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Abstract. This paper aims at learning deep representation of emotion speech signal 

directly from raw audio clip using a 1D convolutional encoder, and reconstructing the 

audio signal using a 1D deconvolutional decoder. The learned deep features which 

contain the essential information of the signal, should be robust enough to reconstruct the 

speech signal. The location of the maximal value in the pooled receptive field of the max 

pooling layer is passed to the corresponding unpooling layer for reconstructing the audio 

clip. Residual learning is adopted to ease the training process. A dual training mechanism 

was developed to enable the decoder to reconstruct the speech signal from the deep 

representation more accurate. After completing the training of the convolutional-

deconvolutional encoder-decoder as a whole, the decoder with transferred features was 

trained again. Experiments conducted on Berlin EmoDB and SAVEE database achieve 

excellent performances. 

Keywords: Deep representation, emotion speech signal, 1D deconvolutional decoder, 

convolutional-deconvolutional encoder-decoder 

1 Introduction 

With the development of deep learning, there emerge a trend towards deriving a deep 

representation of the input signal directly from raw data. The learned deep representation of 

the unprocessed signal can lead to better performance in many practical tasks. The basic 

approach of learning deep representation is to construct a deep architecture to extract the high-

level features, which can represent the input signal. So, a series of new neural network 

architectures have been introduced to learn deep representation, such as autoencoder network, 

convolutional neural network (CNN), or recurrent neural network (RNN) [1], [2], [3]. 

 
1 Junyi Duan(1976~), male, engineer, Inner Mongolia Branch of China Tower Corporation Limited.  

 
2 Zheng Song(1995~), female, Master candidate, School of Electronic Information Engineering, Inner 

Mongolia University.  

 
3 Jianfeng Zhao(1978~), corresponding author, male, associate professor, Hangzhou Innovation Institute, 

Beihang University. 

 

EAI GreeNets 2021, June 06-07, Dalian, People's Republic of China
Copyright © 2021 EAI
DOI 10.4108/eai.6-6-2021.2307539



 

 

 

 

Due to the high learning capacity, deep representation learning has made a great 

improvement in several fields, especially in learning hieratical image representation. Several 

very deep autoencoders have been proposed to learn the deep representation of the image, and 

used for many tasks [4], [5], [6], [7]. The deep convolutional encoder-decoders with deep 

residual learning blocks (RLBs) [8], [9], [10], which allow skip connections, have also 

achieved great success and obtained better performance in learning deep representation from 

images. 

As regards the research fields relevant to speech, there are a lot of researchers have 

devoted to complete the recognition or prediction task using different deep networks. The 

autoencoder, CNN, and RNN have reformed the speaker, speech, and speech emotion 

recognition by learning deep features from different hand-crafted features, especially from 

mel-frequency cepstral coefficients (MFCCs) and short-time Fourier transform (STFT) [11], 

[12], [13], [14]. The deep features learned by the deep neural network (DNN) can form a 

hierarchical representation of raw data, and perform better in some experiments, such as 

emotion prediction [15]. The learning of the deep representation, which composes of multiple 

linear and non-linear transformations, from raw audio clip also has been brought into focus.  

Inspired by the success of image restoration using deep residual learning, we designed a 

1D deep convolutional-deconvolutional encoder-decoder with RLBs to learn the deep 

representation from raw audio clip using convolution and pooling, and reconstruct the audio 

signal from deep representation using deconvolution and unpooling. To unpooling properly, 

the exact location of the maximal value [16], which is lost during the max pool, is transferred 

from the layer of encoder to the corresponding layer of decoder. Residual learning block (RLB) 

is used to ease the training process. A dual training mechanism was developed to enable the 

decoder to reconstruct the speech signal from the deep representation more accurate. After the 

completion of the training of encoder-decoder as a whole, the decoder with transferred 

features was trained again. The experimental results show that the dual training mechanism 

can make the deconvolutional decoder reconstruct the emotion speech signal from the deep 

representation effectively with the help of the dual training mechanism. 

