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Abstract

This article proposes a performance analysis of a non-orthogonal multiple access (NOMA) transmission
system in the presence of user mobility. The main objective is to illustrate how the users’ mobility can
affect the system performance in terms of downlink aggregated throughput, downlink network fairness, and
percentage of quality-of-service requirement guaranteed. The idea behind is to highlight the importance to
take into account user mobility in designing power allocation policies for NOMA systems. It is shown how
the communication technologies are mainly dependent from channel state information (CSI) which in turns
depends on users’ mobility. In addition a reinforcement learning (RL) to tackle with user mobility is proposed.
Performance investigations regarding the proposed framework have shown how the network performances in
presence of users’ mobility can be improved, especially when a feed-forward neural network is used as CSI
estimator.
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1. Introduction
The rapid development of the Internet of Things
(IoT) and the exponential diffusion of powerful
multimedia devices are drastically creating the need
for a new wireless communication technology referred
to as 5G[1]. This new type of technology, respect to
the actual 4G networks, will allow higher density
of connected devices, as well as higher user-data
rate and sub-millisecond level end-to-end latency
[2]. Under these perspectives, NOMA technology
has been labelled as a promising multiple access
scheme for future radio access technology [3, 4].
The basic idea of NOMA is to serve multiple
users in the same resource block (RB). A way to
make this is through power-domain superposition
coding (SC) multiplexing at the transmitter and
successive interference cancellation (SIC) at the receiver
[5]. Then, one of the main challenges of this
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multiple access technique is represented by the power
allocation scheme. Under this perspective, several
studies have been conducted. In [6], different network
optimization problems for a NOMA communication
system were analyzed, i.e. EE, sum-rate and fairness
maximization, and for each of them a closed-form
expression for the optimal power coefficients was
provided. Authors in [7] proposed a novel MIMO-
NOMA framework for both downlink and uplink
transmissions, designing a sophisticated approach
for user precoding/detection vector selection and
analysing the impact of different power allocation
strategies. By considering the possibility to employ
NOMA for future unmanned aerial vehicle (UAV) based
communication systems, power allocation strategies
aimed to improve user-access fairness [8], throughput
[9], as well as coverage [10] and energy efficiency [11]
in UAV-enabled enabled communication using NOMA
have been proposed. In addition to the power allocation
scheme, another factor that strongly impacts on the
performance of a NOMA communication system is how

1

EAI Endorsed Transactions  
on Industrial Networks and Intelligent Systems Research Article 

EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

 10 2020 - 01 2021 | Volume 7 | Issue 25 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<A.MAsaracchia@qub.ac.uk>


Antonino Masaracchia, Minh T. Nguyen, Ayse Kortun

users are multiplexed within the same RB [12]. Since
this represent a mixed integer-linear problem (MILP),
some heuristic approaches based on matching theory-
based [13], neighbour search methods [14], game-
theory [15] and particle swarm optimization (PSO) [16]
have been presented in literature.

In the majority of studies on NOMA presented
in literature, it is assumed that users within the
served area are in a static position. Furthermore, the
availability of perfect channel state information (CSI)
at the transmitter is also assumed. However, in a
more realistic scenario users are moving within the
coverage area and sometimes is not possible to obtain
a perfect CSI estimation at the transmitter. In addition,
the transmitter must execute the selected optimization
framework every time-slot, i.e., user multiplexing
and power allocation, which sometimes cannot result
feasible into power constrained transmissions like UAV-
enabled communications.

In this paper we investigate how the user mobility
impacts on the performance of a power-domain NOMA
(P-NOMA) communication system. In particular, we
investigate how the user mobility impacts on the main
downlink network metrics, i.e. aggregate throughput,
network fairness and QoS requirements. In addition,
we also investigate how the usage of a reinforcement
learning (RL) approach can result helpful in improving
the performance this P-NOMA system, especially when
a neural network (NN) is adopted to predict the channel
coefficients in the successive time-slots. As far as the
authors are aware, the technical literature lacks works
related to the investigation on NOMA performance
where user mobility is supposed. Thus, this article aims
to fill in the existing gap in the literature.

The rest of the paper is organized as follow. Section 2
provides a brief background on RL. The system model
and the proposed RL-based framework are presented in
Section 3 and Section 4, respectively. The simulation
results are provided in Section 5. Conclusions and
future directions are discussed in Section 6.

