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Abstract. This paper proposes a Human-Robot Interaction (HRI) system through voice 
commands. The study used the Barelang 7 humanoid dancing robot platform comprising 
29 Degrees of Freedom (DoF). Automatic Speech Recognition (ASR) was developed 
using Python programming language and the VOSK Offline Speech Recognition toolkit 
to recognize five instructions spoken by random speakers. The voice recognition results 
in ASR are then sent to the robot via serial communication to realize movements 
according to spoken instructions. From tests conducted on five speakers randomly with 
100 attempts, a Word Error Rate (WER) value of 0.096 was obtained. Meanwhile, testing 
the entire HRI system achieved a success rate of 92%. These results indicate that the HRI 
system has been successfully implemented on humanoid robots, although there are still 
some errors in the ASR system, that affect the overall performance of the HRI system. 
The results of this research contribute to the research and development of HRI systems, 
especially in humanoid robots, which are still not widely studied.  

Keywords: Human-Robot Interaction, Automatic Speech Recognition, Humanoid Robot, 
HRI, ASR. 

1   Introduction 

Human-robot interaction (HRI) is a multi-disciplinary field that designs, understands, and 
evaluates robotic systems involving human and robot communication [1]. Currently, research 
in HRI is rapidly increasing because communication between humans and robots is essential. 
The HRI is used to develop collaborative robotic systems that can work with humans. In the 
HRI system, humans provide instructions to the robot through sound, visual signs, or 
movements. Then, those instructions must be properly executed by the robot. In advanced HRI 
systems, robots not only carry out instructions but are also required to provide action feedback 
to humans through the media mentioned above.  

One of the studies related to HRI on humanoid robots has been conducted by [2], which 
develops emotional expression systems using LED lights and breathing simulators. This 
humanoid robot will visually express emotions to the user. The emotional expression helps the 
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user understand the given message by the robot. Meanwhile, in the health sector, the HRI is 
also of great benefit. Implementing HRI on robots is helpful as a substitute for professional 
nurses in serving patients. An example of its implementation is the robot Exode [3], developed 
to interact with older people through natural conversation. The robot is designed to remind 
older people to take medications. In addition, this robot has a remote monitoring feature, 
which can be used to determine the condition of older people in real-time. 

HRI through voice commands is quite widely developed for robots. Voice commands are 
considered more efficient and natural to implement. The HRI implementation based on voice 
is also starting to be used in industrial automation. For example, HRI in the manufacturing 
industry was developed by [4] called Voice-Controlled Production (VCP). VCP is an 
implementation of Automatic Speech Recognition (ASR) on Human-Machine Interface (HMI) 
devices used to control machines or robots in production. In this study, an ASR was designed 
to predict the speech of German words. This ASR was designed using a combination of a 
Time-Delay Neural Network (TDNN) and a Long Short-Term Memory (LSTM) network, 
which was trained to detect 33 commands at a frequency of 16 KHz. By implementing this 
VCP, the production efficiency increased by 67%. 

In robotic systems, HRI with voice commands is generally developed to control the robot's 
movement. Research conducted by [5] involves developing wheeled robots that can be 
controlled via voice. In [5], ASR is developed for Android applications using the Google 
Voice Assistant service. Then, the output data from ASR is sent to the robot controller via Wi-
Fi. This study used eight commands to control the robot's movement: moving forward, 
backward, turning left, turning right, opening the gripper, closing the gripper, raising the arm, 
and lowering the arm. The proposed ASR showed an accuracy rate of 95% from tests 
conducted by three speakers. Meanwhile, [6] developed ASR on Android through Android 
Inter-Process Communication Android Interface Definition Language (IPC AIDL). In this 
study, five voice commands were used to control wheeled robots. The command is spoken in 
three languages, namely Korean, English, and Vietnamese. This study combined online and 
offline ASR for the multi-language ASR. Offline ASR is developed using deep learning 
models trained using TensorFlow and Keras libraries. The deep learning model is compressed 
and optimized for the RockChip RK3399 Pro processor. The deep learning model is 
specifically designed to detect English voices. As for Korean and Vietnamese voices, online 
ASR uses Google Cloud AI services. From the results of tests conducted using 1850 recorded 
voices, the accuracy rate obtained was 95% in English and Vietnamese. As for detecting 
Korean representatives, the ASR accuracy rate is only 87%. 