Our key contributions are as follows: 1) we complete the design of 1D deep 

convolutional-deconvolutional encoder-decoder to learn deep representation from speech 

signal using convolution and pooling, and restore the signal from the learned deep 

representation using deconvolution, and unpooling; 2) we adopt a different RLBs in encoder 

and decoder to ease the training of the very deep encoder-decoder; 3) we develop a dual 

training mechanism, which enable the encoder-decoder perform better. The dual training 

mechanism can enable the decoder to restore the speech signal from the deep representation 

more accurate. To our knowledge, it is the first framework that applies such a convolutional-

deconvolutional encoder-decoder to learn deep representation from speech signal, and the 

results show that the designed architecture can learn the deep representation and reconstruct 

the speech signal with high fidelity Successfully. 

2 Related Work 

With the development of deep learning, deep representation learning has made great 

strides over the last several years, especially in image processing, such as image restoration. 

Hinton and Krizhevsky designed a very deep autoencoder to learn the deep representation of 

the image, which was used to implement the application of content-based image retrieval [4]. 

Pascal Vincent et al. proposed a stacked denoising autoencoder to learn useful representations 



 

 

 

 

with a local denoising criterion, which could learn Gabor-like edge detectors from natural 

image patches and larger stroke detectors from digit images contrary to ordinary autoencoders 

[5]. Junbo Zhao et al. presented a stacked what-where auto-encoder, which produced the 

reconstruction of the image by integrating discriminative and generative pathways and 

providing a unified approach without relying on sampling during training [6]. Yiyi Liao et al. 

proposed a graph regularized auto-encoder, which preserved the local connectivity from the 

original image space to the representation space and provided explicit encoding model for fast 

inference and powerful expressive capacity for complex modelling [7]. When residual 

learning framework was present by Kaiming He et al. [8], [9] the deep convolutional encoder-

decoder designed by Xiao-Jiao Mao et al. [10] with symmetric skip connections, which was 

composed of multiple layers of convolution and deconvolution operators, achieved better 

performance in recovering the original image.  

Learning deep features from raw speech waveform to implement speech-related tasks has 

also attracted increasing attention of many researchers. In addition to the above deep 

representation learning approaches on image-related tasks, there were many other encouraging 

achievements [17], [18], [19], [20], [21] that also motivated us to achieve better performance 

in learning deep representation from the raw speech signal. Jaitly and Hinton proposed 

learning an intermediate representation by training a restricted Boltzmann machine (RBN) 

directly on the speech time signal for automatic speech recognition (ASR). Experiments on the 

TIMIT phoneme recognition task achieved state-of-the-art results at the time [22]. Bhargava 

and Rose presented a stacked bottleneck deep neural network, which was trained on 

windowed speech waveforms. The experimental results were only worse than corresponding 

MFCCs on the same architecture [23]. Palaz et al. proposed a CNN architecture, which was 

directly trained on the speech signal to estimate phoneme class conditional probabilities. The 

experimental results showed that the architecture had a more robust performance in noisy 

conditions [24], [25]. Sander Dieleman and Benjamin Schrauwen designed a CNN 

architecture to learn features directly from raw audio signals, which was successfully applied 

to an automatic tagging task [26]. 

3 The Proposed Approach 

To learn compact and robust features, a deep convolutional-deconvolutional encoder-

decoder was designed according to the requirements of the experiments and the hardware 

resources.  Convolution and pooling are exactly proved to outperform on learning features, 

which are inspired from biological visual cortex and designed to emulate the behaviour of the 

visual system [29]. With the distinguishing excellences, spatially-local connectivity and 

shared weights [30], convolution and pooling perform the function of the learning filters in the 

encoder. In order to reconstruct the speech signal, deconvolution and unpooling were adopted 

to build the decoder for symmetry. 

 

3.1 1D Convolution and Deconvolution 

 

The 1D convolution layer plays the role of feature extractors and learns the local features 

which restrict the receptive fields of the hidden layers to be local (see Figure 1a). The 

convolution kernel, which has a small receptive field, is convolved across the input. The 

convolution will produce a features map by computing the dot product between the entries of 

the filter and the input. It is the core building block of a CNN. 



 

 

 

 

If 1D convolution layer takes as input a speech signal 𝑥(𝑛), the feature map 𝑧𝑘(𝑛) can be 

obtained by convolving the signal 𝑥(𝑛) with the k-th convolution kernel 𝑐𝑘(𝑛) of size l.  

