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Abstract. In this paper, a new four-dimensional chaotic system with 11 piecewise linear 

functions is proposed in this paper. The dynamic characteristics of the four-dimensional 

chaotic system are analyzed through the Lyapunov exponential spectrum and bifurcation 

diagram. The state of the system under different bifurcation parameter changes is 

observed and recorded, and the exact parameters of the system entering the chaotic state 

are determined by the 10 test method. Numerical simulation results show that the system 

has entered chaos from the intermittent chaotic road, and the system has hidden attractors. 

Finally, the corresponding analog circuit is designed through system dynamics equations 

and circuit theory, which provides a complete theoretical basis for the system. 
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1 Introduction 

Chaos is a non-linear phenomenon widely existing in nature, and it is a basic form of motion 
[1-2]. The motion model of a dynamic system depends on two factors, one of which is the 
dynamic equation of the system, and the other is the initial conditions of the system [3-5]. For 
a deterministic system, when the system equation and initial conditions are determined, the 
result is determined, that is, the deterministic equation gets a definite solution, but in a chaotic 
system, even if the equation and initial conditions are determined, an uncertain solution will still 
be obtained [4-6]. In the chaotic system, three main roads are leading to chaos, namely the 
period-doubling bifurcation road, the PM-type intermittent road, and the pseudo-period road [7-
8]. The way to enter chaos through PM intermittent roads is relatively rare compared to the other 
two, and it has a higher research value [9-11]. 
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The PM type intermittent road was proposed by French scientists Y. Pomeau and P. Manneville, 
and it is also called the intermittent chaos road. The generation mechanism of PM-type 
intermittent roads is closely related to the tangential bifurcation [13-15]. This way occurs before 
the starting point of the tangential bifurcation, and the performance is that the periodic state and 
the chaotic state alternately appear with parameter changes [16-20]. When one of the parameters 
of the system is lower than a certain value, the system exhibits regular periodic motion [20-22]. 
When the parameters gradually change in a certain direction along the number axis, the system 
exhibits an obvious approximate periodic motion for a long time [23-24]. In the process of 
gradual change, the system has a brief chaotic behavior, and then it becomes a periodic motion 
[25]. This method is repeated continuously [26-28]. With the change of parameters, this sudden 
phenomenon becomes more and more frequent, and the approximate periodic motion becomes 
shorter and shorter [29-30]. Finally, the system enters a completely chaotic state [31]. 
Piecewise linear function is a kind of nonlinear function, which is usually used to make multi-
scroll chaotic systems and has important application value [32-34]. According to the different 
values of the slope of the function, piecewise linear functions can be divided into four categories 
[35-36]. By changing a parameter in the function, the number of wings of the multi-scroll 
chaotic system can be flexibly changed [37-38]. In this paper, by adding 11 piecewise linear 
functions to the chaotic system to increase the complexity, a new four-dimensional chaotic 
system with complex dynamics is obtained. The stability of the four-dimensional chaotic system 
is analyzed, and the results show that it is in a stable state, and the attractor of the system is 
hidden [39]. The complex dynamics and balance characteristics of the new system make it have 
a high application potential in military information transmission and confidential 
communication [40-42]. 
In this paper, the structure of the new 11 piecewise linear function and the attractor state of the 
system are introduced in the first part, and the equilibrium point and stability analysis of the 
new chaotic system are described in the second part. By using a bifurcation diagram, Lyapunov 
exponential spectrum, and a test method, the dynamic characteristics of this system are analyzed 
in the third part. The analog circuit corresponding to the new four-dimensional chaotic system 
is designed through Kirchhoff's law and circuit principle in the fourth part. The summary of the 
research results of this paper are presented in the fifth section. 