Meanwhile, the development of HRI on more advanced robots is carried out by [7] and [8]. 
Robotic systems designed by [7] are used to help people who are in isolation when contracting 
infectious diseases. In this study, ASR was combined with word separation to extract intent 
from the instructions given by the speaker. Audio signals are processed by Mel Frequency 
Cepstral Coefficients (MFCCs) feature extractors and further classified by Convolutional 
Neural Networks (CNN). In this study, the words tested to be expected were the words 
"robot", "bring", "carry", "stop", "cup", "paper", "towel", and "medicine". The proposed 
speech recognition has an accuracy rate of 96.9%. Meanwhile, the proposed method achieved 
a success rate of 88.75% for the overall level test on the robot. 



 

 
 
 
 

On the other hand, research conducted by [8] develops HRI on servant robots. In this system, 
the sound signal is first preprocessed to eliminate noise and detect the presence or absence of 
the speaker's voice. This preprocessing stage uses the Gaussian Mixture Model (GMM) 
implemented on WebRTC. The preprocessed sound signal is filtered to separate the registered 
speaker's voice from other random speakers. This voice separation combines CNN, LSTM, 
and a Fully Connected Neural Network (FCNN). Then, the separated sound is predicted using 
a Convolution-Augmented Transformer. This system obtained a WER value of 5.3% from the 
tests conducted, with an accuracy rate of 89.3%. 

In the studies discussed earlier, the implementation of ASR is generally only on wheeled 
robots driven by two rotary actuators. In addition, the commands given to the robot are pretty 
simple. They are just basic movement commands. On the other hand, there is still no 
implementation of ASR to support HRI in humanoid robots. The application of ASR to 
humanoid robots is quite challenging because humanoid robots are formed by complex joint 
actuators consisting of many degrees of freedom. Integrating ASR with the action of 
humanoid robot movement is also not easy because what is controlled is not only two 
actuators, such as wheeled robots, but many actuators. 

This study will discuss the use of ASR in humanoid robots for HRI systems. The HRI can be 
applied to humanoid service robots to facilitate interaction with humans through conversation. 
As the first step of the research, in this study, the robot was designed to be able to move 
according to commands spoken by the speaker. The five voice commands instructing the robot 
are standing, sitting, waving, clapping, and dancing. In this study, ASR is proposed to use 
VOSK Offline Speech Recognition to predict speech in English. In addition, a system for 
forming robot movements with data recording is also proposed. 

More details related to the discussion of this paper will be explained in the next section. 
Section 2 describes the robot platform used for testing, how to form movement in the robot, 
and the ASR system itself. Then, we continue with Section 3, which discusses how to evaluate 
the results of this study and discussion of the results obtained. The paper is closed with the 
conclusion and future work section in the Section 4. 

2   Materials and methods 

This section will describe the methods used to implement human-robot interaction. First, we 
will explain the humanoid robot platform used in this study. Then, explain the method of 
forming movement patterns in robots. After that, it continued with an explanation of the 
speech recognition system implemented in the robot as well as how to integrate the system as 
a whole. The details of the explanation will be described in the sub-section below. 

2.1   Humanoid robot platform 

This research used the Barelang 7 humanoid robot platform as research material. The 
visualization of the Barelang 7 robot is shown in Fig.  1. The Barelang 7 is a humanoid robot 
for demonstrating traditional Indonesian dances. In addition, this robot actively competed in 
the Kontes Robot Indonesia (KRI), especially the Kontes Robot Seni Tari Indonesia (KRSTI) 
division. Fig.  1 (a) describes the mechanical design of the robot, and Fig.  1 (b) demonstrates 
the Barelang 7 robot equipped with traditional dancer clothes. 



