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Abstract: In this paper, a fractional order chaotic system is reconstructed in the simplest 

memristive chaotic circuit. The solution of this system is obtained through ADM. Phase 

diagrams, LEs, bifurcation diagrams and complexity are used in the dynamics study of 

this fractional chaotic system. At the same time, the stability of the chaotic circuit is 

concluded and its stability region is given. Meanwhile, the digital circuit of the system 

was designed and verified on the DSP board. Research results indicate that the ADM 

algorithm can accurately analyze and calculate effective numerical solutions of 

fractional-order chaotic systems. According to dynamic analysis, we can get that the 

system has complex dynamic behavior. This article provides a new direction for the 

study of the simplest fractional-order memristive chaotic circuits, and provides guidance 

for the application of proposed systems in the actual field. 
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1. Introduction 

In 1971, Professor Cai reported the memristor for the first time and analyzed the relevant 
content of the memristor [1], and elaborated on the physical characteristics, basic principles and 
applications of memristive in 1976 [2]. For a long time, since the actual components that meet 
the characteristics of the memristive have not been discovered, the research on the memristive 
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has not yet attracted scholars' attention.. It was not until 2008 that HP Labs reported the 
hardware implementation of the memristor for the first time [3], which made the research of 
memristive aroused widespread concern all over the world. 

Memristive usually includes two types of typical nonlinear elements: charge-controlled 
memristive and magnetron memristive. Because memristive have memory characteristics, and 
non-linear circuits based on memristor elements are more likely to produce chaotic signals. 
Scholars have been focusing on the design and implementation of memristive chaotic circuits 
and have made great progress [4-11]. Fernando et al. analyzed the dynamical behaviors of one 
kind of memristor oscillators [4]. A simplest chaotic fractional memristor was proposed by Lin 
et al. [5]. Bao et al. constructed some new circuits based on the smooth memristive model and 
found that their dynamic behavior is closely related to the initial conditions [6]. The six 
synchronization algorithms for chaotic systems based on memristor is presented in Ref. [7]. Ye 
et al. [8, 9] reached the complexity of the hybrid memristive chaotic circuit and analyzed a 
novel 5-D hyperchaotic memristive system. Most of the existing researches on memristive 
chaotic circuits are aimed at chaotic systems of integer order. 

However, many references indicate that fractional-order chaotic systems have better 
performance chaotic sequences, higher complexity and richer dynamics, which are more 
suitable for the field of secure communication [12-19]. Therefore, the relevant research on the 
dynamics of fractional-order chaotic circuits with memristor is curious. It is very meaningful 
to research the dynamics of fractional-order chaotic circuits based on a simplest memristive 
chaotic circuit. 

For discretizing fractional-order chaotic systems, the existing references mostly use 
frequency domain approximation methods[20], predictor-corrector method, and Adomian 
decomposition method (ADM) [21]. Among them, ADM has the advantages of better accuracy 
of calculation results and faster calculation speed, and is more suitable for solving fractional 
differential equations than other decomposition methods [24, 25]. Therefore, we choose ADM 
algorithm to solve the chaotic system. 

In this paper, a fractional-order chaotic equation is constructed based on the circuit 
containing the simplest memristor and its dynamic behavior is analyzed. Its organizational 
structure: In Section 2, the memristor is introduced and the simplest memristive circuit model 
is proposed. In Section 3, the ADM algorithm discretizes the simplest fractional order chaotic 
circuit system equation and obtains its numerical solution. In Section 4, the dynamics of the 
system are studied. Design and implement the digital circuit of the system on the DSP 
platform. Finally, some experimental conclusions are summarized. 



 

 

2. Simplest Memristive Chaotic Circuit 

2.1 Introduction to the memristive model 

The memristor model is used to illustrate the connection between magnetic charge q and 
flux φ. The q and φ passing through the memristive can be represented by a curve f(φ, q)=0 in 
the rectangular coordinate system. If the magnetic flux φ plays a dominant role, then the 
memristor is called a magnetron memristor, and W(φ)=dq(φ)dφ, here W(φ) is called its 
meminductor value, and the volt-ampere characteristic between the current flowing through 
the element and the voltage at both ends is i(t)=w(φ)u(t); If the amount of charge in the 
memristor plays a leading role, then the memristor is a charge-controlled memristor, and 
M(q)=dφ(q)/dq, here M(q) is called its memristive value, the volt-ampere characteristic 
between the current flowing pass the memristive and the voltage across it is u(t)= M(q)i(t). 
Memristive usually has basic criteria such as passivity, closure, existence, uniqueness, and 
complexity. At present, the real realization of the memristor is still at the experimental level, 
so the research on the memristor at this stage is mainly aimed at its equivalent circuit model or 
mathematical model. 

