
IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-

Motion Architectures with Load Balancing

Istabraq M. Al-Joboury1 and Emad H. Al-Hemiary2

1,2Al-Nahrain University, College of Information Engineering, Department of Networks Engineering, Baghdad, Iraq

{1estabriq_94, 2emad@coie-nahrain.edu.iq}

Abstract

The work in this paper tries to enhance the performance of IoT by modifying the Cloud based architecture in terms of storage,

processing, and Load Balancing (LB). The assumption is as follows: In a single Fog server, high traffic coming from Things

may cause packet loss which in turn affect the overall IoT performance. To overcome such a situation, LB on Fog layer is

proposed and implemented practically using virtualization technology. The proposed IoT based Fog-To-Cloud and Data-in-

Motion with LB (IoT-F2CDM-LB) architecture consists of two load balancers; HAProxy and Server Load Balancing (SLB),

are used to distribute messages from Things to four virtualized Fog servers according to Least Connection technique. The

implementation is carried out using VirtualBox and GNS3. Message Queue Telemetry Transport (MQTT) protocol is used to

transfer messages between layers. Both load balancers result in packet loss reduction by 50%, lower response time and higher

throughput.

Keywords: Internet of Things; Fog Computing; Cloud Computing; Load Balancing; Virtualization Technology.

Received on 07 November 2017, accepted on 23 December 2017, published on 23 January 2018

Copyright © 2018 Istabraq M. Al-Joboury et al., licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.6-4-2018.155332

1. Introduction

The Internet of Things (IoT) has emerged with features of

ubiquitous connectivity (anything, anywhere, and anytime).

Things include actuators, sensors, or objects (smart watch,

smart car, smart pen, smart chair, smart bag, etc.). With IoT,

it is possible to turn anything to smart called smart X. These

smart Things communicate with each other to achieve a

complex and difficult goals without human intervention. IoT

becomes more and more an interesting concept almost in all

domains of life because of its features and capabilities.

Things are low power, low bandwidth, low cost and low

memory, and identified by Internet Protocol (IP) to be

linked to the world through the Internet [1-2]. Cloud

computing (CC) is a suitable way for storing and managing

web services by applying "pay-as-you-go" model. CC

isolates resources and services from customers in order to

facilitate the operation of applications. However, it has an

impact on real time applications because of possible high

delay. CC has three different types, namely: Software as a

Service (SaaS), Infrastructure as a Service (IaaS), and

Platform as a Services (PaaS) [3-4]. Fog computing (FC)

has the same features of CC (virtualization, network,

processing, and computing) and made by Cisco. These

features are provided near to Things to solve the problem of

high delay and is specialized for sensitive applications like

healthcare [5]. Cisco said that there will be around 25 billion

of Things, objects, and actuators by 2020. These Things

generate an enormous number of messages. Governments

and societies benefit from these messages to improve the

quality-of-life of end users [6]. Messages from Things can

be analyzed and processed using Data in Motion (DM)

technique that is introduced by IBM to provide analyzing

messages without to need storing it [7-8]. Virtualization is a

technology used to reduce power, cost, space and

complexity by making multiple virtual servers on a single

physical server called Virtual Machines (VMs). It provides a

middleware layer called Hypervisor to separate the hardware

and software layers [9]. Due to high number of messages

from Things, servers may crash when processing these

1

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

http://creativecommons.org/licenses/by/3.0/

requests. Thence, Load Balancing (LB) can solve this

problem by distributing the messages across multiple servers

[10]. The main contribution of this paper is to propose IoT

based Fog-to-Cloud and Data-in-Motion with LB (IoT-

F2CDM-LB) architectures using virtualization technology

with Message Queue Telemetry Transport (MQTT) protocol

to reduce the packet loss and achieve the highest throughput.

The rest of this paper is organized as follows: section 2

explains the MQTT protocol. Section 3 introduces LB

techniques and load balancers. Section 4 lists literature

review. Section 5 describes IoT-F2CDM-LB architectures.

Section 6 and 7 lists the hardware and software, and

discusses the design and implementation of proposed

architectures respectively. Section 8 and 9 show the results

with discussion. Finally, section 10 concludes this paper.

2. MQTT Protocol

MQTT protocol is an open source, application layer based

on Transmission Control Protocol (TCP). It operates as

publish/subscribe model with asynchronous connections. It

has a low overhead (2 bytes header), comparable to

client/server model. It is simple to implement and is

recommended for smart applications like smart hospital,

smart home, smart school, etc. MQTT improves

performance of high delay and low bandwidth. The Broker

part of the MQTT is needed to enable connections between

clients (publishers and subscribers) [11]. Publishers send

messages within a specific topic, then the broker distributes

these messages to the subscribed clients. The topics of

MQTT consist of levels sectioned by slash in order to clarify

a specific topic among of all topics in the same network.

Clients use wildcards such as: + (Plus symbol) represents all

values in single level and only one topic. # (Hash symbol):

represents all values in multiple levels [12].

The MQTT protocol has a retained message which means

that broker saves the last value on each topic and sends to

new subscribed clients in order to save messages from

failures. MQTT has three levels of Quality of Service (QoS)

to guarantee the message delivery [13]: QoS level 0,

message is received at most once, without an

acknowledgment; QoS level 1, message is received at least

once, with an acknowledgment. Finally, QoS level 2 in

which message is received at exactly once, and this level

requires four-way handshake. Last Will and Testament

(LWT) message is sent by broker to advertise all subscribers

that there is something wrong on connections [14].

3. LB

LB is the process of enhancing performance by distributing

traffic among a number of server pools. There are a few load

balancers that support MQTT protocol. The researchers used

High Availability Proxy (HAProxy) open sourced [15],

Nginx Plus [16], and Elastic Beam [17] where license

requirement is needed. This section explains two main load

balancers used in this paper: HAProxy and Server Load

Balancing (SLB) router.

