EAI Endorsed Transactions

on Context-aware Systems and Applications

Research Article EAILLEU

Coupling equation based models and agent-based
models: example of a multi-strains and switch SIR

toy model

Nghi Quang Huynh !, Tri Nguy en-Huu?, Arnaud Grignard >,

Hiep Xuan Huynh!, Alexis Drogoul**

IDREAM-CTU/IRD, CICT-CTU, Cantho, Vietnam

2IRD, Centre Ile-de-F rance, 32 avenue Henri Varagna t, 93140 Bondy, France
3Facul té des Sciences de Semlalia, Universit¢é Cadi Ayyad, Marrakech, Maroc
4University of Science and Technol ogy of Hanoi, Hanoi, Vietnam

SIXXI, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07

Abstract

Modeling in ecology or epidemiol ogy generally opposes two classes of models, Equation Based Models and
Agent Based Models. Mathema tical models allow predicting the long-term dynamics of the studied systems.
However, the variability betw een individ uals is difficult to represen t, what makes these more suitable models
for larg e and homogeneous popula tions. Multi-agent models all ow represen ting the attributes and beha vior

of each individ ual and theref ore provide a greater level of detail. In return, these systems are more difficult to
anal yze. These approaches have often been compared, but rarely used simultaneousl y. We propose a hybrid
approach to couple equations models and agent-based models, as well as its implemen tation on the modeling
platform Gama [ ]. We focus on the represen tation of a classical theoretical epidemiol ogical model (SIR model)
and we illustr ate the construction of a class of models based on it.
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1. Introduction

Agent Based Modeling and Equation Based Modeling
are two common modeling approaches for dynamical
systems. Equation Based Models (EBMs) usuall y
describe the dynamical processes at the global scale
(at the popula tion level in ecology) while Agent Based
Models (ABMs) describe the same processes at the local
scale (at the individ ual level in ecology). Each approach
offers different advantages and drawbacks. The scale
at which the processes are represen ted determines the
way the model is constructed: global processes, a small
number of parameters and no individ ual variability for
the EBMs; individ ual processes, high level of detail
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for ABMs. EBMs do not take into account individ ual
variability , assuming that mean fie d approxima tions
convenien tly describe the dynamics at the global level
ABMs are relev ant when this individ ual variability has
strong effect on the dynamics emerging at the global
level. Additionall y they allow explicit represen tations
of the interaction network of individ uals when its
topology has consequences on the dynamics of the
system and the emergence of properties at the global
level. ABMs also offer the possibility of an easy
integr ation of GIS and social netw ork informa tion.

Apart from conceptual aspects, the community of
the modeler has a strong inf uence on which approach
will be chosen. A strong knowledg e in mathema tics is
needed to understand and buil d equa tions for the EBM
approach. As a counterpart , mathema tics offer pow erful
tools to analyse EBMs, providing a lot of in-depth
information about the dynamics, such as equilibria and
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long term dynamics. ABM approach is more intuitiv e,
and platforms such as Netlogo or Gama propose
modeling tools aiming at a wide audience. A few papers
have been devolved to the comparison or the coupling
of both approaches. As an example of a coupling of
EBMs with ABMs, we refer to some particle transport
models [10] based an oceanic current model based on
physics and Partial Differential Equa tion, which output
is used in a ABM that describes the dispersal of fis

larva. However, to our knowledg e, there are very few
models of strong coupling of an ABM with an EBM, in
the sense that both models use the outputs of the other.
Such a model has been developed by [1] for a model of
pedestrian movemen ts. The model is based on an ABM
describing the movements of individ uals in the streets
of a city. Each road segmen t betw een two crossroads
can be replaced by a mathema tical transport model in
order to reduce the amoun t of resources needed for the
simula tions. At each intersection, the ABM feeds the
EBM with the number of individ uals entering the road
segmen t, then the EBM generates agents at its end.

