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Abstract. In this paper, the 4D fractional-order chaotic system is devised, and the 

accurate numerical solution of the system is obtained based on the CADM algorithm. The 

dynamical characteristics of the fractional-order chaotic system are analyzed by 

employing bifurcation diagram, Lyapunov exponential spectrum, 0-1 test and the 

poincaré section. Meanwhile, the ranges of parameters of the fractional-order chaotic 

system are given in practical application through the SE and C0 complexity algorithm. 

The results demonstrate that the fractional-order chaotic system with the complex 

dynamical behaviors. Finally, digital circuit of the chaotic system is implemented on the 

DSP platform. This study offers a practical and theoretical basis for the application of 

fractional-order chaotic system in the safe communication and other fields. 
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1 Introduction 
In 1695, Leibniz and Lopida proposed the concept of fractional calculus, but for a long time, 

its practical application background has not been discovered, leading to slow progress in the 
related research of fractional calculus. However, recent studies have shown that, compared to 
integer-order calculus, the fractional-order calculus could better describe the objective 
physical world [1]. Therefore, the research on fractional calculus has become a hot spot. 
Research on the Chen system [2], Liu system [3] and simplified Lorenz system [4] and other 
nonlinear chaotic systems found that, compared to integer-order chaotic systems, 
fractional-order chaotic systems have more complex dynamical characteristics [5-7].  

Currently, the solving algorithms of the fractional-order chaotic systems mainly include 
frequency domain method (FDM) [8], predictive correction method (ABM) [9] and Adomian 
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decomposition method (ADM) [10]. These algorithms generally use the Riemann-Liuville 
definition and Caputo definition. But they all have some problems. First, they cannot satisfy 
some important properties of the fractional calculus [11], such as the product rule and chain 
rule. Second, the calculation process is very complicated [12]. Therefore, Khalil et al. 
proposed the new definition of the conformable fractional calculus [13]. The combination of 
the definition of the fractional calculus and the ADM algorithm can make up for the 
shortcomings of the existing algorithms for solving fractional differential equations [12, 14]. 
The CADM algorithm improves the ADM algorithm, reduces the complexity of calculation, 
and has the advantages of faster convergence speed, calculation speed, and less resource 
consumption [15]. At present, the use of this CADM algorithm to resolve the fractional-order 
chaotic systems is gradually becoming a research hotspot [16]. 

At present, many studies have been carried out on the application of fractional-order chaotic 
systems, such as nuclear magnetic resonance [17], cellular neural networks [18], and secure 
communications [19-21]. But it really applies to hardware and software technologies that rely 
on signal processing. Digital signal processor (DSP) [22, 23] has been widely used in 
engineering due to its superior performance and convenient processing. Based on this, this 
paper uses DSP technology to implement the hardware implementation of the proposed 
four-dimensional fractional-order chaotic system. 

Based on the a four-dimensional Sprott-B chaotic system, the 4-D fractional-order chaotic 
system is constructed through using the conformable fractional calculus definition. The 
remaining structure of the paper is as follows. In sect.2, the numerical solution of the 4-D 
fractional-order chaotic system is solved by the CADM algorithm. The dynamical behaviors 
of the 4-D fractional-order chaotic system are analysed in sect.3. The 4-D fractional-order 
chaotic system is achieved on the DSP platform In sect.4. Finally, the experimental research 
results are summarized and a future direction is proposed. 

2 Numerical solution of the fractional-order chaotic system 

2.1 CADM algorithm of the fractional-order chaotic system 

Assuming that the conformable fractional differential equation is expressed as 
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where Tq 
t  is differential operator, x(t)=[y1(t) y2(t) … yn(t)]T are the state variables. Lx(t) is the 

linear part of the system, Ny(t) is the non-linear part of the system function. g represents the 
constant term, and bk represents the initial value of the chaotic system. According to the 
conformable fractional calculus definition, one can get  
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here Iq 
t0  is the integral operator, y(t0) is the initial value condition of the chaotic system. The 

nonlinear term can be expressed as 
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then the nonlinear term can be decomposed by 
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where i=0,1, ..., j=1,2, …, n. So, the numerical solution of the equation is 
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here yi is calculated by 
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2.2 Solution of the fractional-order chaotic system 

A new four-dimensional autonomous chaotic system on the basis of the proposed Sprott-B 
system. The new system equation can be expressed as 
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here x1, x2, x3, x4 indicates the state variables of the system, a, b and c are positive parameters 
of the system. Based on conformable derivative, the fractional form of the chaotic system 
equation is 