 

 
 
 
 

This robot has a total number of joints with 29 Degrees of Freedom (DoF). Compared to 
designs from similar studies [9], the robot design proposed in this study has a more complex 
joint configuration. With this complex joint configuration, the robot can move more flexibly. 
The configuration of the robot parts can be explained as follows. Each leg has six joint 
actuators to move the torso so the robot can move to another position. Meanwhile, six joint 
actuators can imitate human dance movements on each hand. In addition, the movement of the 
robot's torso is also controlled by two additional joint actuators. These two joint actuators 
move the torso in the 𝑦-axis and 𝑧-axis. While in the head, three driving joints move the head 
towards the 𝑥-axis, 𝑦-axis, and 𝑧-axis. 

The hardware configuration used to implement HRI through speech recognition can be seen in 
Fig.  2. Generally, the OpenCR microcontroller board processes all actuators on the robot. On 
this OpenCR board, an external EEPROM chip is added to store robot movement data. On the 
other hand, an Intel Nuc mini computer is separate from the robot to process the speech 
recognition algorithm from the microphone. Communication between the computer and the 
robot uses the RS-232 serial communication line. The data sent to the robot is text data, which 
is the output from the ASR system. 

  
(a) (b) 

Fig.  1. Humanoid dancing robot Barelang 7, (a) mechanical design and (b) robot performance with 
traditional dancer clothing. 



 

 
 
 
 

 

Fig.  2. Hardware block diagram of HRI implementation. 

2.2   Motion generation 

In this study, we designed a humanoid robot to be able to form five basic movements. These 
movements are standing, sitting, waving hands, applauding, and dancing. These movements 
are generated by all the joints located on the robot. Robots will later demonstrate these 
movements following instructions spoken by humans. 

There are many methods for the formation of motion in humanoid robots. For stable walking 
movements, the preview control method is one technique that is often implemented. Such 
research was conducted by [10]; the walking pattern on the robot is formed by modeling the 
robot as an extended cart table. With this modeling, the Zero Moment Point (ZMP) trajectory 
on the robot is formed based on the footrest point that the robot will pass, or can be simplified 
by the footrest of the table. Furthermore, the ZMP trajectory forms a Center of Mass (CoM) 
trajectory using preview control techniques. After that, the inverse kinematics equation is used 
from the two trajectories to find the joint configuration in the foot. 

In our research, the robot motion to be formed is static. The robot only performs motions on 
the spot without walking to another position. To form movements like this, we use the 
prerecorded motion method. The principle of this method is to store the values of the robot's 
joint configuration at a specific time in an Electrically Erasable Programmable Read-only 
Memory (EEPROM). Then, these values are used as a reference to form a trajectory for the 
entire joint of the robot. Unlike the motion formation technique proposed by [10], in this 
technique, the resulting trajectory is a trajectory in the joint space. The advantage of our 
proposed method is that there is no need for inverse kinematics equations to convert the world 
space trajectory to the joint space trajectory. 



 

 
 
 
 

This joint space trajectory is formed based on the reference to each joint's starting position and 
ending position to be moved. Then, the trajectory is formed by mathematical functions such as 
polynomial curve equations [11] or piecewise quintic polynomials [12]. This mathematical 
equation aims to reduce jerks in the joints when moving. We use equation (1) to form the joint 
trajectory. In equation (1), 𝑥(𝑡) is the produced joint positions at the time-𝑡. While 𝑥! is the 
initial position of each joint and 𝑥" is the final position of each joint. While 𝑑 represents the 
total time spent to move the entire joint, and 𝑡 is the current time. 

𝑥(𝑡) = 𝑥! + *𝑥" − 𝑥!,(10(𝑡/𝑑)# − 15(𝑡/𝑑)$ + 6(𝑡/𝑑)%) (1) 

The joints controlled to form movements consist of 12 joints. These joints we note as 𝑞& −
𝑞''. While 𝑠& − 𝑠( are the steps used to form the movement, and 𝑛 is the number of steps 
stored in memory. This step has a different number for each movement, depending on how 
complex the robot moves. 

The recording data for the joint angle in each movement is represented by the data in Table 1 
– Table 5. Joint angle recording data for sitting and standing movements are described in 
Table 1 and Table 2. These two movements only require two steps, namely the initial and 
final positions when sitting and standing. As for the applause and waving motion, each step 
needed is three or four. Joint angle recording data for clapping movements is presented in 
Table 3, and joint angle recording data for waving movements is described in Table 4. 
Meanwhile, most steps needed for robot motion lie in the dance movement in Table 5. The 
robot needs 12 movement steps stored on the EEPROM for dance motion. 