In this article, we illustrate the benefit of hybrid
models embedding equations inside agents with a
specifi ~class of models: epidemiol ogy models with

multiple strains for the virus. Epidemiol ogy models
describe the evolution with time of epidemics within
a host popula tion. Usuall y, the host popula tion is
divided in several categories: susceptible individ uals
(hosts without disease but which can get infected),

infected individ uals, recovered individ uals (hosts
immune to the disease). Many categories can be
added depending on the disease and the model

requiremen t, such as quarantined individ uals, infected
but still not infectious, etc. Both classes of models
are commonly used: the firs and most famous, the
SIR model by Kermack & McKendrick [9] being an
EBM. Epidemiol ogy EBMs consider the popula tion at
the global scale: they are compartmen t models, each
compartmen t corresponding to a variable represen ting
the popula tion size in a given category, or the density
at a given location. Evolution of the popula tion size
(demogr aphy and transition from one compartmen t
to another, such as newly infected individ uals being
transferred from the susceptible compartmen t to the
infected compartmen t) in a compartmen t is governed
by differential equa tions. Such continuous models also
have discrete equivalents. ABMs represen t each host
individ uall y. Hosts can change state (e.g. susceptible to
infected) over time, given probabilistic and algorithmic
rules.

In epidemiol ogy, EBMs often relate to biological or
theoretical studies and have been used to model poten-
tial public health outcomes before testing strategies
directl y on popula tions. As an exam ple, Shul gin et al.
[17] discuss the benefit of a pulse vaccina tion using a
classical SIR model. ABM focus more on studies with
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sociol ogical aspects using graphs theory: they allow
examining the role of social netw orks, transporta tion
systems, and responses to changing contexts on the
evolution of epidemics [11]. As an exam ple, we refer
to Auerbach et al. [2] study the propagation of HIV
in a sexual contact netw ork of 40 men. Usuall y, both
approaches are used separ ately. In this article, we focus
on a particular class of epidemiol ogy models: mod-
els with strain-pol ymorphic pathogens. Multi-str ains
models with evolutionary processes and interactions
are a major concern in epidemiol ogy. EBM and ABM
approaches have both been used: as an exam ple, Roche
et al. [16] propose an ABM of inf uenza with strain-
polymorphic pathogens, based on an EBM model.
Roche et al. decided to use an ABM because the original
EBM fails to follow co-infections and consequen tly to
incorpor ate re-assortmen t. One of the main challeng es
is to defin properly the nature of strains space [20].
A common approach is to consider a linear space of
parameters. Evolution can be continuous, in which case
the possible of strain is infinite or discrete. In the later
case, models found in the liter ature use a finit number
of strains. This approach is relevant for pathogens for
which the different strains can be enumer ated. In EBMs,
the number of strains is usuall y constrained by the
nature of systems of differential equations, which use
a fi and finit number of equations. But evolution
and polymorphism can give rise to unforeseen types
of strains, which can change the number of possible
strains. In order to release this constraint, we introd uce
a simple epidemiol ogy model with dynamical change of
the number of strains.

2. Related Work

In this part, we present the current state of the art
of coupling the Agent-Based Modeling approach and
Equation-Based Modeling approach. Although these
two approaches aim at a common objectiv e, they are
distinct by their modeling formalism. The necessity
of coupling and comparing the two approaches has
been raised in several research studies. They use a
common methodol ogy: expl oration is always done by
implemen ting an agent-base model beside an equa tion-
based without the support of an agent-based modeling
framew ork neither an equa tion-based framew ork.

2.1. Equation-based model

The equation-based models [5] predict the long-term
dynamics of the studied systems. they use mathema tical
formalism based on Ordinary Differential Equa tions or
Partial Differen tial Equations. The modelling approach
is generally driven by the principle of parsimon y
(or Occam’s razor), which means that the model
should be kept as simple as possible, with as few
parameters as possible. Although, if a stochastic
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approach is possible, a deterministic
preferable when possible. In addition, processes are
considered at a global scale (e.g. in ecology: at
the popula tion level instead of the individ ual level),
assuming that the processes that govern the system
at such a scale can be determined (often using mean
fie d approxima tion). For exam ple, the demogr aphic
dynamics of a popula tion can be described at the
global level using a parameter call population growth
rate, which can be derivated from the mean of
offsprings per individ ual per time unit. Due to such
approxima tions, the variability between individ uals
is difficult to represen t, making these models more
suitable for large and homogeneous popula tions.
Mathema tics often provide useful analytical tools to
fin the properties of ODE models, such as equilibria
and asym ptotic dynamics. The evolution of the system
can be determined from mathema tical proofs, which are
more robust than just simulations. For those reasons,
such models can be easily analysed and are useful
for making predictions. On the contrary, transla ting
the studied processes into equations requires a good
knowledg e of similar physics or mathema tical models.
Processes also have to be sufficiently smooth in order
to fi their mathema tical description. As a summary,
such models require a larg e amoun t of work upstreams,
but they offer conceptuall y good possibilities of anal ysis
downstreams  (the technical issues that could be
encoun tered in mathema tical proofs is not discussed
here).

