.11.1.1.2 1.1.2.2

192.168.122.107 192.168.122.249

10.200.17.101 10.200.27.201

gre0 gre0

eth0

Host 3

Orchestrator

eth0

Network

Controler

V
irtu

a
liz

a
tio

n
 H

o
s
t

Figure 8. Prototype deployment of TruSDN

provisioning the software, attesting TEEs and enrolling
the components.

Measured Performance Impact. To evaluate the
performance impact, we measured the footprint of
establishing TLS sessions on α and γ segments. We
used iperf, openssl s time and an own Ryu application
(Table 5).

TLS overhead on the α segment: We measured
the round-trip latency of packets sent in plaintext
and with TLS, over 1000 tests, each request sending
messages of 100 bytes with the 80 bit OpenFlow header.
Furthermore, we measured the data transfer rates for
plaintext and TLS communication. Use of TLS increased
total transfer time by 14.2% and reduced the transfer
rate by 15.98%.

Figure 9 shows the round-trip latency of packets sent
in plaintext and with TLS enabled, over 100 tests, each
request sending 2 kB messages; furthermore, figure 10
compares the data transfer rates for plaintext and TLS
communication in the test bed.

Figures 11 and 12 show respectively the round-
trip latency and transfer rates for 10 MB messages.
The impact of TLS is notably smaller, mostly due to
the proportionally lower impact of the costly TLS key
negotiation operations.

Delay on γ segment As mentioned above, the first
packet of the flow is intercepted by the switch and
forwarded to the NC in a packet in message [7]. At
this point the NC processes the flow and installs a flow
rule on the switch. TruSDN extends this procedure by
generating and distributing to the communicating CTs a
pre-shared key, to be used for communication protection.
Since this must be done prior to both forwarding
the message to the destination CT and installing the
flow rule, generating and distributing the PSK would
normally delay the installation of the flow rule and
increase the latency of the first packet (all subsequent

packets are forwarded according to the flow rule). To
measure the introduced delay, we have sequentially
established 1000 TLS sessions between compute tasks C1
and C2 (according to Figure 8). After each TLS session,
we flushed the installed flow rules (with ovs-ofctl

del-flows br0), which resulted in a packet in message
upon each new session. The latency of the first packet is
shown in Figure 13, and compared against the latency of
a first packet without the TruSDN extension.

The induced delay is primarily caused by two
operations performed by the NC: generating a 256-
bit PSK and distributing it to the CTs. Figure 14
displays a fine-grained picture of the induced delay.
Key generation lasted on average 0.178 ms, while
key distribution on average 0.54 ms (Table 5). We
remind that the test environment is fully virtualized and
posit that overhead of key generation can be reduced
in a production environment, either by using pre-
generated keys or with specialized hardware (e.g. crypto
processors). In our tests, the duration of establishing
a TLS session with ephemeral flow-specific pre-shared
keys using the PSK-AES256-CBC-SHA cipher suite was
2.41% less compared to the use of e.g. ECDH-RSA-
AES128-SHA256. Thus, TruSDN enables flexible use of
pre-shared keys, which in turn reduces the duration of
the TLS handshake, by avoiding expensive public key
cryptographic operations [21]. Moreover, it reduces the
CPU utilization for key derivation in CTs, at the cost of a
minimal flow rule installation delay. The above approach
may be applicable to other protocols. For example, none
of the differences between the datagram TLS (DTLS)
and TLS protocols specified in [35] indicate that the
above approach is incompatible with DTLS. We leave
further investigation for future work.

Unmeasured Performance Overhead. Implementing
TEEs with OpenSGX limits the level of detail when
it comes to performance evaluation, since: (a) the
OpenSGX emulator is not binary compatible with

10
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

Table 4. Sources and types of performance overhead in TruSDN

Source Type Clarification
TLS negotiation all segments transient Negotiate session keys for TLS
PSK distribution transient Distribute PSK for γ segments
TLS protection all segments continuous Overhead induced by TLS
Compute task execution in TEEs continuous Overhead induced by TEE
Switch execution in TEEs continuous Overhead induced by TEE

0 200 400 600 800 1000
Test counter

40

50

60

70

80

90

100

110

m
s

Total time to send 100 b of data

TLS enabled
Plaintext

Figure 9. Throughput, fine-grained view.