Table 1. Joint angle recording data for sitting motion. 

Step number 
(𝑠! − 𝑠") 

Joint configuration (deg) 
(𝑞! − 𝑞##) 

𝑠! (16.36, -67.04, 86.39, -39.24, -32.91 -17.07, 71.26, -91.67, 32.55, 37.47, -3.35, -11.79) 
𝑠# (6.86, 1.23, 2.99, -10.03, -7.57, -7.57, 1.58, -18.48, 9.67, 11.79, -2.64, -13.2) 

Table 2. Joint angle recording data for standing movement. 

Step number 
(𝑠! − 𝑠") 

Joint configuration (deg) 
(𝑞! − 𝑞##) 

𝑠! (16.36, -67.04, 86.39, -39.24, -32.91, -17.07, 71.26, -91.67, 32.55, 37.47, -3.35, -11.79) 
𝑠# (6.86, 1.23, 2.99, -10.03, -7.57, -7.57, 1.58, -18.48, 9.67, 11.79, -2.64, -13.2) 

Table 3. Joint angle recording data for clapping gestures. 

Step number 
(𝑠! − 𝑠") 

Joint configuration (deg) 
(𝑞! − 𝑞##) 

𝑠! (10.38, -38.89, 80.41, 23.4, -12.85, -7.57, 42.4, -80.76, -17.42, 23.75, -2.29, -7.92) 
𝑠# (10.03, -61.76, 92.02, 23.75, -12.5, -6.51, 74.42, -94.49, -18.48, 23.75, -2.99, -7.92) 
𝑠$ (6.86, 1.23, 2.99, -10.03, -7.57, -7.57, 1.58, -18.48, 9.67, 11.79, -2.64, -13.2) 



 

 

Table 4. Joint angle recording data for hand waving motion. 

Step number 
(𝑠! − 𝑠") 

Joint configuration (deg) 
(𝑞! − 𝑞##) 

𝑠! (16.36, -67.04, 86.39, -39.24, -32.91, -17.07, 71.26, -91.67, 32.55, 37.47, -3.35, -11.79) 
𝑠# (55.42, 37.47, 109.26, -16.37, -22.35, -1.23, -9.68, -7.92, 15.66, 13.19, 17.42, -13.9) 
𝑠$ (70.9, 15.3, 131.78, -15.66, -22, -1.94, -10.03, -7.57, 15.66, 13.19, -9.68, -13.9) 
𝑠% (6.86, 1.23, 2.99, -10.03, -7.57, -7.57, 1.58, -18.48, 9.67, 11.79, -2.64, -13.2) 

Table 5. Joint angle recording data for dance moves. 

Step number 
(𝑠! − 𝑠") 

Joint configuration (deg) 
(𝑞! − 𝑞##) 

𝑠! (18.12, -63.87, 76.54, -62.11, 42.4, -16.72, 67.39, -76.89, 50.49, -42.41, -4.75, -8.98) 
𝑠# (21.64, -58.59, 40.64, -58.95, -34.67, -30.44, 73.02, -36.07, 48.73, 32.55, -5.11, -7.57) 
𝑠$ (16.01, -35.72, 79.35, 94.83, 43.46, -20.24, 39.94, -79, -112.79, -41.7, -5.11, -8.27) 
𝑠% (8.27, 94.48, 39.23, -112.44, -33.96, -38.54, -84.99, -57.19, 126.5, 18.47, -5.11, -4.75) 
𝑠& (46.98, 89.91, 14.6, -118.42, -39.94, -33.96, -91.32, -35.72, 99.76, 32.9, -2.99, -8.62) 
𝑠' (36.77, -24.81, 91.67, -47.69, 53.66, -36.07, 34.66, -91.67, 13.19, -45.57, -2.29, -1.94) 
𝑠( (17.77, -25.52, 99.06, -136.01, -36.42, -25.16, 31.84, -91.32, 126.5, 35.71, -23.76, -0.88) 
𝑠) (19.88, -20.59, 99.76, -136.01, -36.07, -22, 31.49, -91.32, 125.8, 35.71, 20.58, -1.23) 
𝑠* (33.25, -32.91, 99.06, -131.09, -43.81, -29.39, 20.93, -108.21, 149.03, 37.12, -5.81, -5.11) 
𝑠+ (74.78, 74.07, 39.94, -114.9, -50.85, -29.39, 20.93, -108.21, 149.03, 37.12, -5.81, -4.75) 
𝑠#! (39.23, -14.96, 112.43, -124.05, -31.15, -70.56, -88.51, -54.72, 126.5, 34.31, -7.57, -13.2) 
𝑠## (6.86, 1.23, 2.99, -10.03, -7.57, -7.57, 1.58, -18.48, 9.67, 11.79, -2.64, -13.2) 