EBMs have been widely used for epidemiol ogy
modeling. A pragmatic reason is that mathema tical
anal ysis methods were the only available methods, as
computers and EBM were not available to Kermack
and McKendrick in 1927. However, there are many
conceptual reasons why EBM are a reasonable choice
for modeling epidemics. Firstly, epidemics arise in large
popula tions, and the transmission and remission rates
variability among individ uals can be easil y represen ted
according to familiar distribution laws, making such
processes easy to describe at the popula tion level
using mean fie d approxima tions. Secondl y, the anal ysis
of the equations provide useful prediction tools for
epidemiol ogy: one can determine conditions on the
parameters for which the epidemics will arise or not.
For example, the basic reprod uction number R, can
be computed with the parameters of the model, based
generally on transmission and remission rates. Values
grea ter than one mean that an epidemics outbreak will
occur, such an event can be then predicted without
sim ula tions.

approach is

2.2. Agent-based model

Agent-based models [7] are used to represen t the
attributes and behavior at the individ ual level, and

D EAI

EUROPEAN ALLIANCE FOR INNOVATION

theref ore to provide a greater level of detail. They can
describe strong individ ual variability , not only for the
attributes of the individ uals of a same popula tion, but
also for their behavior. They are often associated to
small time scales, which correspond to the individ ual
processes time scales. In return, these systems may
be more difficult to analyze and prediction almost
rely on simulations (apart from some ABMs which are
actuall y probabilistic mathema tical models that can be
anal ysed with mathema tical tools). Because of the large
number of parameters, it can be difficult to test the
model sensitivity to one of them. A large amount of
anal ysis, dependen t on simulations and on the assumed
prior distribution of parameters has to be performed in
order to provide synthetic results. ABM use a specifi
languag e to describe in detail the aspects of agents:
perception, action, belief , knowledg e, goals, motiv ation,
intention, reflexion etc. Processes can be written as
algorithms, offering more freedom to the modeler, as
complex decision structures can be used (e.g. if the
beha viour of individ uals depends on some condition, an
if-then-else construct can be used). The ABM approach
also proposes a more intuitiv e way to buil d the model:
processes can be represen ted as close to the perception
of the modeler . As a summary , such approach proposes
an easy and intuitive work upstreams, but requires a
large amoun t of work downstream to provide relevant
resul ts. In addition, the large number of parameters
combined with the often large size of popula tion
considered means that such a model may need a very
importan t amoun t of resources to run simula tions.

Interest of epidemiol ogists in ABMs relies on the
ability to give a detailed description of the netw ork
of transmission, and such models have been developed
alongside graph theory. Such models are useful to
represen t singular events (one infected individ ual
entering a large susceptible popula tion) and the
stochasticity associa ted to such events. Such models
are used to represen t the worldwide propag ation of
infection due to air travel. Depending on the disease,
a detailed behavior of the infection vector can be given.

2.3. Coupling EBM and ABM

In [19], the authors study the difference betw een agent-
based modeling and equation-based modeling in a
industrial suppl y netw ork project in which netw ork’s
domain supply are modeled with both agents and
equations. They also summarize the resemblance and
variety of two approaches with a suggestion to use
one or another. Their study is part of the DASCh
project (Dynamical Analysis of Suppl y Chains). DASCh
includes three species of agents: Company agents, PPIC
agents and Shipping agents. It also integrates a fixe set
of ordinary differential equa tions (ODE).
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Figure 1. Coupling approach example: people moving on the road
are represented in the form of equation, and in form agents at
the crossroads

Coupling and comparing agent-based and equa tion-
based is also found in [15] where Rahmandad
et al. examine in contrast the dynamic of well-
know SEIR model which describe the common and
importan t context of the spread of contagious disease.
They compare and validate an ABM and EBM for
epidemiol ogical disease-spread models, as well as in
[18] in which an ABM and an EBM of the 1918
Spanish fu are compared. In this publica tion, a model
valida tion framew ork for choosing ABM or EBM i
proposed.