0 200 400 600 800 1000
Test counter

800

1000

1200

1400

1600

1800

2000

2200

p
a
ck

e
ts

/s
e
c

Data transfer rate, sending 100 b of data

TLS enabled
Plaintext

Figure 10. Data transfer, fine-grained view

0 200 400 600 800 1000
Test counter

5500

6000

6500

7000

7500

8000

8500

9000

m
s

Total time to send 100 Mb of data

TLS enabled
Plaintext

Figure 11. Throughput, coarse-grained view.

0 200 400 600 800 1000
Test counter

1100

1200

1300

1400

1500

1600

1700

1800

p
a
ck

e
ts

/s
e
c

Data transfer rate, sending 100 Mb of data

TLS enabled
Plaintext

Figure 12. Data transfer, coarse-grained view.

Intel SGX [19]; (b) in its current version4 and unlike
Intel’s description of SGX [1], OpenSGX has yet to
implement support multithreaded applications5. Thus,
a fully accurate measurement on TruSDN performance
cannot be done until Intel SGX hardware and software

4Commit e0713c7 on https://github.com/sslab-gatech/

opensgx
5Issue #34 on https://github.com/sslab-gatech/opensgx/

issues/34

is made available. However, we believe our experiments
yield a fair picture of the expected performance impact.

7. Related work

In this section we present related work on adversary
models for SDN deployments, SDN controller security,
and principles and software model of SGX.

11
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

https://github.com/sslab-gatech/opensgx
https://github.com/sslab-gatech/opensgx
https://github.com/sslab-gatech/opensgx/issues/34
https://github.com/sslab-gatech/opensgx/issues/34

N. Paladi, C.Gehrmann

Table 5. Summary of performance evaluation of TruSDN

Data Minimum Maximum Mean Median Stddev
Total transfer time, ms 0.4 1.1 0.66 0.7 0.07
Total transfer time w. TruSDN, ms 0.5 7.1 0.8 0.8 0.22
TruSDN overhead, total transfer time 21.2% 14.2%

Transfer rate, bytes per second 1225 2095 1595 1583 98.07
Transfer rate w. TruSDN, bytes per second 919 1589 1338 1330 64.86
TruSDN overhead, transfer rate 16.11% 15.98%

First packet latency γ 1.53 6.50 3.48 3.38 0.42
First packet latency γ w. TruSDN 3.35 10.7 5.37 5.14 0.93
TruSDN overhead, first packet latency 54.31% 52.07%

TLS handshake, ms 36.53 77.72 67.97 67.48 7.42
TLS handshake w. TruSDN, ms 52.35 76.44 67.15 66.53 3.93
TruSDN overhead, TLS handshake -2.21% -2.41%

Key generation NC, ms 0.11 0.51 0.178 0.16 0.04
Key distribution γ, ms 0.37 1.06 0.54 0.53 0.08
Key total γ, ms 0.50 1.30 0.71 0.7 0.11

0 200 400 600 800 1000
Test counter

0

2

4

6

8

10

12

m
s

Delay to flow rule installation after packet_in notification

PSK
Plain

Figure 13. Coarse-grained view

0 200 400 600 800 1000
Test counter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
s

Fine-grained view of the flow rule installation delay

Total
Key distribution
Key generation

Figure 14. Fine-grained view

7.1. Adversary models for SDN deployments

Despite the growing number of publications focusing on
secure SDN architectures [17, 20, 26, 32, 34, 40], none
of them directly addresses trust establishment in SDN
deployments. Here, we review the related work on secure
SDN architectures and provide a context for the work
presented in this paper.