The HAProxy is an open source software used to

distribute load among multiple servers based on TCP.

HAProxy consists of two lists: Back-end list that contains

servers that receive messages from front-end list. This list

can be defined by: IP address, port, and LB technique used.

The other is the Front-end list that represents messages from

clients. This list can be defined by: IP address and port of

clients, and Access Control List (ACL). ACL is used to

provide some rules to permit or deny messages arrive from

clients to servers [18]. HAProxy uses health check to

monitor the availability of back-end servers. Health check

works by establishing TCP connection between the

HAProxy and the back-end servers. If one of servers fails to

process messages from the front-end, then HAProxy

removes the server from the back-end list [19]. HAProxy

provides a redundancy by adding two HAProxys and act as

an active or passive model using a Keepalived to prevent the

load balancer gets overwhelmed with huge number of

messages because of single point of failure. Keepalives is a

software used for routing messages, it works by creating a

shared virtual IP address between two HAProxys. For

example, clients use 10.0.0.3 as the destination IP address as

shown in Figure 1 [20].

Switch

Server 1
10.0.0.4

Server 2
10.0.0.5

Internet Virtual IP= 10.0.0.3

HAProxy active
10.0.0.1

HAProxy passive
10.0.0.2

Figure 1. HAProxy with Keepalived (drawn from text [18])

The SLB router is an IOS image of Cisco router. Inside

SLB router, a virtual server is defined to represent a list of

real servers called server farm. SLB router redirects

messages from clients to this virtual server, and then the

virtual server redirects messages to one of the servers in the

server farm. According to a specified LB technique [21],

SLB can be in one of the two modes: Directed mode

indicates that virtual server can be configured with any class

of IP regardless of the class of the servers in the server farm.

Therefore, this type needs to perform NAT in order to

translate the IP address of virtual server to one of destination

servers in server farm. For example, if the IP address of

virtual server is 192.1.1.1, then the clients sends the

messages to destination 192.1.1.1, and the SLB router

receives these messages and redirects to one of IP address of

servers using NAT protocol as shown in Figure 2 [22]. The

second mode is dispatched. It indicates that IP address of

virtual server is configured with servers in server farm. Each

2

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

server has its own real IP address plus virtual address of

virtual server. This type needs the servers to be connected

with the same Local Area Network (LAN) of SLB router.

For this reason, it could not be capable in network with

multiple routers as shown in Figure 3 [23]. SLB router

provides a redundancy using (Hot Standby Redundancy

Protocol) HSRP protocol between two SLB routers by

creating a shared virtual IP address as shown in Figure 4

[24].

SLB router Switch

Server 1
10.0.0.2

Server 2
10.0.0.3

Internet

 10.0.0.1

Virtual server =
192.1.1.1

 20.0.0.1

Figure 2. SLB router in directed mode (redrawn from [22])

SLB router Switch

Server 1
Real =10.0.0.2

Virtual = 192.1.1.1

Server 2
Real= 10.0.0.3

Virtual = 192.1.1.1

Internet

 10.0.0.1 20.0.0.1

Figure 3. SLB router in dispatched mode (redrawn from

[23])

These load balancers distribute messages from multiple

clients to several servers simultaneously according to a

specific technique to reduce the traffic on single server. LB

techniques can be classified into several types [25]; the most

common techniques are as follows:

1) Round Robin (RR) This technique distributes the

traffic among the servers sequentially. For example,

two servers receive messages from clients in

sequence as shown in Figure 5.

2) Weighted Round Robin (WRR) is the same as RR;

however, some servers have capabilities more than

others. Therefore, weights can be added to the

servers. For instance, if there are two servers: the

first server receives 5 messages (because it is

weighted to 5), the second server receives 1 message

(because it is weighted to 1), and so on as shown in

Figure 6.

3) Least Connection (LeastConn) technique chooses the

server with the lowest number of active connections.

For example, if there are three servers: Server 1 is

processing 3 connections, server 2 is processing 15

connections, and server 3 is not processing any

connections. Some servers have more overloads than

others because clients stay connecting to servers

much longer than other servers. So, server 3 receives

three messages. Both servers 1 and 3 have now the

same number of active connections. Then, load

balancer performs RR on server 1 and 3 until number

of active connections in both servers reach 15.

Thence, load balancer performs RR on three servers

1, 2, and 3 and so on.

Switch

Server 1
10.0.0.2

Server 2
10.0.0.3

Internet

 Virtual server =
192.1.1.1

SLB router

SLB router

 Virtual server =
192.1.1.2

 Shared IP with HSRP =
192.1.1.3

Figure 4. Two SLB routers with HSRP protocol (redrawn

from [24])

1

2

35

46

Messages

123456

Server 2
Clients Load balancer

Server 1

Figure 5. RR Technique (redrawn from [25])

1235 4

6

Messages

123456

Server 2
Clients Load balancer

Server 1

Weight = 5

Weight = 1

 Figure 6. WRR Technique (redrawn from [25])