 

𝑧𝑘(𝑛) = 𝑥(𝑛) ∗ 𝑐𝑘(𝑛) = ∑ 𝑥(𝑚) ∙ 𝑐𝑘(𝑛 − 𝑚)𝑙
𝑚=−𝑙                                 (1) 

               

To restore the speech signal x, the deconvolution, which reverses the effects of convolution, 

needs to be applied. The restored speech signal �̂�(𝑛) can be represent as a linear sum of 

feature map 𝑧𝑘(𝑛) convolved with filter 𝑐𝑘(𝑛) [37]. 

 

�̂�(𝑛)  = ∑ 𝑧𝑘(𝑛)  ∗ 𝑐𝑘(𝑛)𝐾
𝑘=1                                                (2) 

 

Where 𝐾 is the number of the filters.  

The 1D deconvolution performs a transformation going in the opposite direction of a 

normal 1D convolution. To complete the transposed convolutions, the connectivity pattern of 

the transposed convolution operation needs to be compatible with the convolution. The input 

of the deconvolution is the output of the convolution, while the output of the deconvolution is 

the input of the convolution. 

 

3.2 1D pooling and Unpooling 

 

The 1D pooling layer, which makes the features robust against noise and distortion [31], 

performs the non-linear downsampling function and reduces the resolution of the features. The 

most common used non-linear functions to implement pooling is max pooling. Max pooling 

will partition the input into a set of non-overlapping regions and output the maximal value of 

each sub-region. But the max pooling will lose the exact location of the maximal value in the 

pooled receptive field, which is very useful for the reconstruction of the input. The features 

produced by max-pooling layer can be expressed as:  

 

𝑧𝑘
𝑜(𝑛) = max

∀𝑝∈Ω𝑘

𝑧𝑝
𝑜−1 (𝑛)                                                  (3)  

 

Where 𝑧𝑘
𝑜(𝑛) and 𝑧𝑝

𝑜−1(𝑛) represent the maximum feature of the 𝑘-th pooling region at the 𝑜-

th layer and the input features at the (𝑜 − 1)-th layer, Ω𝑘 represents the pooling region with 

index 𝑘.  

 

 
a    b 

Fig. 1. Illustration of 1D max pooling and unpooling 

 

The most common used inverse operation of 1D pooling is upsampling, which will repeat 

the data along the time axis (see Figure 1b). However, the upsampling function cannot 

correctly place the features in decoder, which will become noise and affect the quality of the 

signal reconstruction.  



 

 

 

 

To reconstruct the signal with much higher fidelity, Goroshin et al. introduced a soft 

version of max and argmax pooling operators to hand the exact location of the maximal value 

from a pooling layer to the corresponding unpooling layer [38]. The max-pooling operator will 

indicate the position of the maximum value in each sub-region. Whereas the argmax-pooling 

operator will return the position of the maximum value defined over the sub-region.  

Inspired by the idea of Goroshin et al., we achieve this goal in our architecture using a 

simple method. We use hard version pooling to output the maximal value of each pooling 

region in encoder, and upsampling to repeat the maximal value in each unpooling region in 

decoder. The location of the maximal value in each pooling region in encoder will be handed 

to the corresponding unpooling region in decoder by a mask. 

 

𝑚𝑎𝑠𝑘
Ω𝑘

= 𝜕 ∑ 𝑧𝑘
𝑜(𝑛) 𝜕𝑧𝑘

𝑜(𝑛)⁄                                                  (4) 

 

Where 𝑧𝑘
𝑜(𝑛) denotes the features of the 𝑘-th pooling region at the 𝑜-th layer, n stands for 

temporal location, Ω𝑘 represents for the k-th pooling region.  

The mask contains switches indicating. The value of the maximum value location of the 

pooling region is 1 in the mask, and the value of other location is 0. Therefore, the 

reconstructed signal in a unpooling region can be represented as: 

 

�̂̂�𝑘
𝑜(𝑛) = 𝑚𝑎𝑠𝑘

Ω𝑘

∙ �̂�𝑘
𝑜(𝑛)                                                      (5) 

Where �̂�𝑘
𝑜(𝑛) denotes the upsampled feature of the 𝑘-th unpooling region at the 𝑜-th layer, 

�̂̂�𝑘
𝑜(𝑛) denotes the unpooled feature of the 𝑘-th unpooling region at the 𝑜-th layer, n stands for 

temporal location, Ω𝑘 represents for the k-th unpooling region. 