2. Background on Reinforcement Learning
Reinforcement Learning is a popular machine learning
technique, which allows an agent to automatically
determine the optimal behaviour to achieve a specific
goal based on the positive or negative feedbacks it
receives from the environment in which it operates,
after taking an action from a known set of admissible
actions[17]. Typically, RL problems are formally
defined through: i) a finite set S = {s1, s2, · · · , sn} of
the n possible states in which the environment can
be, ii) a finite set A(t) = {a1(t), a2(t), · · · , am(t)} of the
m admissible actions that the agent may perform at
time t, iii) a transition matrix P over the space S. The
element P (s, a, s′) of the matrix provides the probability

of making a transition to state s′ ∈ S when taking action
a ∈ A in state s ∈ S, and iv) a reward function R that
maps a state-action pair to a scalar value r, which
represents the immediate payoff of taking action a ∈
A in state s ∈ S. The goal is to find a policy π for
the decision agent, i.e. a function that specifies the
action that the agent should choose when in state s ∈
S to maximise its expected long-term reward. Thus,
this type of problems represent instances of the more
general class of Markov Decision Processes (MDPs),
which could be solved if the transition matrix is known.
However, in most practical conditions it is hard, if not
even impossible, to acquire such complete knowledge.
In this case there are model-free learning methods,
like the Q-learning method adopted in this paper, that
continuously update the probabilities to perform an
action in a certain state by exploiting the observed
rewards. The core of this algorithm is an iterative value
update rule. In particular, each time the agent selects an
action and observes a reward. Subsequently, it makes
a correction of the old Q-value for that state based
on the new information. More in detail, the described
updating rule is given by:

Q(s, a) = Q(s, a) + α ·
[
r(s, a) − γ ·max

a′
Q(s′ , a′) −Q(s, a)

]
,

(1)
where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is
the discount factor. In this paper both are set to 0.5.
Then, owing to the Bellman’s optimality principle, it
holds that a greedy policy (i.e. a policy that at each
state selects the action with the largest Q-value) is
the optimal policy, i.e. Q∗(s, a) = maxπQ(s, a) [17]. The
advantage of Q-learning is that it is guaranteed to
converge to the optimal policy. On the negative side,
the convergence speed may be slow if the state space
is large due to the exploration vs. exploitation dilemma
[17]. Basically, when in state s the learning agent should
exploit its accumulated knowledge of the best policy to
obtain high rewards, but it must also explore actions
that it has not selected before to find out a better
strategy. To deal with this issue, various exploration
strategies have been proposed in the literature, ranging
from simple greedy methods to more sophisticated
stochastic techniques, which assign a probabilistic
value for each action a in state s according to the current
estimation of Q(s, a). In this paper, as exploration rule
we adopted the softmax action-selection, which will be
described in Section 4.

3. System Model and related Issues
3.1. System Model
As illustrated in Figure 1, let us suppose to have a set
of N users, randomly distributed into a circular area of
radius R, which are served by a BS which performing
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NOMA transmissions. These users are supposed to
stay within the coverage area for an amount of time
T , during which they are moving with a Random
Way-point Mobility Model (RWMM). More in details,
indicating with pk0 = [xk0, y

k
0] the initial position of

user k at time t = 0, it is supposed that users are
moving towards a random destination pkδ = [xkδ, y

k
δ ]

with a constant velocity v ∼ U (vmin, vmax), where δ =
dist(pkδ,p

k
0)/v represents the amount of time necessary

to reach the final destination. Once the user reach that
position, it stay in that position for p seconds and then
start to travel towards another random destination.

Figure 1. System model.

In order to perform power domain NOMA transmis-
sions, the available bandwidth B is divided into N

2 sub-
band of equal size, each of them used to multiplex
two users according with their cahnnel ratio [16]. For
a sake of simplicity and without loss of generality, it is
supposed that both BS and users are equipped with an
omnidirectional antenna. Then, according with the SC
principle, the signal received by user i within the sub-
band k con be expressed as:

yi,k = hi,k ·
2∑
j=1

√
Pjsj +ωk (2)

where hi,k represents the channel coefficient of user i
within the sub-band k, Pj is the amount of transmitting
power allocated to user j, and sj with ‖sj‖2 = 1 is the
information signal transmitted to user j and ωk is the
noise perceived within the sub-band. Regarding the
channel coefficient hk , it has been modelled as:

hi =
√
d
−β
i · h̃ (3)

where dk represents the distance of user k from the BS,
β is the attenuation factor and h̃ represents the random
scattering component modelled by a zero-mean and
unit-variance circularly symmetric complex Gaussian
(CSCG) random variable. Then, according with the SIC
adopted at the receiver, the achievable rate of each user
within the same sub-band k at time t can be expressed
as:

R1,k(t) =
2B
N

log2

(
1 +
|h1,k(t)|2P1

σ2

)
(4)

and

R2,k(t) =
2B
N

log2

1 +
|h2,k(t)|2P2

|h2,k(t)|2P1(t) + σ2
k

 (5)

in which, it is supposed that |h1,t(t)| > |h2,t(t)|, and
σ2
k represents the noise power along the sub-band.