4. Literature survey

There are few works have been proposed the integration

between Fog and Cloud or simply (F2C) as in [26], the

authors introduce F2C architecture and its advantages with

2

3

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

main challenges and implement IoT based F2C and IoT

based Cloud architectures using Tareador simulation tool to

provide the performance comparison between them in terms

of execution time and speedup. The results show IoT based

F2C is better than IoT based Cloud because it is reduced the

execution time. However, the authors have not considered

IoT protocols in the architecture and not implemented the

proposed architectures practically. But, the authors in [27]

implement F2C computing on real application for chronic

obstructive pulmonary disease (COPD) patients and the

results show that the F2C improves the quality of life of

patients. None of two previous papers have considered the

delay on their proposed, while the authors in [28], propose

distributed service allocation strategy for both resource

offering and service requirements based on F2C computing

in order to reduce delay of service allocation and decrease

traffic load on Cloud. Then, the same authors in [29]

minimize the delay of the services and provide the capacity

requirement. In addition, the queuing theory are considered

in F2C concept as in [30], the optimal workload allocation is

proposed based F2C architecture to reduce power

consumption and delay. The results show that F2C is better

performance that Cloud. We notice that the previous

researchers have not been tested and implemented F2C with

IoT protocols. Some authors try to propose an opposite path

from Cloud to Fog (C2F) as in [31], the authors propose

C2F architecture for monitoring healthcare network and

smart homes. The results show C2F provides the better

service to Things. Finally, the authors in [32] propose IoT

architecture based on Cloud to combine MQTT and

Hypertext Transfer Protocol (HTTP) protocols and to

distribute traffic among virtual servers using HAProxy. The

performance evaluation of protocols is presented in terms of

number of clients and Central Processing Unit (CPU) cores.

The results show the MQTT protocol has better performance

than HTTP. These authors have considered protocols,

however the architecture is based on Cloud and not based on

F2C.

This paper proposes a new IoT architectures based F2C

with LB and virtualization using different load balancers,

namely: SLB and HAProxy. Up to our knowledge, SLB has

not been used previously by researchers in IoT applications.

Also, previous researchers have been used HAProxy on

Cloud layer not on Fog layer.

5. IoT-F2CDM architectures with LB

Messages are handled by a single Fog server in the

traditional network, which might become loaded on heavy

incoming messages. This condition will lead the Fog server

to act slowly and results in packet loss. Consequently,

packet loss may lead to wrong decision-making. To solve

this situation, multiple server arrangements for LB can share

processing power and prevent packet loss. For experimental

purposes and due to limited number of available physical

servers, virtualization technology is used to create the

required number of servers for testing. The proposed IoT-

F2CDM-LB architectures consider five layers: Things,

gateway, Fog, Cloud, and monitoring with HAProxy and

SLB. Messages from Things are distributed according to

LeastConn technique across multiple servers to mitigate the

packet loss. When a new publisher tries to connect, this

technique translates message from publisher to server which

has the least number of connections. This technique is used

when servers have the same capabilities and is suitable for

protocols of long sessions like MQTT protocol. Several

servers are virtualized on single Fog server using type 2 to

reduce the cost, power, and space. These virtual servers

receive messages from load balancer and send to Cloud for

permanent storage using DM technique.

The main hardware and software tools used in the

proposal architectures as shown in Table 1 and Table 2

respectively. These software perform several tasks such as

writing specific codes, simulate networks, emulates sensors,

and monitoring messages.

6. Network design and implementation

This section discusses the design and implementation of

IoT-F2CDM architectures over two sites: Site A (located at

Al-Nahrain University, College of Information

Engineering), and site B (located at the Ministry of Higher

Education (MOHE), Department of Research and

Development (RRD)). The layers of proposed architectures

are as follows:

6.1. Things layer
In this paper, Things layer consists of one real heartbeat rate

sensor and several virtual sensors from Tsung. Heartbeat

rate sensor is programmed with C/C++ language. The real

sensor is placed on patient's body to capture the heartbeat

rate messages in real time. While, virtual sensors are

emulated in Tsung tool to generate a high traffic using XML

programming languages to match the real sensor. Tsung is

used to reduce the cost, power, complexity and space of real

sensors. Things publish messages using MQTT protocol

with QoS level 0 and 1.

6.2. Gateway layer
Messages from Things layer are transferred to the upper

layers through gateway layer located at site A. Mikrotik AP

transmits messages from sensors to Fog layer. Cisco switch

mediates the Things and Fog layer, and connects several

hardware together. Cisco router is used to forward messages

from Fog to Cloud layer through the Internet. Open Shortest

Path (OSPF) protocol is configured on router to provide

routing mechanisms.

6.3. Fog layer
This layer receives messages from Things layer to
provide a temporal storage and distributes messages
to four Fog servers using LB techniques, Then selects
the important messages using a DM technique and
sends to Cloud layer.

4

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

Table 1. Hardware used in IoT-F2CDM-LB architectures

VMs are created to act as virtual Fog servers in order to

create the required number of servers and apply LB. Four

Fog VM servers and two HAProxys are virtualized with

MQTT QoS level 0 and 1 using VirtualBox as shown in

Figure 7. All VMs are configured to operate Apache2,

PHP5, MySQL, PHP-Mosquitto, DM technique, and

network configuration.

Figure 7. VMs in VirtualBox

A. HAProxy

It is used to distribute a huge number of messages based on

TCP to four virtual Fog servers. These servers are setup to

bridged setting in VirtualBox. The IP address of these

servers are configured in HAProxy backend list. While, the

IP address and ports of clients (Things) are configured in

HAProxy frontedend list. Messages from clients are

transferred to load balancer using MQTT with QoS of

MQTT level 0 and 1. Then, these messages are separated to

four virtual servers according to LeastConn fashion. Each

virtual Fog server has a DM procedure to select the

important messages, and then send to Cloud layer. Due to a

single point of failure, the Fog layer provides availability in

terms of servers. Two load balancers as an active/passive

model is configured to the architecture using the Keepalived

mechanism. Keepalive is used for monitoring the

connections between the frontend and load balancer. Re-

route the traffic to secondary load balancer if an interrupt is

detected as shown in Figure 8. MQTT protocol is used for

communication in this method. The previous research has

been implemented HAProxy on Cloud layer, while this

proposed architecture based F2C implements HAProxy on

Fog layer and provides redundancy.