Kreutz et al. presented a list of seven attack
vectors identified in SDN [20]: a. Forged or faked
traffic flows; b. Attacks on vulnerabilities in switches;
c. Attacks on control plane communications; d. Attacks
on and vulnerabilities in network controllers; e. Lack
of mechanisms to ensure trust between the controller
and management applications; f. Attacks on and
vulnerabilities in administrative stations; g. Lack of
trusted resources for forensics and remediation. However,
only part of the attack vectors described in [20] are
exclusively relevant to SDN networks and no specific
solutions are proposed. In this paper we focus on
several attack vectors specific for SDN-based multi-
tenant virtualized network architectures, namely vectors

c., e., g. of the above list. Furthermore, we describe in
detail and implement a protocol that addresses the above
issues.

Work in [26] introduced an adversary model, along
with potential attack vectors and security requirements
towards multi-tenant SDN infrastructure. The authors
highlighted the need for security mechanisms on several
layers of the SDN architectural model, in order to:
a. Limit the effect of controller vulnerabilities on tenant
domains; b. Authenticate the communication between
the components of the SDN infrastructure; c. Enforce
policy isolation between tenants; d. Verify integrity of
network components prior to enrollment; e. Enforce
quota isolation between tenants. In this work, we address
points a., b., d. of the above list and contribute towards
a comprehensive security framework for multi-tenant
SDN deployments.

7.2. Secure SDN controllers

NOX is a network operating system (NOS) introduced
in [16]. It presents network management applications

12
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

Bootstrapping trust in software defined networks

with a centralized programming model and a global
view of the system state, allowing such applications to
rely on simpler graph processing algorithms to compute
the shortest paths and to operate with higher-level
abstractions – e.g. users and host names – rather
than MAC and IP addresses. NOX consists of several
controller processes operating on a global network view
built based on the process communication with the data
plane. The global view is based on switch topology, user
location, connected network components (e.g. hosts and
middleboxes), as well as bindings between the names
and addresses. Controller processes use the global view
to make network management decisions and update the
switch FIB over the OpenFlow API [23].

In [32], the authors presented FortNOX, a software
extension for role-based authorization and security
constraints enforcement for NOX. FortNOX detects
rule conflicts, i.e. situations when candidate OpenFlow
rules modify network flows specified by existing
rules, and takes appropriate actions, depending on
the authorization of the rule requestor. Role-based
authentication is used to determine the security
authorization of each rule producer, enforcing the
principle of least privilege to ensure integrity of
the mediation process. FortNOX consists of four
components: a role-based source authentication module
to validate signatures for each flow rule insertion request;
a conflict analyzer to evaluate each new flow rule against
existing active flow rules; a state table manager to
track the current flow rules; and finally a flow rule
time-out callback interface to update the aggregate flow
table upon rule expiration. FortNOX includes a security
directive translator for the block, deny, allow, redirect,
quarantine, undo, constrain, and info directives; such
directives are used for high-level threat mitigation which
are in turn translated to flow rules to handle suspicious
traffic. Neither NOX nor FortNOX address the problem
of malicious network components, which can distort
the global network view used by the NC. This can be
addressed by extending the above mentioned network
controllers with TruSDN.

“Rosemary” [40] is a NOS that improves network re-
silience in the presence of faulty or malicious applications
by creating sandboxed environments for network man-
agement applications. Sandboxing (also called micro-
NOS) is done by launching each application in a separate
process context with access to all of the libraries that
the application requires. Each micro-NOS also contains
a resource monitor to supervise the applications and op-
erates within the permission structure of Rosemary NOS.
In turn, the ‘Rosemary’ NOS is an application running on
a commodity Linux distribution. The isolation offered by
the micro-NOS allows to improve robustness and prevent
faulty or malicious applications from crashing the en-
tire NOS. Furthermore, “Rosemary” prevents malicious
components from accessing internal data structures of

other network management applications by interposing
and verifying privileged system calls made by network
applications. Despite its advantages, “Rosemary” does
not address integrity and authentication of communica-
tion on the data plane. TruSDN complements this and
creates a strong foundation for trusted deployment of a
secure NOS.