2.2 The memristive circuit model 

Figure 1 plotted the simplest memristive circuit model. 

 

Fig. 1 Simplest memristive circuit 

where M, VM, VL, VC, iM and iL is the state variables. The memristor model can be 
expressed as 
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The circuit model can be obtained by equations (2). 
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Let 1/C=c, 1/L=d, VC(t)=x, iL(t)=y, z(t)=z, the normalization operation of Eq. (2) is: 
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here the system parameters are c, α, β, d, set α=0.6, c=1, β=1.5, d=1/3, and the initial 
values are [0.1, 0, 0]. The Lyapunov exponent can be calculated as follows: L1=0.045, L2=0, 
L3=-0.603. A Lyapunov exponent is greater than 0 proves that the system is chaotic with this 
parameter. 

Combining the definition of Caputo’s fractional differential with the Eq. (3), a fractional 
system equation is reconstructed. The expression equation is as follows 
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Among them t0 is the initial value, *Dq 
t0  is the Caputo operator, q is the order (0<q≤1). 

3. The solution of chaotic system 

3.1 ADM decomposition algorithm 

A fractional differential equation *Dq 
t0 (t)=f(x(t)), x(t)=[x1(t), x2(t), x3(t), …, xn(t)]T is a 

function variable, and *Dq 
t0  denotes q-order Caputo differential operator, then the system can 

expressed by 
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here, N represents the nonlinear term of the differential equation. L is the linear part of the Eq. 
(1), g(t) is constant of the autonomous system, and bk is given initial value. After performing 
operations of Eq. (4), we can get 
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here, Jq 
t0  is the R-L fractional integral operator of order q (q≥0). The basic features of this 

operator are 
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where C is a constant, l≥-1, r≥0, t∈[t0,t1],. As a nonlinear term, N needs to be further 
decomposed. The decomposition rules are as follows 
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Among them j=1, 2, 3, …, n, i=0, 1, 2, 3, … , ∞. The nonlinear term is 
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From equation (11), the solution of equation (5) is 
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3.2 Solution of Fractional Memristive Chaotic System 

The iterative algorithm of the chaotic system is: 

2
1

2

2
1

2
2

1

2

( )
( 1)

...
(2 1)

( )
( 1)

( ...) ...
(2 1)

( ) (
( 1)

+...) ...
(2 1)

q

m m m m m m m

q

q

m m m m m m

q

m m

q

m m m m m m m m

q

hx x cy cd x y y z
q

h
q

hy y c x y y z
q

hcdy d x
q

hz z y z y z z bx
q

h
q

β β

β β

β

α

+

+

+


= + + − + Γ +


+

Γ +

 = + − +

Γ +

 + − + + Γ +

 = + − − + Γ +


+ Γ +

.         (13) 

Here, the step size is set h. the iteration algorithm are 
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3.3 Solution of the Lyapunov exponents spectra 

Based on the QR decomposition and iterative formula, the algorithm of Lyapunov 
exponential spectrum calculation of chaotic system is designed. And QR decomposition is 
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where QR decomposition process is represented by qr[·]. Jacobian matrix is expressed by 
J, and h represents the number of iteration. Then we get the LE spectrum 
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here k is the system dimension. 



 

 

4. Analysis of dynamic characteristics of chaotic system and DSP 
realization 

4.1 Stability analysis 

Let -b(x+β(z2-1)y)=0, ay=0, y-αz+yz=0. Obviously, there is an equilibrium point, which is 
x=y=z=0. The Jacobian matrix is 
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 In the equilibrium point, (λ+α)(λ2-bβλ+ab)=0 is the characteristic polynomial of the Eq. 
(22), and the characteristic root of the characteristic polynomial is 
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According to the chaotic system equilibrium point analysis theorem[16], the system 
stability can be analyzed in detail as follows. 

Theorem 1: If all the characteristic roots of a chaotic system satisfy 
|arg(eig(J))|=|arg(λi)|>qπ/2 (i=1, 2, 3, …, n), it indicates the system is gradually stable. 
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Fig.2 Unstable and stable regions in f chaotic system 

It can be seen from Fig. 2 that all the characteristic roots in the black area satisfy 
qπ/2<|arg(λi)|, which means that system is stable. In the white area, all the characteristic roots 



 

 

satisfy |arg(λi)|≤qπ/2, and the system is unstable at this time. 
For q=1, a system with integer order is obtained. If only consider the case of q1=q2=q3=q, 

that is, all variables in the system have the same order, then the following theorem can be used 
to analyze the system state [16]. 