B. SLB router

SLB router is used in this proposed architecture as shown in

Figure 9 because it is easy to employ and easy to maintain

Hardware Type Specifications

heartbeat pulse rate sensor
[33]

Real Runs over 5 volts

NodeMCU (ESP8266-12E)
[34]

Real Programmed with C/C++ language

HP Pavilion Laptop Real Tsung tool is installed on a PC (HP Pavilion) that works as a Linux server (3-
core) with Ubuntu 64-bit server version 14.04.5 Long Term Support (LTS) OS, 4
GByte of Dynamic Random Access Memory (DRAM), 500 GByte of permeant
storage. Tsung is required to be installed on independent hardware and not on
a virtual machine (VM)

HP ProLiant 380 G7 (Fog
server)

Virtual
(IaaS)

A VM is setup using VirtualBox on Linux UBUNTU server 64-bit installed on HP
ProLiant 380 G7 with 16-core server with 32 GB DRAM, 500 GB of permanent
storage. The VM Fog server is equipped with single Core processor, 4 GB
DRAM and 100 GB dynamic allocated of permanent storage

HP ProLiant 380 G8 (Cloud
server)

Virtual
(IaaS)

A VM is setup using VirtualBox on Linux UBUNTU server 64-bit installed an HP
ProLiant 380 G8 with 16-cores and 32 GB DRAM and 500 GB of permanent
storage. The VM Cloud server is equipped with single Core processor, 4 GB
DRAM and 100 GB dynamic allocated permanent storage

Mikrotik Access Point (AP) Real IEEE802.11n

Tenda AP Real IEEE802.11n

Cisco switch catalyst 2924 Real Cisco switch connects different devices in the same LAN

Cisco router 2621 Real Cisco router connects different networks together

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

5
EAI Endorsed Transactions on

Internet of Things
10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

Table 2. Supported software used in IoT-F2CDM-LB architectures

the servers (configuration is centralized). The IP addresses

of servers are unknow to the outside network, thus enhances

the security. Up to our knowledge, this type of load balancer

is not used previously by researchers on IoT architecture.

GNS3 is used to emulate the proposed virtualized Fog

network as shown in Figure 10, where two SLB routers are

installed and configured. Two SLB routers are connected to

Cisco switch.

On the other terminal, two SLB routers are connected to

real hardware of the IoT architecture (Gateway layer)

through cloud. The cloud symbol inside GNS3 is not the

intended CC but it represents the interface between the

network inside GNS3 and the real world. The Cisco switch

is connected to four Fog servers that are installed and setup

to host settings in VirtualBox and is connected to Internet

through cloud.

Two SLB routers are configured in directed mode in this

proposed architecture. IP address of virtual Fog servers,

port, and LB technique are defined in server farm of SLB

routers. If one of servers is off or connection between SLB

and server is interrupted, then the SLB waits for a settled

time (set to 60 second - an adequate time for detecting

failures) and the failed server is removed from the server

farm. Due to SLB routers are in directed mode, NAT

protocol is configured to map IP address of load balancer to

one of virtual Fog servers according to LeastConn. In

addition, OSPF routing protocol is configured in both SLB

routers for forwarding messages to Cloud layer. The SLB

routers act as active or passive using HSRP protocol to

provide redundancy by creating a shared virtual IP address

between them. The Things put this shared IP address in their

destination field.

Software Descriptions

Graphical Network Simulator-3
(GNS3) version 2.0.2 [35]

GNS3 is an emulation tool made by Cisco to visualize a virtual environment of
networks. Also, it can connect GNS3 to the real world. GNS3 is based on
daynamips that is a program to emulate an actual Cisco IOS routers series

VirtualBox [36] and VMware
workstation [37]

VirtualBox and VMware are type 2 virtualization software used to create
multiple VMs with different OSs in single physical PC or server as a Guest OS.
VirtualBox has some differences than VMware. VirtualBox is more friendly,
free, has low overhead, and consumes less power than VMware. However,
VMware is a close source with licenses requirement, has the ability to drag and
drop between the host OS and Guest OS

Tsung version 1.6.0 [38] Tsung is an open source tool with General Public License version 2 (GPLv2)
developed by Erlang and provides multi protocols related to proposal works;
MQTT and HTTP and emulates millions of sensors in Poisson process. Up to
our knowledge, there are two traffic generators that support IoT protocols
JMeter [39] and Tsung

Arduino Integrated Development
Environment (IDE) version 1.6.12 [40]

Arduino IDE is an open source tool written in Java used to write, debug, and
upload code to MCUs platforms

Mosquitto broker version 1.4.10 [41] Mosquitto broker is selected because it is widely used by researchers and
written in C/C++ language and supports all level of QoS levels of MQTT.
However, there are 26 types of MQTT brokers (for further information, the
reader can look into [42])

MQTT_spy version 0.5.4 [43] Mqtt_spy is a Java version 8 based tool used for monitoring, debugging, and
troubleshooting on MQTT topics and payload. The main features of Mqtt_spy,
includes: connect to several servers simultaneously, automatic reconnection
when the connection is interrupt, support security such as TLS/SSL, provides
graph, and can filter or summarize messages arrived from server

Wireshark version 2.4.0 [44] Wireshark is a network analysis tool used to capture traffic between client and
server and analyze different network protocols encapsulation

Putty version 0.70 [45] Putty is a client side terminal emulator and based on Secure Shell (SSH). It
allows to remotely access another host with authentication through Internet.
Clients can use CLI when login to that host. Also, Putty allows multi-clients
login

Processing Development
Environments (PDE) version 3.2.1
[46]

PDE is a program used to process Java programming language and create
applications with charts and sound

6

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

Node.JS
Subscriber

Four virtual Fog servers

Internet

MQTT_spy
on PC Tenda AP

Korek Telecom
Mobile Operator

MQTTool
on IOS phone

IoT MQTT Dashboard
on Android phoneEdge

Routers

HP ProLiant 380 G8 Server with
MongoDB, Mosquitto
Public server - site B

Cisco router
2621

Cisco router
2621

Cisco Switch
Catalyst 2924

Traffic generator
Machine (Tsung)