1 2 1 4

2 1 3

3 1 2

4 4 1 3

( )q
t
q

t
q

t
q

t

T x a x x x

T x x x

T x b x x

T x cx x x

 = − −


=


= −
 = − +

,        (8) 

here q is the order of the system. According to the above formula (2), the linear, non-linear and 
constant terms are 
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Decomposing the Eq. (6) the non-linear terms decompositions are 
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here, assuming the initial value x0=[x1(0), x2(0), x3(0), x4(0)], the first term can be described as 
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according to the Eq. (6), the second expansion is 
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Let h=t-t0, by the same method, the coefficients of the other five terms are 
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so, the CADM numerical results of the fractional-order chaotic system with six terms are 
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3 Dynamical analysis of the fractional-order chaotic system 

3.1 Simulation analysis of the system 

Setting a=4, b=9, c=5, h=0.01, the system order q=0.8, and the initial values x0 = [1, 1, 1, 1]. 
The Lyapunov exponents of the system are L1=1.0170, L2=0, L3=-12.5479, and L4=-16.7206, 
and the Lyapunov dimension is DL= 2.09. At this time, the system has a positive Lyapunov 
exponent, indicating that the system is chaotic. Fig. 1 shows the phase diagrams in different 
planes of the system. To further verify the dynamical characteristics of the system under the 
parameters, the Poincaré section of the system at this time are shown in Fig. 2. The Poincaré 
section in the figure is neither a finite point set nor a closed curve. It is a piece of dense points 
with a fractal structure. This structure has the typical characteristics of a chaotic system.  



 
Fig. 1 The phase diagrams of system with q=0.8 

 
Fig. 2 The Poincaré section of system (8) on the y-x plane when q = 0.8 

3.2 Stability analysis of the system 

For Eq. (7), let ẋ1=̇x2=̇x3=̇x4=0, one can get the equilibrium point of the system S1,2= (±√b, ±
√b, 0, 0). The Jacobian matrix J for the system (Eq. (7)) at the plane equilibrium S1,2 is 
obtained as 
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when a=4, b=9, and c=5, the equilibrium point of the system is S1,2= (±3, ±3, 0, 0). The 



characteristic polynomial equation is yielded as 
32 24 16 89 29 126 360 0+ + + + =λ λ λ λ .      (23) 

If the eigenvalue satisfies 
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the system is gradually stable at the equilibrium point. Substitute eigenvalues into the Eq. (24), 
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thus, at the equilibrium point S1,2, the system is stable. 

3.3 Dynamical characteristics with the parameter varying 

3.3.1 Dynamical evolution with parameter a 

Setting the parameters b=9, c=5, the order q=0.8, h=0.01, and x0= [1 1 1 1]. Fig. 3 indicates 
the bifurcation diagrams and the Lyapunov exponents spectrum when a changes from1 to 5. 
When a belong to [2.98,3.03], [3.46,3.5], [4.27,4.33], [4.34,5] and so on, the largest Lyapunov 
exponent of the system is zero, so when the parameter a is within these ranges, the system is 
in the periodic state. However, in other ranges, the largest Lyapunov exponent is positive, and 
the system is in the chaotic state. Complex dynamical characteristics of the system with the 
parameter a varying are summarized in the Table 1. 

 
Fig. 3 The system varies with the parameter a (a)Lyapunov exponent spectrum; (b) Bifurcation 

diagram. 
 



 
Table 1.  System status with the parameter a 

a dynamical characteristic a dynamical 
characteristic 

1~2.97 Chaotic attractor 4.18~4.20 Chaotic attractor 
2.98~3.03 Period-2 state 4.21~4.22 Period-7 state 
3.04~3.45 Chaotic attractor 4.23~4.27 Chaotic attractor 
3.46~3.5 Period-3 state 4.28~4.33 Period-3 state 

3.51~3.65 Chaotic attractor 4.33~4.34 Chaotic attractor 
3.66~3.67 Period-2 state 4.34~4.36 Period-4 state 
3.68~4.15 Chaotic attractor 4.36~4.45 Period-2 state 
4.16~4.17 Period-5 state 4.46~5 Limit cycle 

From the Table 1, when a from 1 to 5, a typical chaotic attractor and six different types of 
periodic states appear in the system. In the Fig.4, it can be found that when the chaotic system 
is in a periodic state, there is a bounded regular motion on the p-s plane; when the system is in 
the chaotic state, the p-s plane is an unbounded motion similar to Brownian motion. 



 

Fig. 4 Phase diagram and p-s plane with different values of a. 