In particular, the noise power along each sub-band
is assumed as N0 = 290 · κ · BN ·NF, where κ and NF
are Boltzmann constants and noise figure at 9 dB,
respectively[11, 16].

3.2. Critical aspects on power allocation policy
From Eqs. (4)-(5), one can note how the achievable
rate of users within the same sub-band at time t
depends on their respective channel gains and from the
power allocated by the BS to each users. In particular,
supposing that users within the same sub-band have the
same Quality-of-Service (QoS) requirement, i.e. Ri,k ≥
Rth, the power allocated to each user should be:

Pmin1 ≥ (2A − 1) · σ
2

|h1|2
(6)

and

Pmin2 ≥ (2A − 1) · |h2|2P1 + σ2

|h2|2
(7)

where A = NRth
2B . However, the power allocation for

time slot t is based on the channel sate information
(CSI) obtained by the te BS at the time slot t − 1.
Then, as mentioned in the previous section, either in a
static or dynamic environment it is justified to assume
that for each user in the coverage area hk(t) , hk(t −
1). Then, according with Eqs. (4)-(7), performing a
power allocation at time t based on the CSI received
at time t − 1, could negatively impact on the achievable
downlink aggregate throughput, network fairness and
achievement of QoS required by each user[18].

4. Proposed Framework
In order to address the issues raised in the previous
section, in this paper we propose a RL-based approach
for user multiplexing and power allocation in a
P-NOMA communication systems. In particular, in
addition to embed the general structure described in
Section 2, the proposed framework also includes a NN
model, which is used to predict the CSI of each user for
the next transmission time-slot.

4.1. RL-based proposed framework
Supposing that at time t − 1 the BS has perfect
knowledge on the CSI value of each user for the time
t, it will be able to multiplex users and allocate the
minimum amount of power Pmini which will permit
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to achieve the Rth requirement, i.e. Pmini = (2A − 1) ·
|h2 |2P1+σ2

|h2 |2
. Then, with the perfect knowledge of CSI, the

aggregate DL throughput at time t will be THRref , the
downlink fairness will be 1 (Fref ) and the percentage
of QoS achieved will be 100% (QoSref ). Then, a RL-
based framework can be implemented using one of
these metrics or a mixture of them as reward function.
Indicating with r(t) the value of the selected reward
function at time t and with rref his reference value when
a perfect knowledge CSI is available, we defined the set
of possible space as illustrated in Table 1. Then, once

Table 1. State space.

State Condition

S1
r(t)
rref
≤ 0.25

S2 0.25 < r(t)
<rref

≤ 0.50

S3 0.50 < r(t)
rref
≤ 0.75

S4
r(t)
rref

> 0.75

the state is identified, we suppose that the BS can select
one of the possible actions for each state:

• A1: Keep the power levels allocated during the
previous time slot;

• A2: Update the power levels of each user
according with the CSI estimator and keep the
user multiplexing scheme;

• A2: Update both user multiplexing scheme and
power levels of each user according with the CSI
estimator;

As anticipated in Section 2, in order to address the
exploitation vs exploration trade-off, in this paper we
assume to use the softmax action-selection rule, which
assigns a probability to each action, basing on the
current Q-value for that action. The most common
softmax function used in reinforcement learning to
convert Q-values into action probabilities π(s, a) is the
following:

π(s, a) =
eQ(s,a)/τ∑

a′∈Ωt
eQ(s,a′)/τ

(8)

where Ωt is the set of admissible actions at time t. Note
that for high τ values the actions tend to be all (nearly)
equiprobable. On the other hand, if τ −→ 0 the softmax
policy becomes the same as a merely greedy action
selection, i.e. select the action with highest reward. In
our experiments we have chosen τ = 0.5.

4.2. NN for CSI prediction
According to the description of the RL framework and
with the issues related to the CSI availability, when at

time t either action A2 or action A3 is selected, it would
be beneficial to have a good estimation of the CSI for
the time-slot t + 1. In order to achieve this goal, in this
paper it is supposed to use a NN which, using the user
position, supposed available at the transmitter, and its
CSI at time t as input, provides an estimation of the
CSI at time t + 1. In particular, the NN adopted in this
paper is a feed-forward NN with H hidden layers and
NR neurons per layer. Varying those parameters and the
type of activation function, through a cross validation
we found that the NN which provides the lowest root
square mean error (RMSE) consisted of H = 3 hidden
layers, each with NR = 6 neurons and the Rectified
Linear Unit (ReLU) function as activation function.