WiFi

Real heart rate sensor
Attached to human body

NodeMCU

Things Layer

Gateway Layer

Fog Layer

Cloud Layer

Application Layer

PDE on PC

Mikrotik AP

Two HAProxys
Active Passive

Figure 8. Proposed IoT-F2CDM-LB architecture with HAProxy load balancer

Internet

MQTT_spy
on PC Tenda AP

Korek Telecom
Mobile Operator

MQTTool
on IOS phone

IoT MQTT Dashboard
on Android phoneEdge

Routers

HP ProLiant 380 G8 Server with
Mosquitto, MongoDB
Public server - site B

Cisco router
2621

Cisco Switch
Catalyst 2924

Traffic generator
Machine (Tsung)

WiFi

Real heart rate sensor
Attached to human body

NodeMCU

Things Layer

Gateway Layer

Fog Layer

Cloud Layer

Application Layer

PDE on PC

Mikrotik AP

Node.JS
Subscriber

Virtual network using GNS3 and
VirtualBox inside Fog server

Figure 9. Proposed IoT-F2CDM-LB architecture with SLB load balancer

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

7
EAI Endorsed Transactions on

Internet of Things
10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

Messages from Things are transferred to load balancer

(HAProxy or SLB) using MQTT with QoS of level 0 and

1. Then, these messages are sent to four virtual servers

according to LeastConn technique. Each server selects

important messages using DM technique and sends them

to Cloud layer. DM technique is proposed to implement in

Fog layer. The authors adopt the idea from DM in IOx

Cisco router. This router consists of the traditional IOS

image of Cisco router and Red-Hat OS for computing and

storage. Cisco implemented DM with HTTP protocol. In

this paper, proposed DM subscribe messages from Things

using Python API with the help of PHP-Mosquitto broker.

These messages are stored in MySQL database, and are

filtered in real time to select important messages.

Three messages (maximum, average, and minimum)

are selected every one hour from database using PHP5

and MySQLi within topic (/sensor/MAXIMUMvalue/),

(within the topic /sensor/AVERAGEvalue/), and (within

topic /sensor/MINIMUMvalue/) respectively. These three

messages are sent to Cloud layer, while the rest are

deleted as shown in Figure 11. This proposed DM

technique are implemented with MQTT protocol with

QoS level 0 and 1.

6.4. Cloud layer
This layer receives three messages (maximum, average,

and minimum) using Node.JS with the help of Mosquito

broker and located at site B. These messages are stored

permanently in near real time in MongoDB. Physician or

patient's family can monitor the history of the patient

through Cloud layer.

Figure 10. Virtual network using GNS3 and VirtualBox

inside Fog server

6.5. Monitoring layer
Local and global monitoring tools are provided using

smart phones, tablets, and PCs. PDE can monitor

messages directly from sensors locally located at site A

using TCP protocol. IoT MQTT Dashboard and

MQTTool are installed and configured on Android and

IPhone devices respectively to monitor messages using

MQTT protocol form Things layer. MQTT_spy is

installed and configured on VM using VMware to

monitor messages from servers and debug brokers.

Figure 11. Sequence diagram IoT-F2CDM-LB

architectures

7. Practical testing and results

This section presents the results of proposed IoT-F2CDM-

LB architectures with explanations. These results are

extracted from transferred messages from Things layer to

Fog layer located at site A using MQTT protocol with

QoS level 0 and 1.

7.1. Average throughput
Throughput is the number of messages per second that the

destination server can handle. Two methods are used to

find the throughput in this paper: Tsung captures

messages when it runs. Throughput is computed using the

following formula in Wireshark [47]:

8

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

 (1)

0

20

40

60

80

100

120

140

160

180

200

0
.1

0
.3

0
.6

0
.9 3 6 9

2
0

5
0

8
0

1
30

1
90

2
50

3
10

3
70

5
00

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t

(k
p

ac
ke

ts
/s

)

Offered load (kpackets/s)

Fog-MQTT-QoS0 Fog-MQTT-QoS1
LB-MQTT-QoS0 LB-MQTT-QoS1

 Figure 12. Average throughput of IoT-F2CDM-LB

architectures

The average throughput is specified and calculated by

averaging the collected values. Figure 12 show the

average throughput in packets/s for both load balancers

(HAProxy and SLB) with MQTT QoS level 0 and level 1.

As the figure show, the use of LB increases Fog network

throughput in both MQTT QoS level 0 and 1. Throughput

is affected by the destination server capabilities to handle

messages, and distance from destination server.

Throughput decreases when average response time

increases. The results reach the saturation level for all

cases because of limited bandwidth.

7.2. Average packet loss
Packet loss is the number of packets fail to reach the

destination server when they travel through network.

Wireshark is used to calculate packet loss using the

following equation [48]:

(2)

Then, the average packet loss is calculated by

averaging the collected values. Figure 13 show the

average throughput in packets/s for both load balancers

(HAProxy and SLB) with MQTT QoS level 0 and level 1.

The results show that the use of LB reduces packet loss to

its minimum value (half in QoS 0 and 1 times in QoS 1).

This result comes from the fact that using LB will

distribute the traffic over four virtual Fog servers, thus all

messages arrive safe and sound.