2 Novel four-dimensional chaotic system 

A new four-dimensional chaotic system with 11 piecewise linear functions can be expressed as 
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among them, H(x) represents an 11 piecewise linear function, and piecewise function H(x) is an 
odd function, which is usually used to generate an even number of multi-scroll functions. In this 
paper, it is used to construct a new chaotic system. The construction method greatly increases 
the complexity of the chaotic system. The corresponding mathematical expression is shown in 
Formula 2, and the corresponding function image is shown in Figure 1. 
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Fig 1 Function graph of 11 piecewise linear functions in the system 
In Figure 1, the turning point value is Ei, the width of the linear interval is Wi, the slope of each 
interval is mi, and the height of each turning point is equal. From this, the relationship between 
the width Wi of each interval and the first turning point E1 can be expressed as 
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in formula 3, i=0,1,2, the slope mi of each interval and the first turning point value E1 are 



incorporated into the formula, and the calculation formula for turning point En can be obtained 
as 
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expand it to get formula 5 
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the specific expression of the 11 piecewise linear functions can be expressed as 
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(6) 
When the system parameters take a=4.5, b=1.6, c=19.5, d=9, e=6.7, h=8.1. m0=m2=m4=-0.5, 
m1=m3=m5=0.3, the first turning point value E1=0.4. The initial value is (0.1 0.1 0.1 0.1), when 
the step length is 0.01s, the Lyapunov exponent of the system is (0.3588, 0.0063, -1.1288, -
4.9655), and the system phase diagram is shown in Figure 2, the time domain diagram of the 
system is shown in Figure 3. 
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Fig 2 The phase diagram of the system, (a) x-y plane, (b) x-z plane, (c) x-v plane, (d) y-z plane, (e) y-v 

plane, (f) z-v plane 
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 (c)                                 (d) 
Fig 3 Time domain diagram of the system, (a) t-x plane, (b) t-y plane, (c) t-z plane, (d) t-v plane 



3 Balance point analysis of system 

The divergence of the four-dimensional chaotic system is 
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when -a+cv-d+ez-x2-(1+h+100y2)/100<0, the system is dissipative, and the volume of system is 
0, when t approaches infinity. Let the parameters a=4.5, b=1.6, c=19.5, d=9, e=6.7, h=8.1. 
m0=m2=m4=-0.5, m1=m3=m5=0.3, E1=0.4. When the initial value is (0.1 0.1 0.1 0.1), the 
divergence is less than 0, the system at this time is dissipative, and has the conditions to produce 
chaos. 
Let the differential equations of the system be equal to zero, that is, when the system equation 
takes �̇�𝑥=�̇�𝑦=�̇�𝑧=�̇�𝑣=0, the equilibrium point of the system can be obtained. 
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it can be easily found that the equilibrium point of the system is P(0, 0, 1.3303, 7.8022). 
Linearize the system at point P, and the Jacobian matrix of the system is 
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among them, expand P(x) to get formula 10 
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By analyzing the Jacobian matrix, the characteristic polynomial of the system can be 



expressed as 
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according to the Rouss-Herwitz stability criterion, the system is stable under the following 
conditions. 
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putting An into formula 12 to calculate in turn shows that the system is stable according to the 
stability judgment. Therefore, all attractors in this system are hidden attractors. 

4 Dynamics analysis of system 

The bifurcation graph and Lyapunov exponent spectrum are important indicators to determine 
the state of the system. To obtain more accurate parameter values when the system enters chaos, 
the 10 test method is used for system analysis. This test method can accurately determine the 
parameter values when the system enters chaos. 
Let the system parameters a=4.5, b=1.6, d=9, e=6.7, h=8.1. m0=m2=m4=-0.5, m1=m3=m5=0.3, 
E1=0.4. the initial value is (0.1 0.1 0.1 0.1), when the step length is 0.01s, the bifurcation diagram 
and Lyapunov index spectrum obtained according to the change of c ∈ (18, 21) are shown in 
Figure 4. According to Figure 4, as the parameter c decreases from 21, the system begins to 
produce a transient state of chaos. When the parameter value is c=20.909, the system enters 
chaos for the first time, the Lyapunov exponent is (0.0996, -0.0165, -1.3122, -6.2662), and the 
duration gradually becomes longer, and finally, it enters a continuous chaotic state. When 
c=18.468, the system begins to show obvious period-doubling bifurcation. At this time, the 
Lyapunov exponent is (0.0133, -0.0801, -0.7587, -3.8666), and the system gradually enters a 
new chaotic state. The 10 test chart when the system enters chaos and periodic state for the first 
time is shown in Fig. 5. 