In terms of memory usage, the memory capacity needed to form one movement can be 
calculated using equation (2). Where 𝑀 is the memory capacity needed, 𝑛)*+,) is the number 
of steps needed, and 𝑛-.!(*) is the number of joints the robot is involved in when moving. The 
constant 8 Bytes is obtained from the total memory capacity needed to store data with the 
double precision type because each joint will store data in double. 

𝑀 = 𝑛)*+, × 𝑛-.!(*) × 8	𝐵𝑦𝑡𝑒𝑠 (2) 

From equation (2) above, the dance movement is the motion that requires the most memory 
storage capacity, which is 1152 Bytes. While the clapping and waving motions each require a 
memory capacity of 288 Bytes and 384 Bytes. Meanwhile, the movement that requires the 
least memory capacity is the sitting and standing movement, which is 192 bytes. So, it can be 
concluded that EEPROM is needed to store the entire movement with a minimum capacity of 
2016 Bytes. 

Fig.  3 illustrates the robot's movement when performing dancing, which has been stored as 
joint configuration data according to the data in Table 5. From Fig.  3, it can be seen that the 
robot will demonstrate different movements from each step of the joint angle configuration. 
As seen from 𝑠& until 𝑠#, the robot moves to raise its hands and then tilts its body to the left. 
Then proceed with the step movement 𝑠$ until 𝑠/ by repeatedly swinging the body and hands 
in opposite directions. While the movement continued in steps 𝑠0 until 𝑠'', the robot began to 
move its head to add variety to the dance moves.  



 

 
 
 
 

    
𝑠! 𝑠# 𝑠$ 𝑠% 

    
𝑠& 𝑠' 𝑠( 𝑠) 

    
𝑠* 𝑠+ 𝑠#! 𝑠## 

Fig.  3. Illustration of dancing motion on the humanoid robot Barelang 7. 

2.2   Speech recognition 

Automatic Speech Recognition (ASR) is a technology that translates spoken language from 
humans into text that computers can understand in real-time [13]. One application of ASR in 
everyday life can be found in smart homes. The latest smart home developed by [14] allows 
control of all house equipment using voice commands with the addition of ASR.  

In general, two categories of ASR are widely implemented in research and development. The 
ASR category can be divided into online systems and offline systems. An online system is an 
ASR that requires third-party services to perform speech recognition inference. Online ASR 
system services generally provide an Application Programming Interface (API) that users can 
use to send voice signals to the server and receive prediction text from the server. Some 
examples of these online ASR systems include Facebook Wit.ai, Microsoft Azure Speech, 
Google Cloud Speech-to-Text, Wav2Vec, and AWS Transcribe [13]. This paid service is 
widely used in various studies, for example, in [15] and [16], which use Google services. 



 

 
 
 
 

Meanwhile, offline ASR systems do not require connections to third-party services. Offline 
ASRs are run directly on edge devices in real-time. For this offline ASR, popular deep 
learning-based algorithms can be implemented on edge devices with the help of several 
toolkits. Some popular ASR toolkits include the Hidden Markov Model Toolkit (HMM 
Toolkit), CMU Sphinx, Kaldi, DeepSpeech, VOSK, and LinTO [17], [18]. 