In [13], it is proposed to use only one appropria te
modeling formalism instead of two approaches, and
infer an EBM from an ABM SIR model by exploring
the deducible parameters like number of individ ual in
popula tion, rates of interactions base on dimension of
environmen t. They have done a study with the measure
based on disk graph theories [12] to link ABM with EBM
dynamical systems applied to theoretical popula tion
ecol ogy.

Another coupling approach is proposed in [14], [1]
or [4]. In the simulation of emergency evacuation
of pedestrians in case of a tsunami in Nhatrang
City, Vietnam, people move along the road netw orks
as agents. The agent based model of individ uals
movements are replaced by equation models for the
roads with higher traffic. This transformation give
the model an addition of time and resource for such
evacua tion model which usuall y take into accoun t huge
popula tions.

All these approaches provide mechanisms that all ow
interaction betw een several models but they still have
the following disadv antages:

- In general, these approaches are not generic and are
difficult to be re-im plemen ted in different domains and
contexts.

- There are no consider ation of the differences in
spatial and tem poral scales.

- There are no framew ork that support coupling
of heterog eneous models between equa tion-based
modeling and agent-based modeling paradigm.
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3. Description of the epidemiology model

In the present paper, we discuss the concept of
integrating EBM inside ABM. We build a model
composed of several sub-models. Each sub-model refers
to an EBM or ABM. Instead of choosing betw een
an ABM or EBM approach as in previous works for
the global models, sub-models are integrated in a
framew ork that allows using both paradigms at the
same time.

As a demonstr ation, we introduce a mathema tical
epidemiol ogy model with dynamical change of the
number of strains. The epidemiol ogy dynamics for a
given strain is described by a classical EBM, while the
strain evolution dynamics is described by an ABM.

The equations of the mathema tical model will be
embedded into agents, each agent represen ting a
differen t strain. Each strain is characterized by different
values of the parameters. In order to illustrate the
benefit of the hybrid approach, the mono-strain
mathema tical epidemiol ogy model has to verify two
conditions:

o the model must be as simple as possible, with
very few parameters. This condition allows a good
tractability of the model. Because each strain
corresponds to particular values, it is easier to
monitor the dynamics of evolution of strains with
a low number of par ameters;

+ epidemics outbreak does not fade away with
time. This condition ensures that the evolution of
strains can be monitored over an infinit period of
time. Such a condition is not met with the classical
SIR model [9] and thus a slightl y different class of
compartmen t models must be chosen.

3.1. Mono-strain models

We base our study on a common mono-str ain SIS model,
which is a compartmen t model with two compartmen ts
S, I which are respectiv ely the number of susceptible
and infected individ uals at a given time. The evolution
of the S and I popula tions is governed by a system of
differen tial equa tions, which reads:

—BIS +yI

as
{4
o BIS —yI

where the total popula tion I+ S is constant over
time and normalized to 1. In presence of infected
individ vals, the number of susceptible individ uals
infected per unit of time is proportional to the to
size of the infected popula tion and the proportion
of susceptible individ uals in the total popula tion.
The coefficient of proportionality is written p and is
called the infection transmission rate. Finally, constan t
y corresponds to the recovery rate, the rate at which

(1)
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infected individ uals recover from the disease and
become susceptible again. Such a model corresponds
to diseases for which there is no long term imm unity,
such as common cold and inf uenza. The SIS model
has an explicit analytic solution and its dynamics is
well known. Let us introduce the basic reproduction
number Ry = B/y. A well know result is that if Ry <1,
the epidemic dies out, while if Ry >, the epidemics
spreads and the system tends toward an equilibrium
with a infected popula tion of size 1 —1/R,. Theref ore,
such a model verifie the two previous conditions: there
are only two parameters (B and y), and the dynamics
tends toward a steady state with a persisten t infected
popula tion.

