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Abstract. Electromyography (EMG) Signals from human muscles can be utilized in 
various fields. One of them is in the control field. Some control systems use a person's 
finger movements. So, an algorithm is needed to recognize hand movement patterns. 
This paper examines systems' capabilities using neural network algorithms with discrete 
wavelet transforms. The signal is obtained from the EMG signal generated by the surface 
EMG sensor. This sensor is issued on the user's upper arm. This study used three healthy 
subjects with five-finger movements. This system is able to recognize patterns of finger 
movements, about 79.79%. 
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1 Introduction 

Robotics is a rapidly developing field with applications in many areas, including assisting with 
tasks that require precision or are performed in dangerous areas. These technologies can also 
be used for diagnosis, medication administration, and injury avoidance in the medical field. 

Biomechanics, the study of human movement, also contributes to developing new 
technologies. One example is electromyography (EMG), which uses signals generated by 
muscle contraction to control devices such as hand robots [1] and prosthetic hands [2]. This 
technology is particularly beneficial for people with amputations. 

 

Two standard methods for reading EMG signals are inserting sensors into the skin or detecting 
the signal on the skin's surface [3]. Most users prefer the latter method. The raw signal from 
EMG sensors must be processed using various techniques, including pattern recognition 
methods [4]. 

 

To recognize EMG signals, the characteristics of the signal must be understood. There are 
three types of domains for understanding the features of EMG signals: Frequency, time, and 
time-frequency [5]. Several algorithms have been studied for recognizing hand poses, 
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including K-Nearest Neighbor (K-NN) [6], Linear Discriminant Analysis (LDA) [7], Neural 
Network (NN) [7], Fuzzy [8], and Artificial Neuro-Fuzzy Inference System (ANFIS) [9]. 

 

This study utilizes the frequency domain using discrete wavelet transformation. Discrete 
Wavelet Transform (DWT) is one of the tools for analyzing and processing signals and 
images, allowing for efficient representation of information at different scales and frequencies. 
It has found applications in various fields, including vision and audio processing, data 
compression, and feature extraction [10]. For the identification process, the Neural network 
algorithm is used. The study covers the data acquisition and signal characterization, the 
success rate of gesture recognition, and a summary of the findings. 

 

2 Methods 

This study used a Myo armband to detect EMG signals. The signals were processed on a PC 
with a Core i5 processor and 8GB RAM. Figure 1 shows the diagram blok of the system. The 
myo armband has eight EMG sensors. The armband is placed in the middle of the subject's 
right arm. The sensor number 4 was located approximately in the middle of the back of the 
hand (see Figure 2). The subject sat in a chair with their hand on a desk to obtain the signals. 
The subject then moved their fingers through eight gestures, as shown in Figure 3. The 
gestures are relaxing, close all the fingers, open all fingers, and open the thumb, index, middle, 
ring, and pinkie finger. Three healthy men have become subjects of this study. The average 
age of the subjects is 21 years old.  

 

 
Fig. 1. Block diagram of the system 



 

 
 
 
 

 

 
 

Fig. 2. The placement of the sensors 

 
Fig. 3. Gestures of the fingers 

 

The system used two phases to identify the movements of the fingers: a training phase and a 
test phase. The flowchart of both steps is shown in Figure 4. The EMG signals from the sensor 
on the subject were then converted to the frequency domain using DWT. The Discrete 
Wavelet Transform (DWT) is a mathematical technique used for signal processing, data 



 

 
 
 
 

compression, and image analysis. It divides a signal into different frequency components, 
making data representation more efficient. This is achieved by filtering the signal through 
low-pass and high-pass filters, creating multiple scales. At each level, DWT produces wavelet 
coefficients that represent features of the signal at that scale. Unlike continuous wavelet 
transforms, DWT deals with discretely sampled wavelets. Subjects are requested to activate 
their right hand. Each subject moves their hand appropriately with the eight gestures. They 
actuate each motion one hundred times.  
 

Using the algorithm, the Neural network weights for recognition of the gestures. In the test 
phase, the neural network algorithm with the weights obtained from the training phase was 
used to identify the gesture the subject made. Each subject drives one hand a hundred times 
for each motion in real-time. 

 

 
Fig. 4. Flow chart of the system 



 

 
 
 
 

3 Results and Discusion 

This section will focus on the experiments' results and discuss them. Signals from the subjects 
are saved in txt file. Those signals are then transformed to DWT. Figure 5a shows the raw 
signal from the eight EMG sensors in time domain for a relax gesture from one subject. In 
Figure 5b, the graphic of the signal DWT results from the raw signal. 

 

 
(a) 

 
(b) 

Fig. 5. (a) raw signal (b) the DWT signal of the relax gesture 



 

 
 
 
 

 

Signal DWT from three subjects with eight gestures of the fingers becomes the input of the Neural 
Network algorithm. We used two hidden-layer Neural Networks. One hundred input nodes, twenty-six 
first hidden layer nodes, twenty nodes of the second hidden layer, and eight output nodes are the Neural 
Network's composition. For the training phase, the iteration was set to 8000 iterations. With this 
iteration, the error is obtained 0.0001345. 

 

Afterwards, the tests phase was done with the weights of the nodes obtained from the training phase. All 
the subjects were asked to move their hand. They do each gesture 100 times. Table 1 shows the success 
rate results for each gesture and subject. 

 

Table 1. Table title. Table captions should always be positioned above the tables. 

Gestures Subject 1 Subject 2 Subject 3 Average 
Relax 86. 82 85 84.33 
Open 90 85 86 87 
Close 92 82 88 87.33 
Thumb 83 81 79 81 
Index 79 75 72 75.33 
Middle 77 69 78 74.67 
Ring 70 67 68 68.33 
Pinkie 79 79 83 80.33 
Average 82 77.5 79.88 79.79 

 

From Table 1, the average success for all subjects and gestures is 79.79%. Close gestures have 
the highest percentage of success, and the ring finger gesture is the lowest percentage of the 
system enabled to recognize. This situation might happen because the ring finger gesture 
almost uses the same muscle as the index finger movement. Moreover, close motion is the 
highest because most of the muscles are contracted, so it will differ from other gestures. 

 

4 Conclusions 

This system is capable of identifying the poses of the subject's fingers. Results show that the 
percentage of this system is 79.79% to acknowledge gestures. In the future, this system will be 
implemented for controlling hardware. 
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