0

100

200

300

400

500

600

0
.1

0
.3

0
.6

0
.9 3 6 9

2
0

5
0

8
0

1
30

1
90

2
50

3
10

3
70

5
00

A
ve

ra
ge

 P
ac

ke
t

o
ss

 (
P

ac
ke

ts
/s

)

Offered load (kpackets/s)

Fog-MQTT-QoS0 Fog-MQTT-QoS1

LB-MQTT-QoS0 LB-MQTT-QoS1

 Figure 13. Average packet loss of IoT-F2CDM-LB

architectures

7.3. Average delay
The delay is the time taken of message transferred from

sender to destination server. It is captured using

WireShark in timestamp. Figures 14 show the average

delay in Fog layer with MQTT protocol with LB. This

figure shows that messages is a little impacted in LB. and

MQTT QoS level 1 is higher than MQTT QoS level 0 by

factor 1 because the latter one has an ACK in application

layer. Delay occurs because packet arrival rate to link

exceeds output link capacity and packets queue in routers,

messages must wait for turn.

0

10

20

A
ve

ra
ge

 D
el

ay
 …

Number of sensorsFog-MQTT-QoS0

Figure 14. Average delay of IoT-F2CDM-LB

architectures

7.4. Average Round-Trip Time (RTT)
RTT is the total time required for a message to travel from

a sender in the Things layer to a destination server in the

Fog or Cloud layers and returned back to the sender.

Tsung collects messages transferred from sender to

destination. Also, RTT is measured in Wireshark in terms

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

9
EAI Endorsed Transactions on

Internet of Things
10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

of Timestamps at application layer. RTT can be

calculated using the following formula [49]:

 (3)

In (3), T_1 is the timestamp the sender imitates a request

message targeted to the destination server, T_2 is the

timestamp the server receives the request message, T_3 is

the timestamp the server respond to the request message

after processing delay, and finally T_4 represents the

timestamp the sender receives the response message.

Since the RTT is affected by the link status between the

sender and receiver, the average RTT is specified and

calculated by averaging the collected values. Figure 15

show that MQTT QoS level 1 is higher than QoS level 0

by factor 2 because of QoS 0 does not have an ACK, and

LB in both levels of QoS is affected by factor 1.

0

10

20

30

100 150 500 850 1000 1250 1500

A
ve

ra
ge

 R
TT

 (
m

s)

Number of sensors

Fog-MQTT-QoS0 LB-MQTT-QoS0
Fog-MQTT-QoS1 LB-MQTT-QoS1

Figure 15. Average RTT of IoT-F2CDM-LB

architectures

7.5. Average response time
The Response time is the elapsed time taken by a

webserver to respond to a request initiated from a web

client. This response time is measured using two tools:

Tsung and Wireshark. Response time of HTTP is

computed using the following commands in Wireshark:

HTTP.request.method=="GET" || HTTP.response.code =

200. Then, the response time can be found in "time since

request" in HTTP header. While the response time of

MQTT QoS level 0 can be found by applying "MQTT" in

the filter of Wireshark, then from the PUB message the

value of response time is extracted. Finally, the same step

for MQTT QoS level 1, expect that the value of the

response time is seen in PUBACK. The average response

time is specified and calculated by averaging the collected

values. Figure 16 show the average response time of QoS

level 1 is higher than QoS level 0 by factor 2 because QoS

1 have an ACK in transport and application layers.

2

12

22

32

100 150 500 850 1000 1250 1500

R
es

p
o

n
se

 t
im

e
(m

s)

Number of sensors

Fog-MQTT-QoS0 LB-MQTT-QoS0
Fog-MQTT-QoS1 Fog-MQTT-QoS1

 Figure 16. Average Response Time of IoT-F2CDM-LB

architectures

7.6. HAProxy monitoring
Health check is configured on HAProxy to monitor the

front and backend lists. It works by establishing a TCP

connection between HAProxy and the backend servers in

order to know if the servers listen to IP address and port

or not. Figure 17 presents the traffic during four hours

when four messages arrive every minute to HAProxy,

then these messages are distributed across servers

according to the LeastConn technique.

Figure 17. HAProxy monitoring

7.7. SLB monitoring
Traffic from Things can be monitored in SLB router as

shown in Figure 18. The IP address of virtual load

balancers (the first one is active, and the second one is

passive) and number of transactions in active SLB are

shown in the figure. Active SLB receives twenty-one

messages for 5 minutes and distributes them to four

virtual Fog servers according to LeastConn technique.

7.8. DM technique
This subsection presents the three messages (maximum,

average, and minimum) arrived at Cloud layer from each

four virtualized Fog servers as shown in Figure 19.

10

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

Figure 18. SLB monitoring

Figure 19. DM technique

8. Discussion

The IoT-F2CDM-LB architecture proposes the DM

technique with QoS level 0. Also, the Things with QoS

level 1 and level 2 can use DM technique without

modification in the programming script. In this IoT-

F2CDM-LB architecture, two different database

structures: MySQL in Fog layer and MongoDB in Cloud

layer. The reason for using MySQL in the Fog layer is to

allow distributed design and handle complex transactions

(multi-row transaction). On the other hand, MongoDB is

more scalable to store messages and therefore installed in

the Cloud layer. However, both databases can be used in

both layers.

Two brokers are used, namely: Mosquitto and PHP-

Mosquitto. The main difference between them is that the

PHP-Mosquitto is compatible with PHP5 scripts and

MySQL database. This chapter uses two different

methods for LB, namely: HAProxy and SLB router. SLB

router reduces the number of physical hardware used

since everything is installed inside the router itself. The

number of virtual Fog servers could be extended to more

than four when the network senses increment in packet

loss. API in Python script is used to make python and

PHP5 with MySQLi scripts work together in the Fog layer

and provide interoperability between MySQL and NoSQL

databases.

9. Conclusions

The work in this paper proposes an architecture based on

Fog and Cloud Computing to solve the performance

degradation in the Cloud response time when large

volume of Things traffic towards that Cloud. Introducing

Fog layer nearby the Things layer contributes to network

performance enhancement in terms of response time and

packet loss. Two IoT architectures are proposed with LB

(formed by two types of load balancer, namely: HAProxy

and SLB router) and proposed DM technique using

MQTT protocol with QoS level 0 and 1 in the Fog layer.