In [17], the authors have addressed several attacks
on network visibility in SDN and introduced a security
extension to SDN controllers, aimed to detect network
topology poisoning attacks. While the paper provides
several SDN-specific infrastructure attack examples
and highlights the urgency of addressing them, the
suggested solution assumes a network deployment
with exclusively physical switches and does not
accommodate for the rapidly increasing number of
software, virtualized switches. TruSDN complements this
approach, is applicable to virtualized and multi-tenant
network deployments and uses a hardware root of trust
in order to ensure the integrity of virtual switches.

7.3. Software Guard Extensions

SGX was introduced in [22], with a description of the
SGX software model, as well as of the extensions to
the x86 ISA and the necessary hardware modifications
for isolated execution in the SGX model; this was
complemented by CPU based attestation for the SGX
execution model, described in [1]; in [22] the authors
describe several prototypes that use SGX to create
trustworthy applications – namely a secure one-time-
password generator, applications for enterprise rights
management and secure video conferencing.

The work in [2, 39] describes application of SGX-based
solutions in a cloud setting. In “Haven” [2] the authors
describe the experience of porting a modified version
of Windows 8 operating system to an SGX enclave
and evaluate it with several unmodified applications –
namely an Apache Web Server and an SQL Server,
using synthetic data sets. In addition, the authors
describe a mechanism to protect the enclave execution
environment from the attacks of a malicious kernel,
as well as a semantically secure data store protecting
the confidentiality of data and file metadata against
a malicious host. TruSDN protects confidentiality and
integrity of network communication for an adversary
model similar to [2]. While we deploy compute tasks
in SGX enclave-based TEEs, the work in [2] is largely
complementary, and similar “Haven”-like OSs could be
used.

“VC3” [39] describes the deployment of a Map-
Reduce framework in a cloud environment using SGX
enclaves. Users implement map and reduce functions
and compile them into private (encrypted) code and a
generic public code that implements the key exchange
and job execution protocols. Both private and public

13
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

N. Paladi, C.Gehrmann

code is initialized in enclaves and later attested by
the users. After attestation, enclaves containing the
public code perform the key exchange protocol and
obtain the key to decrypt the private enclave code
and process the distributed job execution protocol.
Furthermore, to defend against cuckoo attacks, the
authors propose that cloud quoting enclaves are created
on each platform added in the cloud provider data
centers. The cloud computing enclaves would then
“countersign” the quotes produced by the quoting
enclave. The approach described in [39] used to protect
compute tasks for map-reduce jobs using SGX enclaves is
largely complementary to protecting the communication
between compute tasks with TruSDN. However, the
defense against cuckoo attacks described in [39] both
increases the complexity of the attestation protocol and
does not prevent the adversary exploiting a compromised
cloud quoting enclave outside of the physically secure
datacenter perimeter. Instead, the approach described
in Section 5 leverages the cryptographic properties of
EPID signature scheme used by SGX enclaves, without
complicating the attestation protocol.

8. Future Work

In this section we discuss the limitations of the presented
solutions and outline several directions for future work.

Addressing the limitations of TruSDN Along with
its advantages, particularly when it comes to providing
security guarantees, TruSDN has a series of limitations,
which stem in particular from its reliance on the SGX
technology. While it is too early to speak of the
performance overhead of the solution – given that SGX-
enabled platforms are not yet widely available – we focus
on the security limitations of TruSDN. In particular, the
authors of [42] introduce controlled-channel attacks, a
new type of side-channel attack that allows an untrusted
operating system to extract large amounts of sensitive
information from protected applications on systems. This
side-channel attack has been successfully applied to
Haven [2] and TruSDN in its current form could also
be vulnerable to such side-channel attacks (note that
we have explicitly excluded side-channel attacks from
the adversary model in Section 3). According to [42],
such attacks could be mitigated rewriting application
such that its memory access pattern does not depend
on sensitive data, prohibiting paging by the underlying
OS or using techniques to obfuscate the memory access
patterns.