A SIR model modify so as incorpor ate vital dynamics
can be used. Such a model use a third compartmen t
R which represen ts the recovered individ uals, who are
free from the disease and who cannot be infected again.
The model reads:

[

8 = p-pS—pIS
;’_é BIS — (y + wI (2)
Tt = vIi-pR

Constant y is the popula tion renew al rate, which
means that popula tions S, I ad R suffer from a natural
mortality rate of y, while new individ uals are produced
with the same fertility rate p. The basic reprod uction
number is B/(p+ y). If Ry >1, the dynamics tends
toward a steady state with a infected popula tion
density of u/B(Ry — 1). This model also verifie the two
conditions. The model has three parameters, however
parameter yis not related to the disease and won’t affect
the strains monitoring.

3.2. Multi-strains models, with a constant number of
strains

Usuall y, multi-str ains models are static, meaning that
N is constan t over time and there is no new strain that
was not presen t at time t=0. Such approach is consisten t
with the mathema tical approach of dynamical systems:
the number of equations is the same once and for all.
We propose a dynamics approach where strains can be
created or remov ed. The previous models are modifie

in order to consider n different strains, the strain i being
characterized by a couple of parameters (f;, 3;), 1 being
constan t. The infected popula tion density is denoted I;.

The modifie SIS models reads:

ds <
G = —LPLS+yil
" i (3)
7 = L BiliS—vyili
i=1
A straightf orward analysis of the system shows

that appart from the disease free equilibrium (DFE)
(1,0,...,0), there exist n equilibria
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E;=(1 —7/,’//31*,0,...,0,’)/i/ﬁi,0,...,0)

where the non-zero element corresponds to the
popula tion infected by strain i. If Ry > 1, all those
equilibria are unstable but the one that maximizes
vi/Bi. Let us denote i* the number of the strain
corresponding to the stable equilibrium. The systems
tends towards this equilibrium, with a non-null
infected popula tion density, with individ uals infected
only by the strain i*. Theref ore this model ill ustr ates the
competitiv e excl usion among the strains: only the strain
with the highest fitnes surviv es.

Similar ly, the SIR model with vital dynamics and n
different strains reads:

n
@ = #onS-LALS
i=
n
o= LALS-Ois @
& = vili-pR

Similar results can be obtained, with only one strain
surviving in the long term. One shoul d notice that such
a model introduces simple competition between the
strains as cross-imm unity is not considered. Theref ore
there is only one global compartmen t for recovered
individ uals, which is common to all strains. In
this model, we only take into account virus strains
muta tions. Host ecosystem, evolutionary processes and
host variability impose selection on virulence [6].
Evolutionary ecology epidemics models could benefi
for such approach, mixing agents and equa tions.

3.3. Multi-strain models, with varying number of
strains

We now consider models in which the number of
strains varies with time: strains are removed when the
corresponding popula tion is too low, and a new strain
is created when a random mutation occur in an existing
strain. Formall y, the models can be described by the
systems of equations 3 and 4, except that two rules are
added:

o when the popula tion of strain i drops below a
threshol d o, strain i is removed from the system.

o for each strain 7, a mutation can occur with
a probability p. When the mutation occurs, a
density m of individ uals is removed from the
popula tion infected by strain i. A new strain n +
1 is created, with an initial infected popula tion
density I,,,; = m. New parameters f,,; and ¥,
are randoml y chosen with regard to old values f;
and y;.
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In our study, we decide to chose the values f,,;
and y,,; according to a uniform distribution on the
respectiv e intervals [0.78;,1.3p;] and [0.7y;, 1.3y;].

4. Hybrid concept and implementation

Mathema tical models often do not consider systems
of equations with a varying number of equa tions.
Here we propose to use ABM with agents embedding
equations in order to build a system of equations that
can evolve with time. Strains are represen ted by agents
which can communicate with each other. For each
strain, there is one equation describing the evolution
of infected individ uals corresponding to that strain.
Such a system is an ABM and an EBM in the same
time: each strain is considered as an individ ual, but the
popula tion of susceptible and infected is considered at
the global level. Each strain is an entity that embeds an
equation. The interaction betw een individ uals form a
larg e dynamics set of equa tions. It can be seen either as:

- an ABM composed of strains, each individ ual
embedding an equation. Interactions between the
individ uals give rise to a non-sta tic system of equa tions,
and so to an EBM that evolves with time.