3.3 Residual Learning Block 

 

Deep residual learning allows skip connections, which enable the network to be as linear 

or non-linear as the data sees fit. It was first introduced by Kaiming He et al. [8], [9] for image 

recognition. Residual learning block always consists of several layers, and can ease the 

training of deep neural networks (see Figure 2). The skip connections in a RLB are 

connections which skips one or several layers and connects to the next available layer. 

Different RLBs were used in encoder and decoder to ease the training of the designed 

very deep encoder-decoder. The RLB adopted in encoder contains two convolution layers (see 

Figure 2a), and the RLB used in decoder includes two deconvolution layers (see Figure 2b). 

RLB can be expressed in a form:  

 

𝑥𝑙+1 = 𝐹(𝑥𝑙) + 𝑥𝑙                                                         (6) 

 

Where 𝑥𝑙  and 𝑥𝑙+1  are the inputted features and outputted features, and 𝐹  is the residual 

function which is determined by the building layers. The activation function (ELU) acts as a 

pre-activation of the convolution and deconvolution layers, in contrast with the conventional 

method of post-activation.  

 

3.4 Architecture 

 

3.4.1 Architecture Design 

The designed architecture, which is illustrated in Figure 3, consists of two parts: the 

encoder and decoder. The encoder is formed by a stack of convolution and pooling layers, 



 

 

 

 

because of the symmetry requirement between the encoder and decoder, the decoder is built 

by the same number of deconvolution and unpooling layers.  

 

 
a    b 

Fig. 2. Illustration of residual learning blocks 

 

The encoder consists of five RLBs, five convolution and pooling layers. The RLB in the 

encoder is constructed by stacking two ELU and convolution layers with a kernel size of 3 

(see Figure 2a). In the same RLB, the convolution will produce the same number of feature 

maps. The number of the feature maps in each RLB is 16, 16, 32, 32 and 64. The 1D 

convolution is applied with a kernel size of 3 on the audio data. The number output of filters in 

each convolution layer is 16, 16, 32, 32 and 64. That is to say, there are fifteen convolution 

layers in the designed encoder in total. In each pooling layer, the 2 downsampling is applied 

on each feature map in each RLB. This leads to the same number of feature maps with 

reduced temporal resolution. When the audio clip, a 64000-dimensional vector, is entered into 

the encoder, the dimension will be reduced to 2000. 

The corresponding decoder of the designed encoder consists of five RLBs, five 

deconvolution and unpooling layers. The RLB in the decoder is built by linking two ELU and 

deconvolution layers with a kernel size of 3 (see Figure 2b). In the same RLB, the 

deconvolution will produce the same number of feature maps. The number of the feature maps 

in each RLB is 32, 32, 16, 16 and 1. The 1D deconvolution is applied with a kernel size of 3 

on the audio data, and will output 32, 32, 16, 16 and 1 feature maps in each deconvolution 

layer. So, there are fifteen deconvolution layers in the decoder in total. In each unpooling layer, 

the 2 upsampling is applied on each feature map of each RLB. This also will produce the same 

number of feature maps with increased temporal resolution. When the deep representation, a 

2000-dimensional vector, is entered into the decoder, the audio clip will be rebuilt.  

 

3.4.2 Optimization Algorithm 

 

The aim of hyperparameter optimization is choosing a set of hyperparameters for a deep 

architecture, usually with the goal of optimizing the deep network's performance on an 

independent data set. An optimization algorithm will find the “best fitting” model by solving a 

convex minimization or concave maximization problem [32].  

Adaptive moment estimation (Adam) optimizer is adopted to train the network for faster 

backpropagation and smoother convergence [33]. We use the Adam with the learning rate of 

γ = 0.001 and exponential decay rates of 𝛽1 = 0.9, 𝛽2 = 0.999.  