Another limitation stems from the reliance on the
platform vendor: by leaking the signing key of the
Quoting Enclave, the platform vendor could create
a “deniable back-door” allowing person-in-the-middle
attacks during remote attestation [38]. This challenge
remains unaddressed at this point.

Enabling Practical Deployments In future work we
aim to modify a popular software switch implementation,
such as Open vSwitch6, in order to confine its security-
sensitive components to an SGX enclave [27]. Placing
only such security-critical components into a TEE can
help reduce the performance overhead of the solution,
improve its portability and facilitate its adoption.

Integrating storage protection mechanisms Re-
lated work on cloud storage protection [11, 15, 25]
and secure virtual environment deployment [28] can be
integrated with TruSDN in order to provide cloud infras-
tructure compute, storage and communication resources
that are secure in the given adversarial model.

Applying TruSDN to virtual network functions
(VNFs) A prototype applying the TruSDN approach
to VNFs in an SDN deployment was described
in [29]. Future challenges include designing an integrated
prototype with component integrity attestation on the
data plane, controller plane and management plane as
well as leveraging TruSDN to secure communications
throughout the deployment.

9. Conclusion

We described, implemented and evaluated TruSDN
– a framework for bootstrapping trust in SDN
infrastructure. It isolates network endpoints and switches
in SGX enclaves, remotely attests their integrity,
and establishes secure communication channels. We
leveraged the principles of SDN to introduce ephemeral
flow-specific PSK distributed at flow creation, which
reduce the overhead of key derivation and reduce the
total time to establish protected channels, at the cost of
a minor delay in the flow rule installation. Finally, we
leveraged the properties of the EPID scheme to propose
an improved approach to prevent cuckoo attacks.

10. Acknowledgements

This research has been performed within the 5G-
ENSURE project (www.5GEnsure.eu) and COLA
project (project-cola.eu) and received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreements No 671562 and No
731574.

References

[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based
attestation and sealing. In Proc. 2nd International
Workshop on Hardware and Architectural Support for

6Open vSwitch Project website: http://openvswitch.org/

14
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

http://openvswitch.org/

Bootstrapping trust in software defined networks

Security and Privacy, HASP ’13, page 10. ACM, June
2013.

[2] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding Applications from an Untrusted Cloud with
Haven. ACM Transactions on Computer Systems,
33:8:1–8:26, August 2015.

[3] R. Bifulco, H. Cui, G. O. Karame, and F. Klaedtke.
Fingerprinting Software-Defined Networks. In Proc. 23rd
International Conference on Network Protocols, ICNP
’15, pages 453–459. IEEE, November 2015.

[4] E. Brickell and Jiangtao Li. Enhanced Privacy
ID: A Direct Anonymous Attestation Scheme with
Enhanced Revocation Capabilities. IEEE Transactions
on Dependable and Secure Computing, 9:345–360, May
2012.

[5] Martin Casado, Nate Foster, and Arjun Guha. Abstrac-
tions for Software-defined Networks. Communications of
the ACM, 57:86–95, September 2014.

[6] Stephen Checkoway and Hovav Shacham. Iago Attacks:
Why the System Call API is a Bad Untrusted RPC
Interface. In Proc. 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 253–264. ACM,
March 2013.

[7] OpenFlow Switch Consortium. OpenFlow switch
specification, version 1.3.5. Technical Report ONF TS-
023, Open Networking Foundation, March 2015.

[8] Allan Cook, Michael Robinson, Mohamed Amine Ferrag,
Leandros A. Maglaras, Ying He, Kevin Jones, and Helge
Janicke. Internet of Cloud: Security and Privacy Issues.
Technical Report arXiv:1711.00525, arXiv, November
2017.

[9] Danny Dolev and Andrew C Yao. On the security of
public key protocols. IEEE Transactions on Information
Theory, 29:198–208, March 1983.

[10] John R. Douceur. The Sybil Attack. In Proc.
1st International Workshop on Peer-to-Peer Systems,
IPTPS ’02, pages 251–260. Springer, March 2002.

