Characteristics of Flavanones from the Genus Artocarpus

1st Aliefman Hakim1, 2nd Eka Junaidi1, 3rd Dwi Laksmiwati1
{aliefmanhakim27@gmail.com, xjuned@yahoo.com, dwilaksmiwati23@gmail.com}

University of Mataram, Faculty of Teacher Training and Education, Indonesia1

Abstract. All patterns of order that exist in nature, have been listed in the scriptures. One such order can be seen in the secondary metabolite compounds of the genus Artocarpus. Some species of genus Artocarpus have been investigated the contained secondary metabolites. Flavonoid group is the most found from Artocarpus plant. One of flavonoid derivatives which is successfully isolated from Artocarpus plant is flavanon. The oxygenation pattern of flavanones in ring B was trioxygenation at position 2’, 4’, 6’, or dioxygenation 2’, 4’, or monohydroxide 4. The pattern did not follow the shikimic acid and acetic malonate biogenesis pathways. The structures were determinated based on IR and NMR spectroscopic data.

Keywords: Artocarpus, flavanones, shikimic acid, acetic malonate, biogenesis pathways.

1 Introduction

All patterns of order that exist in nature are listed in the Koran. The verses that mention order in the universe are Surah Al Furqan, Al Qamar, and Hijr. "Who has the kingdom of heaven and earth, does not have children, there is no ally for Him in (His) power, and He created all things, then set their measurements accordingly," (Surah al-Furqan: 2). "Indeed, We create everything according to size," (Surah Al-Qamar: 49). "And there is nothing, but on the side of us is the treasury. We did not reduce it but with a certain size," (Surah al-Hijr: 21). One such order can be seen in the secondary metabolite compounds of the genus Artocarpus.

Artocarpus is the main genus of the Moraceae family [1]. Artocarpus belongs to the clan of jackfruit plants. Plant species included in this genus such as jackfruit or breadfruit which are widely used for fruit, wood, skin, and sap [2]. Research on the chemical content of the genus Artocarpus has been carried out. The chemical compounds reported in the Artocarpus include triterpenes, steroids, flavonoids, stilbenoids, and lignans [3,4]. The phenolic compound which is the most abundant compound found in the genus Artocarpus is a class of flavonoids. These phenolic compounds are reported to have anti-bacterial activity [5], anti-fungal [6], anti-malaria [7] and cytotoxic [8]. These activities are related to the content of secondary metabolites [9-13].
2 The Isolation Procedures

The extracts is made from powder, extraction, solvent separation, and extract concentration. The extraction repeated until less colorful supernatant. Rotary evaporator is used to produced crude extract. Furthermore, the TLC (Thin Layer Chromatography) used for obtained extraction using various eluents. The TLC chromatogram was a basis for fractionation by vacuum liquid chromatography (VLC). The main fractions from VLC were analyzed again by TLC. Fractions that have same spots (RI) is pooled. Purification were done repeatedly by radial chromatography. The TLC chromatogram was used for the quality of the purity of an isolate. The pure compound shows a single spot on the three different eluent systems.

Spectroscopic methods was used to determine the structures of secondary metabolites. (i) The presence of double bond conjugation in the structure of secondary metabolites was determined using UV-Vis spectrum. (ii) The functional groups ware determined using Infrared spectrum. (iii) NMR (Nuclear Magnetic Resonances) were a great tools for determinining of secondary metabolites structures.

3 Flavonoids

The flavonoid compounds originated from the shikimat acid and malonic acetate pathways. Many variety of flavonoid of Artocapus frameworks. This article described flavanones that have been isolated from Artocapus. The main compound of secondary metabolites of Artocarpus is flavonoid. Flavanones compounds is flavonoid derivatives. Some flavanones compounds that isolated from Artocarpus consist of: Artocarpanone (1) from A. champeden is isolated by Djakaria [14]. Artoindonesianin E (2) and heteroflavanone A (3) isolated from A. champeden by Hakim et al. [15]. Nomura et al. [16] also isolates compound 3 from the root bark of A. champeden. 8-geranyl-4’0.7-dihydroxyflavanon (4), 3’-geranyl-4’,5,7-trihydroxyflavanon (5) and isonimfaeol-B (6) isolated by Jayasinghe et al. [17] from A. nobilis. Oxygenation pattern of flavanones have in ring B is trioxygenation at position 2’, 4’, 6’ or dioxygenation 2’, 4’, 3’, 4’ or monohydroxide 4’.

![Chemical structures]

1 = R = H
3 = R = CH₃
4
5
6
4 Conclusion

Natural order as explained in the Qur’an can be seen in the regularity of flavanones from Artocarpus. Oxygenation pattern of flavanones from Artocarpus in ring B is trioxygenation at position 2’, 4’, 6’, or dioxygenation 2’, 4’, or monohydroxide 4’. Pattern of flavanones compounds is not in accordance with the pattern of the acetate malonate pathway and the shikimic pathway which is the biogenesis pathway of the flavonoid group.

References