 

 

 

 

The objective function is mean squared error (MSE), which will minimize the loss 

between the recovered speech signal and the ground truth during the training of the network.  

 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)

2𝑛
𝑖=1                                              (7) 

 

Where �̂�𝑖 is the recovered signal of the inputs, and 𝑌𝑖 is the speech signal corresponding to the 

inputs. After the network has been trained with optimized parameters, the best model will be 

returned. 

 

 

 
Fig. 3. The overall architecture of the designed 1D deep convolutional-deconvolutional encoder-decoder. 

The upper half of the architecture is an encoder, the bottom half of the architecture is a decoder. The 

exact location of the maximal value in the pooled receptive field is handed from the layer of encoder to 

the corresponding layer of decoder. 

 

3.4.3 Regularization Methods 

 

Overfitting is a common problem which arises with the deep architectures. Overfitting 

always occurs when the deep architecture is very complex, especially when the deep network 

has too many parameters relative to the number of observations. If a deep network has been 

overfit, it will have poor predictive performance. So there are many regularization methods 

have been proposed to overcome overfitting, such as weight decay, dropout, early stopping 

[34], [35], [36]. This paper used weight decay and early stopping to combat overfitting. 

 

4. Experiments and Results 

The raw data contain the whole information, so abundant features can be obtained from 

the audio clips. So two emotion speech databases, which contain clear features, were selected 

to accomplish the experiments. The audio clips were preprocessed to meet the requirements of 

the experiments and balance the hardware limitation against time-consuming. 

 

4.1 Data Preprocessing 

 



 

 

 

 

We select two emotional databases, the Berlin emotional database (Berlin EmoDB) and 

the Surrey Audio-Visual Expressed Emotion (SAVEE) database, both of which possess a high 

degree of naturalness to test and verify the designed deep convolutional-deconvolutional 

encoder-decoder. The two selected databases are all acted speech database, in which pre-

determined sentences with the required emotions are expressed by the invited actors. 

 

4.1.1 Databases Introduction 

 

Berlin EmoDB - The Berlin EmoDB which was recorded in 2005 provides labeled audio 

clips and some analysis results. It contains seven emotions, and each emotion comprises 

nearly the same number of utterances to properly evaluate the classification accuracy. These 

acted emotional utterances were spoken by ten professional actors in an angry, boredom, 

disgust, fear, happy, neutral and sadness way. Five actresses and five actors feigned five short 

and five longer German utterances with the simulated emotions. There are 535 sentences of 

the utterances which come from everyday communication and can be interpretable in all 

applied emotions. The utterances were recorded in an anechoic chamber and were evaluated in 

a perception test regarding the recognisability of emotions and their naturalness [27]. 

SAVEE Database - The SAVEE database was released in April 2011 and provides the 

audio, visual, audio-visual data and other analysis data. It consists of 480 British English 

utterances which expressed by four native English male actors in 7 different emotions. These 

emotions have been described psychologically in discrete categories: anger, disgust, fear, 

happiness, sadness, surprise and neutral. The sentences of the emotional utterances were 

picked from the standard TIMIT corpus and phonetically-balanced for every emotion. The 

utterances were recorded, processed and labeled in a visual media lab. And ten subjects 

evaluated the recordings for checking the quality of data [28].  

The two acted databases, which are recorded by the professional institutions, have the 

same number of the emotion categories. They share the following emotions: angry, disgust, 

fear, happy, neutral and sadness following the palette theory. But there is the boredom but 

without the surprise in Berlin EmoDB when compared with SAVEE database, and vice versa. 

Evaluation protocol - In experiments each dataset was split into two sets randomly, one is 

training set which takes 80% of the clips, and the other one is testing set which takes the 

remaining 20% of the clips.  

 

4.1.2 Data Preprocessing 
 

The audio clips are processed simply to meet the requirements of learning deep 

representation. The audio clips of each database vary in sample rate and length. The audio 

files of the Berlin EmoDB consist of audio WAV files sampled at 16 kHz, and the audio clips 

of the SAVEE database sampled at 44.1 kHz. The sample rate of audio clips used in the 

experiments is 16 kHz. The audio clips of the SAVEE database are all resampled to 16 kHz. 