[11] Rafael Dowsley, Antonis Michalas, Matthias Nagel, and
Nicolae Paladi. A survey on design and implementation
of protected searchable data in the cloud. Computer
Science Review, In press, August 2017.

[12] Pasi Eronen and Hannes Tschofenig. Pre-shared key
ciphersuites for transport layer security (TLS). RFC
4279, RFC Editor, December 2005.

[13] Dino Farinacci, P Traina, Stan Hanks, and T Li. Generic
routing encapsulation (GRE). RFC 2992, RFC Editor,
March 2000.

[14] Mohamed Amine Ferrag, Leandros A. Maglaras, Helge
Janicke, Jiamin Jiang, and Lei Shu. Authentication
Protocols for Internet of Things: A Comprehensive
Survey. Security and Communication Networks, 2017:41,
2017.

[15] C. Gehrmann, F. Morenius, and N. Paladi. Procedure
For Platform Enforced Storage in Infrastructure Clouds,
March 2016. Patent Application WO2014185845 A1.

[16] Natasha Gude, Teemu Koponen, Justin Pettit, Ben
Pfaff, Mart́ın Casado, Nick McKeown, and Scott
Shenker. NOX: towards an operating system for
networks. ACM SIGCOMM Computer Communication
Review, 38:105–110, July 2008.

[17] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei
Gu. Poisoning Network Visibility in Software-Defined
Networks: New Attacks and Countermeasures. In
Proc. 2015 Network and Distributed System Security
Symposium, NDSS ’15. Internet Society, February 2015.

[18] C Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm. RFC 2992, RFC Editor, November 2000.

[19] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei
Shih, JaeHyuk Lee, Changho Choi, Youjung Shin,
Taesoo Kim, Brent Byunghoon Kang, and Dongsu Han.
OpenSGX: An Open Platform for SGX Research. In
Proc. 2016 Network and Distributed System Security
Symposium, NDSS ’16. Internet Society, February 2016.

[20] Diego Kreutz, Fernando Ramos, and Paulo Verissimo.
Towards secure and dependable software-defined net-
works. In Proc. 2nd ACM SIGCOMM workshop on Hot
topics in software defined networking, HotSDN ’13, pages
55–60. ACM, August 2013.

[21] Fang-Chun Kuo, Hannes Tschofenig, Fabian Meyer, and
Xiaoming Fu. Comparison studies between pre-shared
and public key exchange mechanisms for transport layer
security. In Proc. 25th IEEE International Conference
on Computer Communications, INFOCOM ’06, pages 1–
6. IEEE, April 2006.

[22] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In Proc. 2nd
International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’13, pages 10:1–
10:1. ACM, June 2013.

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM
Computer Communication Review, 38:69–74, April 2008.

[24] Thomas D. Nadeau and Ken Gray. SDN: Software
Defined Networks. O’Reilly Media, Inc., Sebastopol,
California, USA, 2013.

[25] N. Paladi, C. Gehrmann, and A. Michalas. Providing
User Security Guarantees in Public Infrastructure
Clouds. IEEE Transactions on Cloud Computing, 5:405–
419, July 2017.

[26] Nicolae Paladi. Towards Secure SDN Policy Man-
agement. In Proc. 8th International Conference on
Utility and Cloud Computing, UCC ’15, pages 607–611,
December 2015.

[27] Nicolae Paladi. Trust but Verify: Trust Establishment
Mechanisms in Infrastructure Clouds. PhD thesis, Lund
University, September 2017.

[28] Nicolae Paladi, Christian Gehrmann, Mudassar Aslam,
and Fredric Morenius. Trusted Launch of Virtual
Machine Instances in Public IaaS Environments. In
Proc. 15th International Conference on Information
Security and Cryptology, ICISC’ 12, pages 309–323.
Springer, December 2012.

[29] Nicolae Paladi and Linus Karlsson. Safeguarding VNF
Credentials with Intel SGX. In Proceedings of the
SIGCOMM Posters and Demos, SIGCOMM Posters and
Demos ’17, pages 144–146. ACM, August 2017.