Theorem 2: Assume that the unstable characteristic root of the rolling saddle point is 
λ2.3=r2.3±jω2.3. If and only if the characteristic root λ2.3 is located in the unstable region. This is 
a chaotic system. The equal order in the fractional-order system satisfies q ＞

(π/2)atan(|ω2.3|/r2.3). 

4.2 Phase diagram of the system 

Set [x0, y0, z0] = [0.1, 0, 0], d=1/3, c=1, β=1.5, α=0.6, h=0.01, and q=0.545. Fig. 3 plots 
the phase diagram of the system. The L1=0.346, L2=0, L3=-8.166. We can see that the largest 
Lyapunov exponent is greatly improved compared to the integer order state. 

 
        (a)                          (b) 

Fig.3 Phase diagram of the system (a) x-y plane (b) x-z plane 

4.3 LEs and bifurcation diagram of chaotic system 

Taking the initial value is [0.1, 0, 0] and c=1, d=1/3, α=0.6, β=1.5, h=0.01. When q∈[0.3, 
1], Fig. 4 depicts the LEs and bifurcation diagrams of the chaotic system. 



 

 

 

(a)                                 (b) 

Fig.4 LEs and bifurcation diagram of q (a) LEs (b) Bifurcation diagram 

The analysis found that the performance of the fractional-order system has been greatly 
improved. In addition, the smallest order of chaos in this system is q=0.38×3=1.14. Table 1 
lists the state of the system under different q. 

Table 1. Dynamic characteristics when the order q changes 

q Dynamical characteristics q Dynamical characteristics 
0~0.3 divergence 0.45~0.48 chaotic state 

0.3~0.34 4 cycle 0.49~0.5 7 cycle 
0.35~0.37 8 cycle 0.51~0.55 chaotic state 
0.38~0.39 chaotic state 0.56~0.57 5 cycle 
0.4~0.41 6 cycle 0.68~0.69 chaotic state 

0.42~0.43 chaotic state 0.7 15 cycle 
0.44 8 cycle 0.71~1 chaotic state 
When q is less than 0.3, the system is divergent. When q is between 0.3 and 1, the system 

has typical chaotic attractors and many different periodic states. 
Let q=0.545 and fix other parameters unchanged. By changing the parameter β, the LEs 

and bifurcation diagram are plotted in Fig. 5. From Fig. 5, when β takes different values, the 
LEs obtained correspond to the state of the bifurcation diagram. 



 

 

 
(a)                               (b) 

Fig.5 LEs and bifurcation diagram of β (a) LEs (b) Bifurcation diagram 

Table 2 shows the state of the system when β changes. It can be seen from Table 2 that 
when β∈[0.6, 2], the system has a classic chaotic attractor and seven different periodic states, 
and typical periodic doubling branches and anti-periodic branches appear in the process. 

Table 2. Dynamic characteristics when the parameter β changes 

β Dynamical behaviors β Dynamical behaviors 
0.6~0.9 1 cycle 1.45~1.47 6 cycle 

0.91~1.14 2 cycle 1.48 chaotic attractor 
1.15~1.28 4 cycle 1.49 8 cycle 
1.29~1.32 2 cycle 1.5~1.56 chaotic attractor 
1.32~1.33 4 cycle 1.57~1.61 5 cycle 
1.33~1.36 8 cycle 1.62~1.67 chaotic attractor 

1.36 chaotic attractor 1.68~1.71 3 cycle 
1.37 8 cycle 1.72~1.82 6 cycle 
1.38 chaotic attractor 1.83~1.88 3 cycle 

1.39~1.42 4 cycle 1.89~1.97 chaotic attractor 
1.43~1.44 chaotic attractor 1.98~2 Limit cycle 

4.4 Complexity of chaotic systems 

Complexity is a significant indicator for measuring chaotic pseudo-random sequences. 
Random performance is better for sequences with high complexity. When applying chaotic 
sequences to these fields, it is necessary to select sequences with higher randomness and 
stronger complexity. At present, the commonly used methods for dynamic analysis of chaotic 
systems include LEs and bifurcation diagram. The two methods can qualitatively evaluate the 
system’s feature, but cannot quantitatively reflect the complexity and randomness of the 
chaotic sequence. Therefore, spectral entropy (SE) and C0 complexity are selected to evaluate 
the randomness of the chaotic system, so that chaotic sequences with higher complexity are 
selected when the system is applied to chaotic image encryption. 



 

 

Set c=1, d=1/3, α=0.6, step h=0.01, and [x0, y0, z0] = [0.1, 0, 0]. Based on complexity 
algorithm, when q and β change at the same time, the complexity of the chaotic system is 
displayed in Fig. 6. 