All the raw audio clips in the experiments are segmented to 4 s long. At 16 kHz sampling rate, 

they can be represented as a 64000-dimensional vector. The audio clips of the two selected 

databases are truncated or padded up to the length of 64000. If the length of the audio clips is 

longer than 4 s, they are truncated to the length of 64000. Otherwise, they will be padded to 4 

s long. Then all the audio data are pre-processed to have zero mean and unit variance. To use 

the hard softmax, which is applied as a bias, all the audio data are mapped to [0, 1]. 

 



 

 

 

 

4.2 Network Pre-training 

 

The designed 1D deep convolutional-deconvolutional encoder-decoder as a whole, which 

consists of the encoder and decoder, was trained firstly. During the training, the experimental 

data was split into two sets randomly, one is training set which takes 80% of the data from the 

whole dataset, and the other one is testing set which takes the remaining 20% of the data for 

testing the network.  

Early stopping is adopted to combat the overfitting, which leads the model to lost 

predictive performance. When the monitored quantity stops improving after the patience, the 

training will stop. The training accuracy, training loss, validation accuracy or validation loss is 

always the quantity to be monitored in training progress. The patience is the number of epochs 

with no improvement of the monitored quantity. If the patience is too small, the training of the 

model will stop when a monitored quantity does not improve; on the contrary, the training will 

last for a long time. In the pre-training, the monitored quantity is validation accuracy, the 

patience is set to 8. This patience not only prevents the model from prematurely cancelling 

training, but also avoids a long training. 

 

4.3 Network Fine-tuning 

 

After the pre-training, the decoder of the designed 1D deep convolutional-deconvolutional 

encoder-decoder was fine-tuned separately to obtain better performance. The main steps of the 

fine-tuning are as follows: 1) save the weights of the 1D deep convolutional-deconvolutional 

encoder-decoder after the pre-training, 2) transfer the learned features of the designed 1D deep 

convolutional-deconvolutional encoder-decoder to the encoder, 3) save the prediction of the 

experimental data using the encoder, 4) transfer the learned features to the decoder, and fine-

tune the decoder using the prediction and the experimental data. The processing is illustrated 

in Figure 4. 

 

 
Fig. 4. Illustration of the pre-training and the fine-tuning 

 

Early stopping is also used to combat the overfitting during the fine-tuning. The 

monitored quantity is validation accuracy, and the patience is also set to 8. In the experiments, 

the fine-tuning lasted much longer than the training. 

 

4.4 Experimental Results 

 

4.4.1 Experimental Results on Berlin EmoDB 

 



 

 

 

 

The experimental results on Berlin EmoDB are shown in Table 1. The results were 

obtained on all the 535 audio clips, which were split into two sets randomly in the ratio of 8:2. 

From the table, we can see that the training loss and the testing loss in fine-tuning are much 

smaller than that in pre-training. 

 
Table 1. Berlin EmoDB results for prediction of audio clips. The loss is mean squared error. 

 

Loss Pre-training Fine-tuning 

Training loss 0.00136 0.00077 

Testing loss 0.00105 0.00080 

 

The training and validation losses in pre-training and fine-tuning over epochs on Berlin 

EmoDB are illustrated in Figure 5. From the figures, we can see that the training and 

validation losses in fine-tuning are significantly smaller than that in pre-training.  

 

 
a 

 
b 

 
Fig. 5. The training and validation losses in pre-training and fine-tuning over epochs on Berlin 

EmoDB 

 

The waveforms of the original signal, and the reconstructions produced by the pre-trained 

model and the fine-tuned model are illustrated in Figure 6. The first waveforms in Figure 6 are 

the graphical representation of the original signal. The second waveforms are restored by the 

pre-trained model, and the third waveforms are reconstructed by the fine-tuned model. From 

the figure, we can see that the waveforms of the reconstruction produced by the fine-tuned 

model have much higher fidelity when compared to that of the signal restored by the pre-

trained model.  