- an EBM, in which each equation is represen ted by
an agent corresponding to a strain which is dynamicall y
linked to the others. The EBM is a non-classical one, in
the sense that it can be dynamicall y be chang ed.

The model has been implemen ted on the Gama
platform [8], which allows embedding equa tions. In an
equa tion associa ted to an agent, it is possible to refer to
the variable and equations embedded in other agents,
in order to build dynamicall y a set of equa tions.

The strains are susceptible to mutations, and
so to evolution through competition for resources
(popula tion susceptible to the disease). From time to
time, a strain is randomly selected for mutation, a
new strain of one individ ual being created, and the
parameters beta and gamma for the new strains being
chosen randoml y with values close to the ones of the
old one. The set of equations is updated dynamicall vy,
and the new strain joins competition for resources.

4.1. Dynamics of the model

The model we built illustrates a phenomenon of genetic
drifts. According to exclusive competition principle, the
strains with the smaller fitnes final y get discarded
from the pool. Depending on the frequency of the
mutation events and on random aspects, it happens
that several strains coexist for a short period (up to
20 in our simulation with parameters ..) According to
expecta tion, the drift tends towards parameter range
where beta is large and gamma is small.
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Species Host

Population

Figure 2. Representation the dynamic of "Switch" model

4.2. Model "Switch"

We ill ustr ate our coupling methodol ogy by implemen t-
ing a hybrid model, called Switch, combining equa tions
and agents on the modeling platform Gama. We build a
class of SIR model based in both ABM and EBM (figur
2),1in which people are represqen ted by agents when the
density is low, and by equa tions if the density is higher,
a tilting mechanism for moving from an approach to
another .

Both models are based on the same assum ptions.
They involve two processes: contamina tion and recov -
ery. The ABM model also adds spatial interactions
and dispersal. The mathema tical model is indeed a
mean fie d approxima tion of the ABM and represen ts
the dynamics at the global scale, while ABM shows
the dynamics at local scale. The contamina tion and
recovery processes happen frequen tly with a "unif orm

[

distribution " over time.

- Assum ption i) implies that processes can be
represen ted at a continuous time;

- Assum ption ii) allows to replace probabilities
of processes occurrences by expectancies; final y

assum ption iii) allows to consider that all individ ual
have the same number of neighbors.

- Assum ption iii) popula tions are considered to be at
sufficiently high density; popula tions are considered as
homog eneous for spatial distribution of individ uals, as
well as for the distribution of each type of individ uals
(S, Tand R).

Considering that assum ption i) holds is rather natu-
ral, as processes occur along constant time steps. Epi-
demiol ogical models usuall y assume that popula tion
densities are high, thus condition for assum ption ii)
seems to be naturally fulfiled However, in a large
popula tion, the density of infected (or even suscep-
tible) individ uals may be very low. Indeed, a usual
condition for such kind of model is the introduction
of a small group of infected inside a disease free
popula tion. Mathema tical model are deterministic and
ignore the variability due to stochasticity which alter
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the dynamics: if one infected individ ual is introduced
in the popula tion, if basic reprod uction rate R0>1, and
epidemic outbreak will be predicted by the mathema t-
ical model. However, in real cases or for ABM, there is
a chance to avoid epidemic outbreak as contamina tion
may not occur thanks to the stochasticity of infection
process. Assum ption iii) may not be possible for spa-
tiall y explicit ABM, as spatial distribution does not
remain constan t and spatial patterns could appear , like
contamina tion waves. Assum ption iii) makes that the
EBM, as mean-fie d approxima tion of ABM, is also the
the "limit " (in the mathema tical sense) of the EBM when
spatial process tends to spatial homogeneity, which is
achiev ed by letting the neighborhood of an individ ual
tend to cover the whole environmen t, or by increasing
the speed of movement of individ uals (well mixed
popula tions).

Comparing both EBM and ABM is exhibiting the
differences due to approxima tions done for the ABM
model due to assum ptions ii) and iii). Assum ption
ii) is at the heart of the model switch problema tic:
EBM shoul d not be used when the conditions for this
assum ption are not fulfilled Assum ption iii) also add
a challeng e to model switching, as corrections have
to be made in order to represen t into the ABM the
effects of spatial structures that have been hidden
by the approxima tion made with this assum ption.
Furthermore, switching from EBM to ABM introd uces
an explicit spatial distribution of individ uals, for which
assum ption iii) doesn’t have to be made. The spatial
distribution, hidden in the EBM, may have to be
gener ated.