15
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

N. Paladi, C.Gehrmann

[30] Bryan Parno. Bootstrapping Trust in a ”Trusted”
Platform. In Proc. 3rd Conference on Hot Topics in
Security, HOTSEC’08, pages 9:1–9:6. USENIX, July
2008.

[31] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan
Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross,
Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. The Design and Implementation of
Open vSwitch. In Proc. 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
’15, pages 117–130. USENIX, May 2015.

[32] Philip Porras, Seungwon Shin, Vinod Yegneswaran,
Martin Fong, Mabry Tyson, and Guofei Gu. A security
enforcement kernel for OpenFlow networks. In Proc. 1st
Workshop on Hot topics in software defined networks,
HotSDN 12, pages 121–126. ACM, August 2012.

[33] Phillip Porras, Steven Cheung, Martin Fong, Keith
Skinner, and Vinod Yegneswaran. Securing the software-
defined network control layer. In Proc. 2015 Network
and Distributed System Security Symposium, NDSS ’15.
Internet Society, February 2015.

[34] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui
Miao, Vyas Sekar, and Minlan Yu. SIMPLE-fying
Middlebox Policy Enforcement Using SDN. In Proc.
ACM Conference of the Special Interest Group on Data
Communication, SIGCOMM ’13, pages 27–38, New
York, NY, USA, 2013. ACM.

[35] Eric Rescorla and Nagendra Modadugu. Datagram
Transport Layer Security Version 1.2. RFC 6347, RFC
Editor, January 2012.

[36] Thomas Ristenpart and Scott Yilek. When Good Ran-
domness Goes Bad: Virtual Machine Reset Vulnerabili-
ties and Hedging Deployed Cryptography. In Proc. 2010

Network and Distributed System Security Symposium,
NDSS ’10. Internet Society, February 2010.

[37] Xiaoyu Ruan. Safeguarding the Future of Computing
with Intel Embedded Security and Management Engine.
Apress, Berkely, CA, USA, 1st edition, 2014.

[38] Joanna Rutkowska. Thoughts on Intel’s upcoming
Software Guard Extensions (Part 2), 2013. [Online;
March 2016].

[39] Felix Schuster, Manuel Costa, Christos Gkantsidis, Mar-
cus Peinado, Gloria Mainar-ruiz, and Mark Russinovich.
VC3 : Trustworthy Data Analytics in the Cloud using
SGX. In Proc. 2015 IEEE Symposium on Security and
Privacy, SP ’15, pages 38–54. IEEE, May 2015.

[40] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho
Lee, Jaewoong Chung, Phillip Porras, Vinod Yeg-
neswaran, Jiseong Noh, and Brent Byunghoon Kang.
Rosemary: A Robust, Secure, and High-Performance
Network Operating System. In Proc. 2014 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 78–89. ACM, November 2014.

[41] Jesse Walker and Jiangtao Li. Key exchange with
anonymous authentication using DAA-SIGMA protocol.
In Proc. 2nd International Conference on Trusted
Systems, INTRUST ’11, pages 108–127. Springer,
December 2011.

[42] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted
Operating Systems. In Proc. 2015 IEEE Symposium on

Security and Privacy, SP ’15, pages 640–656. IEEE, May
2015.

16
EAI Endorsed Transactions on

 201 - 1 2017 | Volume 4 | Issue 1 | e5

	Introduction
	Contribution
	Organization

	System Model
	Software Defined Networking
	Deployment layers
	Trusted Execution Environments

	Threat Model
	Network infrastructure
	Platform

	Solution Description
	TruSDN overview
	Cryptographic Primitives
	SDN Trust Bootstrapping and Secure Communication
	Preventing Cuckoo Attacks

	Security Analysis
	Implementation and Evaluation
	TruSDN Implementation
	TruSDN Evaluation
	Sources of Performance Impact
	Measured Performance Impact
	Unmeasured Performance Overhead

	Related work
	Adversary models for SDN deployments
	Secure SDN controllers
	Software Guard Extensions

	Future Work
	Conclusion
	Acknowledgements