The LB distribute the received messages from Things

across a specified number of Fog servers according to

LeastConn technique and results in reduction of packet

loss, delay, RTT, and response time to half that without

LB in the carried tests and achieves the highest

throughput. Up to the author's knowledge, both LBs have

not been evaluated on Fog layer by researchers

previously. Finally, the results obtained have been

conducted through practical implementation and can be

considered as a possible solution to IoT based Fog/Cloud

performance enhancement.

Bibliography.
Istabraq M. Al-Joboury has a M.Sc. (2017) and B.Sc. (2015)

from the College of Engineering, department of Networks

Engineering – Al-Nahrain University. She participated in many

symposiums and workshops and published many papers in IoT

related fields. Her fields of interests include IoT, computer

networks and Internet technologies.

Emad H. Al-Hemiary is an associated professor and faculty

member of the college of Information Engineering – Al-Nahrain

University. He holds Ph.D. (2001), M.Sc. (1996), and B.Sc.

(1993) from the College of Engineering – Al-Nahrain University

in the field of electronics and Communications Engineering. He

is currently the Head of the department of Networks Engineering

and has many activities in research and cooperation with other

institutes in networks and information technology. His fields of

interests include modern networks and data communications,

IoT, Network protocols and services and other related fields.

Acknowledgements.
The authors would like to acknowledge both the college of

Information Engineering at Al-Nahrain University and the

directorate of research and development at the ministry of higher

education / Iraq for making the facilities available to the authors

throughout the work period.

References

[1] Roy, S., Chowdhury, C., 2017. Integration of Internet of

Everything (IoE) with Cloud. Internet of Things Beyond

the Internet of Things 199–222.

[2] Al-Joboury, I.M., Al-Hemiary, E.H., 2017. Internet of

Things (IoT): Readme. Qalaai Zanist Scientific Journal 2,

343–358.

[3] Negash, B., Rahmani, A.M., Liljeberg, P., Jantsch, A.,

2017. Fog Computing Fundamentals in the Internet-of-

Things. Fog Computing in the Internet of Things 3–13.

[4] Gilchrist, A., 2016. The Technical and Business Innovators

of the Industrial Internet. Industry 4.0 33–64.

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

11
EAI Endorsed Transactions on

Internet of Things
10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

[5] Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S.,

Vasilakos, A.V., 2017. Fog Computing for Sustainable

Smart Cities. ACM Computing Surveys 50, 1–43.

[6] Srirama, S.N., 2017. Mobile web and cloud services

enabling Internet of Things. CSI Transactions on ICT 5,

109–117.

[7] Papadokostaki, K., Mastorakis, G., Panagiotakis, S.,

Mavromoustakis, C.X., Dobre, C., Batalla, J.M., 2016.

Handling Big Data in the Era of Internet of Things (IoT).

Studies in Big Data Advances in Mobile Cloud Computing

and Big Data in the 5G Era 3–22.

[8] Al-Joboury I.M., Al-Hemiary E.H., 2017. F2CDM:

Internet of Things for Healthcare Network Based Fog-to-

Cloud and Data-in-Motion Using MQTT Protocol. In:

Sabir E., García Armada A., Ghogho M., Debbah M. (eds)

Ubiquitous Networking. UNet 2017. Lecture Notes in

Computer Science, vol 10542, p.p. 368–379Springer,

Cham.

[9] Klement, M., 2017. Models of integration of virtualization

in education: Virtualization technology and possibilities of

its use in education. Computers & Education 105, 31–43.

[10] Kim, H.-S., Kim, H., Paek, J., Bahk, S., 2017. Load

Balancing Under Heavy Traffic in RPL Routing Protocol

for Low Power and Lossy Networks. IEEE Transactions on

Mobile Computing 16, 964–979.

[11] Fysarakis, K., Askoxylakis, I., Soultatos, O.,

Papaefstathiou, I., Manifavas, C., Katos, V., 2016. Which

IoT Protocol? Comparing Standardized Approaches over a

Common M2M Application. 2016 IEEE Global

Communications Conference (GLOBECOM).

[12] Nastase, L., 2017. Security in the Internet of Things: A

Survey on Application Layer Protocols. 2017 21st

International Conference on Control Systems and

Computer Science (CSCS).

[13] Sethi, P., Sarangi, S. R, 2017. Internet of Things:

Architectures, Protocols, and Applications. Journal of

Electrical and Computer Engineering, Hindawi.

[14] Al-Joboury I.M., Al-Hemiary E.H., 2018. Performance

Analysis of Internet of Things Protocols Based Fog/Cloud

over High Traffic. Journal of Fundamental and Applied

Sciences, 10 (6S), 176-181.

[15] HAProxy. powered by HAPROXY. URL

https://www.haproxy.org/ (accessed 18.2.7).

[16] MQTT Load Balancing and Session Persistence with

NGINX Plus, 2017. NGINX. URL

https://www.nginx.com/blog/nginx-plus-iot-load-

balancing-mqtt/ (accessed 18.2.7).

[17] Scalable and Secure MQTT Load Balancing with Elastic

Beam and HiveMQ, 2016. HiveMQ. URL

http://www.hivemq.com/blog/scalable-and-secure-mqtt-

load-balancing-with-elastic-beam-and-hivemq/ (accessed

18.2.7).

[18] Prasetijo, A.B., Widianto, E.D., Hidayatullah, E.T., 2016.

Performance comparisons of web server load balancing

algorithms on HAProxy and Heartbeat. 2016 3rd

International Conference on Information Technology,

Computer, and Electrical Engineering (ICITACEE).

[19] Yu, Y., Li, X., Qian, C., 2017. Sdlb: A Scalable and

Dynamic Software Load Balancer for Fog and Mobile

Edge Computing. Proceedings of the Workshop on Mobile

Edge Communications - MECOMM 17.

