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Abstract：The paper puts forward a simplified jerk circuit simulator, based on a simplified have 

resistance device emulator jerk circuit with unstable saddle points. According to the circuit 

structure, circuit of the dimensionless model is set up, in the simulation At the same time, many 

basic dynamic properties, such as stability and equilibrium, are analyzed. The dynamic 

characteristics in this system are analyzed by the commonly used dynamic analysis methods 

such as Lyapunov index and bifurcation diagram, and several special dynamic phenomena are 

observed. For instance: chaos, quasi-periodic, periodic, and some complex behavior. The 

research results, which will offer experimental basis and theoretical for the application of the 

chaotic system pseudorandom sequence in the field of public information security, for instance, 

digital communication security. 
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1 Introduction 

Over the past few years, this inherent nonlinearity of memristors [1] has often been used to 
design new nonlinear chaotic circuit and system is formed by using memristor to replace the 
non-linear or linear elements in the existing chaotic circuit system, resulting in a rich variety 
of non-linear dynamic behaviors [2-15] including quasi-period, period, chaos. Because so far, 
it has the required structure relationship of today also can't buy in the market, so many have 
been proposed by the ready-made discrete component implementation of today the emulator, 
they mainly composed of operational amplifier and analog circuit based on multiplier today 
with different nonlinear device simulator and related to the second-order and first-order filter 
network have resistance model. The memristor simulators realized by these equivalent circuits 
are suitable for the research of hardware experiments. In addition, the jerk system [16-18] is a 
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simple form in the system's algebraic structure, achieving compact circuits with fewer circuit 
elements. For this reason, this paper introduces a simplified memristor emulator into the 
existing jerk circuit. Six discrete elements constitute a simplified memristor [19]: integrator U1, 
two resistors R, a capacitor C, an analog multiplier M1 and a resistor Ra. Integrating 
capacitance C and resistor R are used in parallel in order to avoid DC voltage integration drift. 
Compared with the proposed memristor, the simplified memristor has the advantages of 
simple mathematical model and easy circuit system realization. 

The paper is laid out as follows. In the second part, a simplified memristor simulator model 
is introduced, and the shrinkage hysteresis loops are validated by calculation and experiment. 
We put the dynamic analysis of chaotic system in the third part, and this conclusion of this 
paper is obtained in the last chapter. 

2 Simplified memristor simulator 

For convenience study the chaos dynamics of jerk circuits based on memristor simulators, a 
simplified memristor [19] simulator is proposed based on the references. The simplified 
memristor [19] simulator consists of six discrete elements: an integrator U1, a capacitor C0 and 
two resistors R1, a resistor Re and an analog multiplier A1. Integrating capacitance C and 
resistor R are used in parallel in order to avoid DC voltage integration drift. Compared with 
the proposed memristor, the simplified memristor has the advantages of simple mathematical 
model and easy circuit system realization.. 

 

(a)                                             (b) 

 

 
 (c)               (d) 

Fig.1 The analog circuit corresponding to the system, (b) (c) (d), memristor (a) 



2.1 Memristor model description 

The HNN is described by the nonlinear differential equation of the group corresponding to n 
neurons [21]. In this paper, we consider the connection topology of a non-autonomous mHNN 
based on two neurons, which is shown in Fig.4. Here, Im and F are amplitude and frequency 
parameters associated with the stimulus , by using the external stimulus input I(s) with a sine 
function I(s) = Im sin(2pFs). 

 
(a)          (b)  

 
(c)  

 
Fig.2 Numerical simulation of simplified pinch hysteresis loop of a memristor in the v–i plane, 

(a) f = 1 kHz with v=2V (b) f=1kHz with v=3V (c) f=1kHz with v=4V 
 

 
(a)              (b)  

 
(c)  

Fig.3 Numerical simulation of simplified pinch hysteresis loop of a memristor in the v–i plane: (a) f = 500 

Hz with v=2V (b) f=1 kHz with v=3V (c) f=5 kHz with v=4V 



The model of memristor is obtained by Kirchhoff's law, and the basic relationship of discrete 
elements is expressed as follows 
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(1) 
The current and voltage are represented by I and V separately, V0 is the internal state variable 
and g is the gain of the multiplier M1. 