3.3.2 Dynamical evolution with the parameter b 

Setting a=4, c=5, h=0.01, the order q=0.8, and x0= [1 1 1 1]. Fig.5 indicates the Lyapunov 
exponents spectrum and the bifurcation diagrams when the parameter b varies in the range of 
(7, 11). The results can be found from the bifurcation diagram that as the parameter b 



increases, the system enters the chaotic state from a periodic state through the period-doubling 
bifurcation. At the same time, when the parameter b is at [8.53,8.59] and [10.21,10.25], there 
are two relatively obvious period window, which corresponds to the Lyapunov exponential 
spectrum. When the parameter b varying, dynamical characteristics of the system are shown in 
the Table 2. 
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Fig. 5 The system with the parameter b varies. (a) Lyapunov exponent spectrum  

(b) Bifurcation diagram 
Table 2. System status with the parameter b 

b dynamical 
characteristic 

b dynamical 
characteristic 

7~7.33 Limit cycle 8.27~8.52 Chaotic attractor 
7.34~7.72 Period-2 state 8.53~8.59 Period-3 state 
7.73~7.8 Period-4 state 8.60~9.77 Chaotic attractor 

7.81~7.97 Chaotic attractor 9.78~9.80 Period-3 state 
7.8~8.01 Period-3 state 9.81~10.20 Chaotic attractor 

8.02~8.24 Chaotic attractor 10.21~10.25 Period-2 state 
8.25~8.26 Period-5 state 10.26~11 Chaotic attractor 

3.3.3 Dynamical evolution with the order q 

Let a=4, b=9, c=5, h=0.01, the x0= [1 1 1 1]. When q∈[0.5,1], the bifurcation diagram and 
the Lyapunov exponents spectrum are shown in the Fig.6. From Fig.6(a), when q∈[0.53,1], 
the system is in a chaotic state. When q<0.52, there is no value in the Lyapunov exponent 
spectrum and bifurcation diagram, and the chaotic system is in the divergent state. 



 
Fig. 6 The system with the parameter q varies. (a) Lyapunov exponent spectrum (b)Bifurcation 

diagram 
To further analyze the system is applicable to the field of secure communication parameter 

selection range, observing better dynamics chaotic system, where SE and C0 algorithm [24-26] 
of the system are analyzed. Let the order q∈[0.5,1], sequence length N=50000, SE and C0 
complexity of the system are shown in the Fig.7. When q > 0.52, the change trend of SE 
complexity and C0 complexity is gradually reduced. When q=1, the value of complexity 
reaches the minimum. Therefore, the fractional-order chaotic system is more complicated than 
the integer-order chaotic system. As the order decreases, the system complexity will increase 
correspondingly, which indicates that the fractional-order state of the system has higher 
application value than the integer-order state. 

 
Fig. 7 Complexity varies with the parameter q (a) C0 complexity (b)SE complexity. 

4 Hardware circuit based on DSP 

In this section, the digital circuit fractional chaotic systems are constructed and implemented 
on a DSP platform. DSP processor is widely used in engineering practice, due to its powerful 
performance and low price. Where, the processing speed of the DSP chip TMS320F28335 is 
accelerated, the precision is higher, and the reliability is higher. TMS320F28335 16-bit DSP is 



a kind of floating-point arithmetic operation at 150MHz. The DSP board is connected to 16 
pairs of interface channels by DAC DAC8552 SPI (Serial Peripheral Interface). The program 
flow for DSP implementation and the DSP experimental platform of the fractional-order 
chaotic system are shown in the Fig. 8 and Fig. 9. Setting a=4, b=9, c=5, h=0.01, q=0.8, and 
x0= [1 1 1 1]. The experimental results of the DSP platform are shown in the Fig. 10. 
Experimental results with the corresponding numerical results agree well in Fig. 1. That is to 
say, the 4-D fractional-order chaotic system has been perfectly tested on the DSP platform. 

 
Fig. 8 The program flow for DSP implementation  

 
Fig. 9 The DSP experimental platform 



 
Fig. 10 The DSP implementation of the system  

5 Conclusion 

In this paper, the 4-D fractional-order chaotic system is designed. The numerical solutions of 
the fractional-order chaotic system are solved by using the CADM algorithm. Meanwhile, the 
dynamical behaviors of the system were analyzed through phase diagrams, bifurcation 
diagrams and Lyapunov exponents. The simulation results show that the fractional-order 
chaotic system has complex dynamics. The minimum order of chaos in the fractional-order 
chaotic system is 2.12. In addition, the analysis of complexity shows that, when q=0.53, 
system complexity is the highest, the randomness of the chaotic sequence is the best and the 
safety performance is the highest. Finally, the system is implemented by using the DSP 
platform. The experimental results reflect the correctness of the CADM algorithm and the 
physical feasibility of the fractional-order chaotic system. The results for the system described 
herein provides a theoretical basis in the application of engineering. 
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