5. Simulation results
As mentioned in section 3, we simulated a dynamic
scenario in which users are moving according with a
RWMM for a time duration T . Simulation parameters
are reported in Table 2. In order to evaluate

Table 2. Simulation parameters.

Parameter Value
N (number of nodes) 6
Bandwidth (MHz) 40
NF (dB) 9
Cell radius [m] 1000
Pmax [dBm] 43
Simulation time T [sec.] 3600
Pathloss exponent β 3
[vmin; vmax] [m/s] [2,4]
Pause time [sec] 2

performances and potentialities of the RL-framework,
we simulated different implementations. In particular
we firstly divided the RL implementations in two
groups: i) using the current CSI as estimation for the
CSI in the next time-slot, i.e. greedy (RLGR), and ii)
using the NN to estimate the CSI in the next time-
slot (RLNN ). Subsequently, for each group, a further
classification is performed based on the type of reward
function which is used to identify the state. In this case
we assume that r(t) ∈ {THR; F; QoS; θ · THR + (1 − θ) ·
F; θ · THR + (1 − θ) ·QoS; θ · F + (1 − θ) ·QoS}, where
θ ∈ [0; 1] represents the balance value between each
reward function. Furthermore, all the considered
frameworks have been compared with the benchmark
model, which uses and keeps the initial configurations
set at t = 0 for all the duration of the simulation1.
Figs. 2, 3, and 4 represent the average value over
all the simulation time for the downlink aggregated

1This is assumed in order to analyze how much impacts the channel
variation due to user mobility in a long time range.
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(b) Using an RLNN approach.

Figure 2. Percentage of downlink throughput respect to the THRref .
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(a) Using an RLGR approach.
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(b) Using an RLNN approach.

Figure 3. Percentage of downlink throughput fairness respect to the Fref .

throughput, the downlink throughput fairness and
the percentage of QoS achieved in the network,
respectively. In particular, each figure is divided into
two sub-figures, one for the RLGR approach and one for
the RLNN approach, respectively.

From Fig. 2, it is possible to note how the benchmark
policy provides the highest values of aggregated
downlink throughput and how it is closely reached
when the RLGR uses either r(t) = THR or one of
mixed reward functions which involves THR as reward
functions (Fig. 2a ). In particular, one can observe
how the achieved aggregated downlink throughput
increases as the percentage of THR considered in r(t)

increases. However, observing Figs. 3a and 4a, even if
using either the benchmark policy or a RLGR policy
which uses THR as reward function provides the best
values of downlink aggregated throughput, one can
notice how these policies guarantee level of fairness
and percentage of QoS achieved close to the 60%.
This can be explained by analysing the mobility model
and the channel model. Indeed, using such mobility
model, we can say that for T >> 1 each user will
experience a good channel condition for an amount
of time of T /2 and a worst channel condition in the
remaining part of time. Then, since it is supposed
that all the users have the same Rth requirements,
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Figure 4. Percentage of downlink throughput respect to the THRref .

this will result in a downlink network fairness close
to 0.5 and the possibility to address only the 50%
of QoS requirements. Furthermore, another important
aspect can be observed from Fig. 2a. In particular, from
this figure is possible to notice how using either a
benchmark policy or RLGR which use the r(t) = THR as
reward at tine t tends to under-estimate the the CSI at
time t + 1, permitting to achieve the double of THRref
when the user experience a best channel condition.

On the other hand, from Figs, 2b, 3b and 4b, it
is possible to note how the usage of the NN for
the CSI estimation permits to achieve results close
to the reference scenario, i.e. downlink throughput
close to THRref and fairness and QoS percenatge
more close to 1 and 100%, respectively. Furthermore,
the performance achieved using an RLNN are not
dependent from the reward function adopted. However,
even if this type of framework permits to achieve
performances close to the reference case, it still
provides an under-estimation of the CSI at time t +
1. Then, the investigation of more sophisticated NN
structure represent one of the future direction of this
work.

6. Conclusion
In this paper, we have highlighted the importance
of considering user mobility in dimensioning power
allocation strategies for NOMA communication sys-
tems. Furthermore we have also proposed an RL-based
framework to tackle with the effect of user mobility
in a NOMA communication systems. In particular, we
shown how, compared with a benchmark model were
the power allocation is performed only at the begin-
ning, the proposed framework permits to reach good

trade-off in terms of aggregated downlink through-
put, downlink network fairness and percentage of QoS
maintained, especially when a NN-based predictor is
used to estimate the CSI in the subsequent time-slot.
This work can be used as baseline to investigate and
propose innovative optimization framework for NOMA
systems which consider user mobility, as well as, for the
definition of innovative solutions for CSI forecasting.
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