2.2 Simplified memristor emulator-based jerk circuit 

In particular, resistors Ra and Rb are used as tunable circuit parameters are R = 10kΩ, Ra = 
80, Rb = 5kΩ, C1 = C2 = C3 = 10 nF. In Fig. 1, the voltage at both ends of the second order 
memristor diode bridge and the current flowing through the bridge are represented by V and I, 
respectively. According to [13], the voltage-current relationship of the simplified memristor is 
expressed as 
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Where V0 is the voltage of capacitor C for the second-order memristor in Fig.1, the voltages V0, 
V1, V2, and V3 at both ends of capacitors C1, C2, C3 and C are treated as variables. Since the 
output voltage of U4 is equal to V2, the input voltage of the second-order memristor satisfies 
the relation V2 = V. 

By introducing parameters and new variables in dimensionless form 
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The circuit equation in can be converted into a normalized system equation 
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Set the following parameters: a=12.3, b=2.15, c=4.4, e=4.0, g=1.2.      
2.3 Eigenvalues and equilibrium point. 

That means x1=x2= x3= x4= 0. It is easy to solve that a primary equilibrium point occurs at (4) 
which can be express as: E=(0, 0, 0, 0). 

The Jacobian [20] at E is derived as 
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This characteristic root equation is: 

det( ) 0E Jλ − =         (6) 

When this parameters are setting as a=12.3, b=2.15, c=4.4, g=1.2, e=4. And this eigenvalues 
corresponding to the equilibrium point are λ1=0.1547, λ2=-0.9030, λ3=-0.9030, λ4=0.9030i, 
There are three positive numbers λ1, λ2 and λ3, and a conjugate complex numbers λ4. So this 
system has a saddle-focus equilibrium point (0, 0, 0, 0). 



3 Numerical diagram of the dynamical behaviors 

Two variable system parameters are determined by formula (3) as b and c. The parameter 
region of interest is specified as b ∈ [1.9, 3], c∈ [4, 6]. 

3.1 System phase diagram 

When this system parameters a=12.3, b =2.15, c = 4.4, e=4, g=1.2, the time step is 0.01s, 
and the initial conditions are (1, 1, 1, 1), the four Lyapunov indices L1=9.7061, L2=-0.0217, 
L3=-3.3504, and L4=-12.9289,by calculation respectively under this parameter condition. Fig.4 
show the phase diagram of chaotic attractor obtained through simulation. 

 

Fig.4 When a =-12.3, b =-2.15, c = 4.4, e=4, g=1.2 chaotic attractor phase diagram, (a) x-y plane (b) y-z 

plane 

3.2 Lyapunov exponential spectrum and bifurcation diagram of the system 

This new system is a 4-dimensional, and its states under different parameters can be 
obtained by combining bifurcation diagram with Lyapunov exponential spectrum. In the 
following, parameters b and c are taken as variables, initial values are set as (1, 1, 1, 1), step 
size h=0.01s, remaining parameters of the equation are fixed, and different states of the 
chaotic system are observed by changing parameters b and c. 

Take the parameter b∈ [1.9, 3], and let a=12.3, c=4.4, e=4.0, g=1.2. Fig. 5 shows the 
Lyapunov exponential spectrum and bifurcation diagram of a chaotic system. According to 
Fig.5, when b=2.3, By finding the maximum Lyapunov exponent L1 is equal to 0, we know 
that the system is in a limit cycle state. When b∈ [2.6, 2.75], When the maximum Lyapunov 
index L1 is less than 0, the system is in a periodic state.It can be seen from the figure that at 
other times, the maximum Lyapunov index L1 is always greater than 0 is less than 0, and the 
system presents a periodic state. At other times, the maximum Lyapunov exponent L1 is 



always above the zero coordinate line , L2=0, and other Lyapunov exponents are all less than 
0, so the system presents a chaotic state. 

 
Fig.5 Lyapunov exponential spectrum and bifurcation diagram of this system when a change 

Fig.6 shows this phase diagram of x-z when the parameters a=12.3, c=4.4, e=4, g=1.2 are 
fixed, and b=2.3. When b=2.3, the phase diagram shows the limit cycle state. When b=2.9, the 
phase diagram is in a chaotic condition. In the meantime the Lyapunov exponent of this 
system is both less than 0, one is equal to zero and the other is greater than 0, which is in a 
chaotic condition. Through analysis, it can be easy seen that this result is integrally 
corresponding to Lyapunov exponential spectrum and the bifurcation diagram shown above. 