         
 (a)                                  (b) 

Fig 4 The Lyapunov index spectrum and bifurcation diagram of the system when c changes, (a) the 

bifurcation diagram of the system, (b) the Lyapunov index diagram of the system 

         
(a)                                  (b) 

Fig 5 The 10 test chart of the system when c changes, (a) c=20.90, (b) c=18.468 

Let the system parameters a=4.5, b=1.6, c=19.5, e=6.7, h=8.1. m0=m2=m4=-0.5, m1=m3=m5=0.3, 
E1=0.4, the initial value is (0.1 0.1 0.1 0.1). When the step size is 0.01s and d ∈ (8, 10), the 
bifurcation graph and Lyapunov index spectrum of the system are shown in Figure 6. And, 
Figure 7 is the 10 test chart when the system enters the chaotic state and the periodic state for 
the first time under different values of the parameter d. With the increase of d, when d=8.224, 
the system enters a chaotic state, at this time, the Lyapunov index of the system is (0.2243, -
0.0034, -1.2404, -5.3852). When d∈(8.861,8.889), the system behaves as a periodic state. 
When d=8.623, the system is in the periodic window, and the Lyapunov index of the system at 
this time is (0.02565, -0.03074, -1.371, -5.538). When d>9.719, the system enters a periodic 
state. At this time, the Lyapunov exponent is (0.0171, -0.0763, -0.6976, -4.4898). 



         
(a)                                  (b) 

Fig 6 The Lyapunov index spectrum and bifurcation diagram of the system when d changes, (a) the 

bifurcation diagram of the system, (b) the Lyapunov index diagram of the system 

 

         
(a)                                  (b) 

Fig 7 The 10 test chart of the system when d changes, (a) d=20.90, (b) d=18.468 

5 Analog circuit design of system 

In order to perfect the theory of the system, an analog circuit corresponding to the new system 
shown in formula 13 is designed. The analog circuit is composed of the main arithmetic circuit 
and an 11 piecewise linear function circuit. The complete circuit consists of resistors, capacitors, 
multipliers, and operational amplifiers. 
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Dimension formula 13 to obtain the equation system shown in formula 14. The first and second 
differential equations in the equation system are coupled with each other, corresponding to the 
two sets of circuits in Figure 8 (a) and (b), the piecewise linear function is added in the third 



differential equation. 
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among them, vx, vy, vz, vv are the four circuit variables of the simulation circuit, g1, g2, g3, g4, g5, 
g6 are the amplification coefficients of the multiplier, and V represents the constant term. 
According to the logical relationship shown in formula 14, combined with Kirchhoff's law and 
circuit principle, the analog circuit corresponding to system 13 can be obtained. 

        

 
(a)                                 (b) 

         
(c)                                 (d) 



 

 (e) 
 Fig 8 The simulation circuit corresponding to the four-dimensional chaotic system, (a) the first 

differential equation (b) the second differential equation (c) the third differential equation (d) the fourth 

differential equation (e) 11 piecewise linear function 

6 Conclusion 

In this paper, by introducing 11 piecewise linear functions to the chaotic system, a new four-
dimensional chaotic system with complex dynamic behavior is proposed. Methods such as 
bifurcation diagram, Lyapunov exponent spectrum, phase diagram, and 10 test are used to 
analyze the system. Numerical simulation results show that due to the introduction of 11 
piecewise linear functions, the system has hidden attractors and complex dynamics. For example, 
when some parameters are fixed, when the parameter c becomes smaller, the system shows 
obvious intermittent chaos. The chaotic state of the system appears more and more frequently 
and lasts longer and longer until it finally enters the chaotic zone completely. Finally, the analog 
circuit diagram corresponding to the system is designed using the circuit principle, which 
provides a complete theoretical basis for scholars to study the system. The complex dynamics 
of the system provide a good prospect for its practical application. 
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Appendix 

The coefficient An of the characteristic polynomial involved in the third part of this paper is 
shown in here. 
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