In this study, we used VOSK as the primary toolkit for the speech recognition process. VOSK 
is implemented using the Python programming language with an English speech recognition 
model on KaldiRecognizer. An overview of the speech recognition process is shown in Fig.  
4. Meanwhile, to realize a real-time speech recognition system, we use the PyAudio library to 
acquire sound signals from microphones. Sound signal acquisition is performed at a sampling 
rate of 16 KHz. PyAudio will stream this audio signal and then store it in a buffer. This 
steamed audio signal is called a frame. A buffer can hold sound signals in more than one 
frame. In the case of this study, we used an audio buffer to hold 8192 frames of sound signals. 
We then took the first 4096 frames from that buffer to be detected using VOSK. The VOSK 
will predict spoken words from that voice frame, and then the ASR results in a JavaScript 
Object Notation (JSON) output format. The JSON data will then be parsed to take the text that 
contains predicted spoken words. This text is then transmitted to the humanoid robot through 
RS-232. Meanwhile, the data is translated into motion on the robot side by the method 
described in sub-section 2.2. 

3   Results and discussion 

This section will discuss the research results that have been obtained. The discussion will 
begin with an explanation of the evaluation methods in this study. In addition, we also explain 
how to conduct experiments to verify the results of this study. Then, we will describe the 
results obtained from several experiments. The explanations are described in sub-section 3.1 
and sub-section 3.2 below.  

 

Fig.  4. Automatic Speech Recognition (ASR) on the humanoid robot Barelang 7. 



 

 
 
 
 

3.1   Evaluation methods 

We used two evaluation methods to test the proposed methods. Word Error Rate (WER) level 
measurement and Success Rate (SR) testing are the two test methods. WER testing was 
conducted to measure the error rate of voice recognition results. Meanwhile, the success rate is 
used to measure the overall robot performance in receiving and executing instructions given 
by the speaker. 

The WER value can be calculated by comparing the words from the ASR prediction with the 
actual words spoken by the speaker [19]. Equation (3) is a formula for calculating 𝑊𝐸𝑅. In 
equation (3), there is a notation 𝑆 that describes the number of words exchanged, 𝐷	which 
defines the number of words deleted, and 𝐼 which states the addition of the word. Meanwhile, 
𝑁 is the actual number of words spoken by the speaker. The smaller 𝑊𝐸𝑅 value, the better the 
ASR system performance. Conversely, the higher 𝑊𝐸𝑅, indicates the ASR is working poorly. 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁  (3) 

Meanwhile, we tested the robot's success rate by following instructions using several random 
experiments. Then, calculate the robot's success rate in carrying out the instructions given 
using equation (4). We describe this level of success with the notation 𝑆𝑅, where 𝑛12 defines 
the correct actions executed by the robot according to the instructions. While 𝑛1 is the number 
of commands given to the robot during the testing. The higher 𝑆𝑅 value, the better the 
proposed system gets. On the contrary, the lower 𝑆𝑅 value describes the high failure rate. 

𝑆𝑅 =
𝑛12
𝑛1

× 100% (4) 

3.2   Test results 

Tests of the ASR are carried out by taking real-time sound signals from microphones and 
predicting them with VOSK. In this experiment, VOSK will print predictions of spoken words 
on the computer monitor. We then observe and compare the VOSK output with the actual 
words spoken by the speaker. The words used for testing are "sit down", "stand up", "hello", 
"dancing", and "clap". To improve the validity of the results, we tested the ASR system with 
five random speakers, consisting of three men and two women. Each speaker said the five 
words four times. So, the total number of experiments carried out was 100 times.  

We gain the value 𝑊𝐸𝑅=0.096 from the tests. In the test, the total word substitution was 
obtained (𝑆), a total of 14; meanwhile, there was no addition of words (𝐼) or word removal 
(𝐷). The prediction of words containing errors is described in Table 6. In Table 6, the first 
woman to experiment is indicated by the symbol F1 and the second woman, F2; likewise, the 
first man, M1, the second man, M2, and the third man, M3. From the statistics, "dancing" is 
the word with the highest error rate. There were four prediction errors in this word. The phrase 
"dancing" is often predicted as the word "damn thing", "ben thing", or "then thing". In addition 
to "dancing", the word with a high error rate is "clap". The ASR often detects this "clap" as the 
words "club", "black", and "here is club". In addition, there is the word "stand up" spoken by 
M2, which is predicted as "spin up". However, this only happens once in the entire test. 