 
Fig.6 The phase diagram of the system is b (a) b=2.9 (b) b=2.3 

With the parameter c∈ [4, 6], b=2.15, a=12.3, e=4, g=1.2, Fig. 8 shows the Lyapunov 
exponential spectrum and the bifurcation diagram. When c∈ [4.65, 4.73], the maximum 
Lyapunov exponent L1 is equal to 0, and the system appears as a limit cycle. When c∈ [4.74, 
5.26], the maximum Lyapunov exponent L1 is greater than 0, and no other exponent is greater 
than 0, then the system shows a chaotic state. When c∈ [5.67, 6], When the maximum 



Lyapunov index L1 is greater than 0, and the other indices are not greater than 0, the system 
can be known to be in a chaotic state is greater than 0, and no other exponent is greater than 0, 
the system shows a chaotic state. When c∈ [5.29, 5.68], When the maximum Lyapunov 
exponent L1 is equal to 0, then we know that the system is represented as a limit cycle. 

 
Fig.7 Bifurcation diagram of the system and Lyapunov exponential spectrum when a change (a) 

Bifurcation diagram (b) Lyapunov exponential spectrum 

Fig.8 shows the phase diagram of x-y when the parameters b=2.15, a=12.3, e=4, g=1.2 are 
fixed, and c is 4.7, 5, 5.4, and 5.9, respectively. When c=4.7 and c=5.4, the phase diagram is 
limit cycle. When c=5 and c=5.9, the phase diagram is in a chaotic condition. When the 
Lyapunov exponent of the system is less than 0, one is equal to 0, and the other is always 
above 0, so we know that the system is in a chaotic state. Through the above analysis, it can be 
seen that this result is completely corresponding to the bifurcation diagram, and the Lyapunov 
exponential spectrum of the above system is in a chaotic state. Through analysis, it is easy to 
see that this result completely corresponds to the bifurcation diagram and Lyapunov 
exponential spectrum mentioned above. 



 
Fig.8 The phase diagram of the system is c (a) c=4.7 (b) c=5 (c) c=5.4 (d) c=5.9 

3.3 The analysis of System complexity 

The complexity research involves scholars, and various fields in different fields have 
imparity understandings of complexity. Up to now, there is no qualitative concept of 
complexity. The complexity of the system can be known by the proximity between the chaotic 
sequence and the random sequence measured by the correlation algorithm. The higher the 
complexity value is, the higher the random sequence is and the higher the corresponding 
security is. 

The analysis of system complexity includes complexity of behavior and structure. 
Behavioral complexity refers to the possibility of generating new models within a short time 
window measured by some method from the chaotic sequence itself. The more likely a new 
model is to be generated, the more complex the sequence becomes. Now, there are some 
algorithms to calculate the behavior complexity of the chaotic pseudo-random sequences, most 
of which are based on Shannon entropy and Kolmogorov method. These algorithms are quick 
in calculation and relatively accurate in results. However, if the dimension of pseudo-random 
sequences is too high or the symbol space of pseudo-random sequences is too large, the 
calculation results will overflow or even get no results. Structure complexity refers to the 
frequency characteristics through the transformation domain. The more balanced the energy 
spectrum distribution in the sequence transformation domain is, when the original sequence is 
closer to the random signal, the complexity of the sequence is greater. The corresponding 
spectral entropy value can be calculated by combining the concept of Shannon entropy. The 



energy characteristics of the transformation domain are analyzed by structural complexity, 
which is aimed at whole sequences, not just local sequences, so compared with the behavior 
complexity algorithm, the results have global statistical significance. In this paper, SE and C0 
algorithm are used to analyze the structural complexity. 

In this part, parameter c is used as a variable to analyze the complexity of the system. When 
parameters b=2.15, a=12.3, e=4, g=1.2 are fixed, and c∈ [4, 6], Figure 9 shows the simulation 
results. 

 
Fig.9 shows that SE algorithm and C0 algorithm have a high degree of 

synchronization 

4 Conclusion 

In the paper, we designed this new chaotic circuit and introduce its dimensionless equation. 
A new chaotic attractor is found in this chaotic system. By analyzing the Lyapunov 
exponential spectrum, bifurcation diagram and complexity, The dynamic nature was 
discovered , which show a high degree of complexity and sensitivity with the change of 
system parameters. Through numerical simulation, we observe the special phenomenon of 
chaotic. At the same time, some reasonable explanations are given for these phenomena. 
Because of these rich dynamic behaviors, this new chaotic system has a good application 
prospect in information encryption and secure communication. 
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