 
(a)                                     (b) 

Fig.6 Complexity of the chaotic system when q and β change simultaneously (a) SE complexity (b) C0 
complexity 

From Fig. 6, the darker colors represent higher levels of complexity. From the Fig.6, 
when SE is 0.55 the system is the most complex, in this case order q=0.41, the parameter 
β=1.9, the maximum C0 complexity is 0.21, the order q=0.33, and the parameter β=1.78. The 
two complexity changes in Fig. 6 (a) and (b) have the same trend, but the specific values are 
quite different. Because the spectral entropy (SE) complexity is calculated according to the 
energy distribution of the system; and the C0 complexity is Remove the regular part in the 
sequence, and then analyze and calculate the irregular part; the two algorithms are different, 
which leads to deviations in specific values. However, both of these two complexity 
algorithms can express the dynamics of the system and the process of entering chaos, and the 
trends of the two are consistent. In summary, when β=1.94, 0.4<q<0.5, the complexity and 
randomness of the system are better. Therefore, when we apply the system, the chaotic 
sequence in this area should be selected as much as possible. 

4.5 Randomness of chaotic system 

One of the methods to effectively check the sequence’s close to random sequence is the 
NIST test, which contains 15 performance indicators to check the randomness of the chaotic 
sequence. Generally speaking, the result meets two criteria, that is, the sequence passed the 
NIST test. 

The first criterion is that the test result obtains the P value, which intuitively reflects 
whether the sequence is uniformly distributed, and is calculated according to the following 
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here Fi is the number of P-value, m represents how many groups. If the P-value>0.01, the 
randomness of the reconstructed fractional chaotic system has passed the randomness test and 
has good performance. 

Another criterion is the pass rate of passing the test, that is, the proportion of the sequence 
that passes the test in the entire sequence. We believe that when the following formula is 
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where m≥1000 and the value of α is 0.01. The chaotic sequence detection report is compared 
with the reference [26] in Table 3. 

Table 3. NIST test 

Test items Ours Ref [26] 
P-value Pass rate P-value Pass rate 

Frequency 0.275709 0.98 0.867692 0.99 
Block Frequency 0.224821 0.98 0.77918 1 
Cumulative Sums 0.275709 0.98 0.739918 0.99 

Runs 0.249284 0.99 0.779188 0.98 
Longest Run 0.350485 0.99 0.055361 1 

Rank 0.055361 0.98 0.474986 0.99 
FFT 0.851383 1 0.062821 1 

Non Overlapping Template 0.162606 0.99 0.071177 0.99 
Overlapping Template 0.637119 0.98 0.013569 0.99 

Universal 0.262249 1 0.108791 0.99 
Approximate Entropy 0.304126 0.99 0.759756 1 
Random Excursions 0.249284 0.98 0.249284 0.98 

Random Excursions Variant 0.062821 0.98 0.025193 0.98 
Serial 0.445368 0.99 0.137282 0.98 

Linear Complexity 0.071177 0.99 0.227821 0.97 

4.6 DSP realization of chaotic system 

Use DSP platform to achieve the chaotic system. The hardware implementation platform 
is displayed in Fig. 7. Among them, the DSP chip with model TMS320F28335 is used, and the 
D/A converter is DAC8552, and the oscilloscope is UTD7102H. 



 

 

 

Fig. 7 DSP hardware platform 

Setting parameters are shown in section 4.2, and the phase diagram implemented by the 
DSP platform is plotted in Fig. 8(a)-(c), it is consistent with the computer simulation. 
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 (a)                        (b)                         (c) 

Fig. 8 Phase diagram (a) x-y plane (b) x-z plane (c) y-z plane 

5. Conclusion 

According to the definition of fractional differential and the memristive chaotic circuit, 
we construct the fractional form, and the solution of the chaotic system is calculated using 
ADM algorithm. On this basis, the system’s dynamic features are studied using phase diagram, 
LEs, bifurcation diagram, and complexity. The analysis of dynamic characteristics shows that 
the application of ADM decomposition algorithm can effectively solve the fractional-order 
chaotic system, and the proposed chaotic system has complex performance. When the 
parameter β=1.94 and the order q∈(0.4,0.5), the randomness and complexity of the system 
are the best. Under this condition, the chaotic sequence obtained is more suitable for chaotic 
applications. The process of solving the fractional order chaotic system is realized on the DSP 



 

 

platform, and the approximate attractor is obtained on the oscilloscope. The conclusions 
obtained from this research provide great help for the application of memristive chaotic 
circuits based on fractional order. 
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