 



 

 

 

 

 

 

 
 

Fig. 6. The waveforms of the original signal, and the reconstructions produced by the pre-trained model 

and the fine-tuned model 

 

4.4.2 Experimental Results on SAVEE Database 

 

The experimental results on SAVEE Database are shown in Table 2. The results were 

gained on all the 480 audio clips, which were split into two sets randomly, one is training set 

which takes 80% of the clips, and the other one is testing set which takes the remaining 20% 

of the clips. We can see that the training loss and the testing loss of the fine-tuning are much 

smaller than that of the pre-training. 
Table 2. SAVEE Database results for prediction of audio clips. The loss is mean squared error. 

 

Loss Pre-training Fine-tuning 

Training loss 0.00075 0.00031 

Testing loss 0.00072 0.00039 

 
The training and validation losses in pre-training and fine-tuning over epochs on SAVEE 

database are showed in Figure 7. These figures also show that the training and validation 

losses in fine-tuning are also smaller than that in pre-training. Therefore, in order to learn the 

more accurate representation of the signal, it is import to fine-tune the model after pre-training. 

 

 
a 



 

 

 

 

 
b 

 
Fig. 7. The training and validation losses in pre-training and fine-tuning over epochs on SAVEE 

database 

 
The waveforms of the original signal, and the reconstructions restored by the pre-trained 

model and the fine-tuned model are illustrated in Figure 8. The layout of the waveforms in 

Figure 8 is the same as that in Figure 6 We can also see that the waveforms of the signal 

produced by the fine-tuned model have much higher fidelity that of the reconstruction 

produced by the pre-trained model.  

 

 

 

 
 

Fig. 8. The waveforms of the original signal, and the reconstructions produced by the pre-trained model 

and the fine-tuned model 

 

4.5 Results Analysis 

 

The loss of the designed 1D deep convolutional-deconvolutional encoder-decoder as a 

whole contains three parts: 

 

𝐿 = 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟 + 𝐿𝑚𝑖𝑑𝑑𝑙𝑒                                           (8) 

 

Where 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟  and 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟  are the losses of the encoder and decoder, 𝐿𝑚𝑖𝑑𝑑𝑙𝑒  is intermediate 

reconstruction loss.  



 

 

 

 

In pre-training, the 1D convolutional-deconvolutional encoder-decoder will be trained as 

a whole, so the loss is composed of 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟  and 𝐿𝑚𝑖𝑑𝑑𝑙𝑒 . But in fine-tuning, the 

decoder is trained separately, so the loss consists only of 𝐿𝑑𝑒𝑐𝑜𝑑𝑒𝑟 . The exact location of the 

maximal value will not be transferred from the encoder to the decoder, but the location 

information relating to the maximal value will be handed to the decoder by transferred 

features. The upsampling will not affect the quality of the signal reconstruction significantly. 

Therefore, the training and validation losses in fine-tuning are significantly smaller than that 

in pre-training in our experiments. 

 

5. Future Work 

The designed 1D deep convolutional-deconvolutional encoder-decoder has obtained 

better results in the experiments conducted on the Berlin EmoDB and the SAVEE database, 

and the waveform of the speech restoration has high fidelity. But there are many aspects 

worthy of further discussion and study: 
1. In our experiments, only the maximal value of a pooling region was restored correctly 

by unpooling. So how to restore all the values of a pooling region by unpooling deserves 

deeply study. 

2. To restore a speech signal from convoluted features accurately, the same filters 

adopted in convolution should be applied in deconvolution. So how to hand the information of 

convolutional kernels to deconvolution layer also need for further research.  

3. Comparing to the distortion of the restored image, the alteration of the reconstructed 

speech signal is more likely to be perceived. So how to detect the distortion of the restored 

speech signal is worth delving into. 

4. As we know, the toleration level of a person to an image is higher than that to the 

speech. So how to measure the distortion level also need for further research.  

 

6. Conclusion 

In this paper, we design one 1D deep convolutional-deconvolutional encoder-decoders to 

learn high-level representation from the raw audio clips. Further, we adopt a dual training 

mechanism to train the designed architecture, which can leverage the training in a more 

effective way. By using our proposed mechanism, the loss dropped dramatically, and the 

reconstruction has much higher fidelity. The results show that the designed architecture can 

learn deep representation from raw speech signal, and model high-level abstractions of the 

speech signal from the raw audio clips. 
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