 

 
 
 
 

After testing the ASR system, we tested the HRI system with the robot. In this test, we 
integrated the ASR system into the robot. So, we can observe the robot's movement and 
determine whether it matches the speech instructions. Supposedly, after hearing the "sit 
down", the robot moves to sit, and after hearing the "stand up", the robot moves to stand. 
Likewise, the robot's "hello", "dancing", and "clap" commands will move, waving, dancing, 
and clapping. 

After testing 100 times, we found eight total failures, in which the robot did not perform any 
action after listening to the instructions. Table 7 displays a selection of test results derived 
from 100 experiments. In this test, some failures are caused by ASR predictions that do not 

Table 6. List of errors in ASR prediction results during testing. 

Person Spoken word Recognized word 
F1 dancing damn thing 
F1 dancing ben thing 
F2 dancing damn thing 
F2 clap club 
M1 clap black 
M2 dancing then thing 
M2 stand up spin up 
M3 clap here is club 

Table 7. Samples of spoken instruction and the robot action during testing HRI. 

No. Person Spoken word Recognized word Robot action 
1 F1 sit down sit down sitting down 
2 F1 stand up stand up standing up 
3 F1 hello hello waving hand 
4 F1 dancing dancing dancing 
5 F1 clap clap clapping 
6 F2 sit down sit down sitting down 
7 F2 stand up stand up standing up 
8 F2 hello hello waving hand 
9 F2 dancing damn thing no action 
10 F2 clap clap clapping 
11 M1 sit down sit down sitting down 
12 M1 stand up stand up standing up 
13 M1 hello hello waving hand 
14 M1 dancing dancing dancing 
15 M1 clap clap clapping 
16 M2 sit down sit down sitting down 
17 M2 stand up stand up standing up 
18 M2 hello hello waving hand 
19 M2 dancing then thing no action 
20 M2 clap clap clapping 
21 M3 sit down sit down sitting down 
22 M3 stand up stand up standing up 
23 M3 hello hello waving hand 
24 M3 dancing dancing dancing 
25 M3 clap clap clapping 

 



 

 
 
 
 

match the list of motions in the robot. For example, in Table 7 sample number 9, if speaker F2 
says "dancing" but the ASR detects it as a "damn thing", then the robot will not perform any 
action because the "damn thing" motion is not stored on the EEPROM. With a total of 8 
failures in this test, the 𝑛12 value stands at 92. The number of 𝑛1 is equal to the number of 
tests, specifically 100 voice commands. So, from testing the system as a whole, an 𝑆𝑅 = 92% 
value was obtained as described in equation (5). Compared to similar tests conducted by [5], 
our success rate is 3% lower. However, regarding test validity, the number of speakers 
involved in this test was five, while in [5], there were only three. In addition, our proposed 
system is offline and does not require third-party services to perform ASR system inference. 
The results of testing the voice recognition system can be observed in the video demonstration 
at the following link: https://www.youtube.com/watch?v=Ab6OyGEY_gM. 

𝑆𝑅 =
92
100 × 100% = 92% (5) 

4   Conclusion and future work 

This study concluded that the HRI system using voice commands on humanoid dancing robots 
has been successfully implemented. This conclusion is evidenced by several tests carried out, 
both on ASR and the HRI system. The ASR proposed in this study has a WER performance of 
0.096. This WER value shows that there is still potential for word recognition errors in the 
proposed system. This cause of error needs to be investigated further, whether it comes from 
mispronunciation by non-native speakers or due to deficiencies in the ASR. In the future, 
testing using native speakers must be done to conclude this. In terms of success rate, the robot 
can carry out movements according to instructions with a success rate of 92%. Some failures 
that arise are caused by the ASR, which is still inaccurate. Some parts still need to be 
explored, especially the method of forming robot motion. Storage of joint positions in 
EEPROM memory requires considerable memory capacity. It needs to be further investigated 
how this data is more efficient in storage so that the memory capacity required is efficient. 
Additionally, in the future, the proposed HRI system in the humanoid robot can be used to 
develop humanoid service robots that can interact directly with humans through conversation. 
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