[20] Fylaktopoulos, G., Skolarikis, M., Papadopoulos, I.,

Goumas, G., Sotiropoulos, A., Maglogiannis, I., 2018. A

distributed modular platform for the development of cloud

based applications. Future Generation Computer Systems

78, 127–141.

[21] Tiso, J., 2014. Designing Cisco network service

architectures (ARCH): Foundation learning guide.

Indianapolis, IN: Cisco Press.

[22] Al-Joboury I.M., Al-Hemiary E.H., 2018. Internet of

Things Architecture Based Cloud for Healthcare. Iraqi

Journal of Information & Communications Technology, 1

(1), 18-26.

[23] McQuerry, S., Jansen, D., Hucaby, D., 2009. Cisco LAN

Switching Configuration Handbook: a concise reference

for implementing the most frequently used features of the

Cisco Catalyst family of switches. Cisco Press,

Indianapolis, IN, USA.

[24] Deal, R.A., 2005. Cisco router firewall security. Cisco

Press, Indianapolis.

[25] Yu, J., Lou, G., 2013. The Study of Server Load

Scheduling Strategy. Proceedings of the 2nd International

Conference on Computer Science and Electronics

Engineering (ICCSEE 2013).

[26] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan,

and G.-J. Ren, “Foggy clouds and cloudy fogs: a real need

for coordinated management of fog-to-cloud computing

systems,” IEEE Wireless Communications, vol. 23, no. 5,

pp. 120–128, 2016.

[27] Masip-Bruin, X., Marin-Tordera, E., Alonso, A., Garcia, J.,

2016. Fog-to-cloud Computing (F2C): The key technology

enabler for dependable e-health services deployment. 2016

Mediterranean Ad Hoc Networking Workshop (Med-Hoc-

Net).

[28] Souza, V.B., Masip-Bruin, X., Marin-Tordera, E.,

Ramirez, W., Sanchez, S., 2016. Towards Distributed

Service Allocation in Fog-to-Cloud (F2C) Scenarios. 2016

IEEE Global Communications Conference

(GLOBECOM).

[29] Souza, V.B.C., Ramirez, W., Masip-Bruin, X., Marin-

Tordera, E., Ren, G., Tashakor, G., 2016. Handling service

allocation in combined Fog-cloud scenarios. 2016 IEEE

International Conference on Communications (ICC).

[30] Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H., 2016.

Optimal Workload Allocation in Fog-Cloud Computing

Towards Balanced Delay and Power Consumption. IEEE

Internet of Things Journal 1–1.

[31] Nandyala, C.S., Kim, H.-K., 2016. From Cloud to Fog and

IoT-Based Real-Time U-Healthcare Monitoring for Smart

Homes and Hospitals. International Journal of Smart Home

10, 187–196.

[32] Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P.,

Hossain, M. S., Xiang W., 2016. Internet of Things Cloud:

Architecture and Implementation, IEEE Communications

Magazine, 54, 12, 32–39.

[33] Heartbeats, Lickety-Split. World Famous Electronics llc.

URL https://pulsesensor.com/ (accessed 10.1.17).

[34] NodeMcu -- An open-source firmware based on ESP8266

wifi-soc. URL http://nodemcu.com/index_en.html

(accessed 10.1.17).

[35] GNS3 | The software that empowers network

professionals. URL https://www.gns3.com/ (accessed

18.2.7).

[36] Oracle VM VirtualBox. URL https://www.virtualbox.org/

(accessed 18.2.7).

[37] Workstation - VMware Products, 2017. VMWare. URL

http://www.vmware.com/products/workstation.html

(accessed 18.2.7).

[38] Tsung, 2017. URL http://tsung.erlang-projects.org/

(accessed 18.2.7).

[39] JMeter. URL http://jmeter.apache.org/ (accessed 18.2.7).

12

Istabraq M. Al-Joboury, Emad H. Al-Hemiary

EAI Endorsed Transactions on
Internet of Things

10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

[40] Ardunio IDE. URL

https://www.arduino.cc/en/Main/Software (accessed

18.2.7).

[41] Mosquitto. URL https://mosquitto.org/ (accessed 18.2.7).

[42] MQTT brokers, "GitHub,". URL

https://github.com/mqtt/mqtt.github.io/wiki/servers

(accessed 18.2.7).

[43] Kamil Baczkowicz, " MQTT Toolbox – mqtt-spy,". URL

http://www.hivemq.com/blog/mqtt-toolbox-mqtt-spy

(accessed 18.2.7).

[44] Wireshark. URL https://www.wireshark.org/ (accessed

18.2.7).

[45] Putty. URL www.putty.org/ (accessed 18.2.7).

[46] Processing Development Environments. URL

https://processing.org/reference/environment/ (accessed

18.2.7).

[47] Mamunur, M., Datta, P., 2017. Performance Analysis of

Vehicular Ad Hoc Network (VANET) Considering

Different Scenarios of a City. International Journal of

Computer Applications 162, 1–7.

[48] Shriya, S., Suriyakrishnaan, K., Thenmozhi, s., Bhairavi,

M., 2017. Improved Health Monitoring Using Location

Aware Sensor Routing Protocol, International Journal of

Advance Research, Ideas and Innovations in Technology,

3, 2.

[49] Zander, S., Armitage, G., 2013. Minimally-intrusive

frequent round trip time measurements using Synthetic

Packet-Pairs. 38th Annual IEEE Conference on Local

Computer Networks.

IoT-F2CDM-LB: IoT Based Fog-to-Cloud and Data-in-Motion Architectures with Load Balancing

13
EAI Endorsed Transactions on

Internet of Things
10 2017 - 01 2018 | Volume 4 | Issue 13 | e1