The two models are based on SIR models assum p-
tions. Individ uals can be in three different states: sus-
ceptible individ uals (S): the individ ual is disease-free
and can be contamina ted by contact with an infected
individ ual (I). After some time, infected individ uals
recover from the disease (or die). They are assumed
to be in a recovered state (R): they are immune to the
disease and do not take part anymore in the infection
dynamics. The models involve the following processes:

- infection: transmission of the disease from infected
individ uals. This depends on the contact rate betw een
susceptible individ uals and infected individ uals;

- recov ery: infected individ uals heal and recover from
infection;

- movements: individ uals are assumed to move
within the considered environmen t. There are two type
of movement, one is random walking and other is not
random, (figur 3).

Hypothesis found in both models:

- Recovery rate: the remission rate is very similar in
the agent-based model and the equation-based model.
In the ABM, parameter gamma is the probability to
recover per time unit. In the EBM model, the parameter
gamma is a mean-fie d approxima tion, which means
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(1) In the whole grid (2) In a neighborhood

Figure 3. Two type of deplacement of agent in an environment

that the number of recovered individ uals given by the
EBM model is exactl y the expectancy of the number
of recovered individ uals given by the ABM model
(provided that there is no infection occurring at the
same time). Stochasticity of recovery rate appears atlow
I popula tions, otherwise both models fit

- Contact rate: in the present models, contact are
define in a similar way for the mathema tical model
and the agent-based model. In the agent-based model,
two individ uals are considered to be "in contact"
if they are in each other’s vicinity for one time
step. In mathema tical model, space is not explicitl y
represen ted, but the average number of neighbours
can be determined. Stochasticity of contact rate appear
because of size of neighbourhood (strong variability in
number of hosts neighbours) and speed of hosts (low
speed means no mixing, neighbourhood proportion of
R and I may greatly vary).

We compare this model with existing models and
present a method to determine the parameters for
transitions betw een models. In particular , we establish
a link between the parameters of the mathema tical
model, and the represen tation of contacts and travel
agents in a spatial environmen t.

We are also interested in how to compensa te for the
loss of information on spatial structures when we move
an agent model to a mathema tical model. Curren tly,
we save the attributes, especiall y the location and the
status, of all agents and re-assign to agents when they
need. We are also interested in how to compensa te
for the loss of information on spatial structures when
we move an agent model to a mathema tical model.
Curren tly we have implemen ted two following method
of creation new distribution after the switch from EBM
to ABM.

5. Experiments

5.1. Objective, Data and tools used

In this part, we do experimen t to prove the capabilities

of coupling framew ork that we have proposed to
compose the ABM and EBM. The experimen ts will have
three scenarios, each scenario The data used in the
"Switch " model is bring in the real data of SIR model.
The epidemiol ogy’s parameters are the spread of the fu
and measles.
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System of equations

GAMA ODE
solve Solver

Integration step
| controller
as ST ’ - wox .
| o= Lo @ > difi(s.)= (- beta* S *1/N);
variables controller | A€ N

equation SIR{

Figure 4. an ODE solver structure inside a modeling and
simulation platform

5.2. Tools used: An ODE-integrated environment

We tackle the problems of differences modeling
formalism with our proposition of coupling by
integrating these two approaches in a modeling and
simula tion platform, GAMA (8], in which the equa tion-
based model is declared as an attribute of the agent. It
has two famous exam ples of equa tion-based modeling
which are the Lotka and Volterra [24] modeling of prey -
preda tor dynamics or the Kermack and McKendrick [3]
SIR model to represen t epidemic dynamics.

We have introduced in GAMA the possibility to
describe the dynamics of agents using a differen tial
equation system and to integrate this system at each
simulation step. With the enhancemen t of GAMA
modeling languag e (GAML), modelers have possibility
to write equations linking agentsiAZ attributes and
to integrate equation-based system with agent-based
system. The GAML syntax permit to write an system
of equa tions of most EBM based on the implemen tation
with Commons Mathema tics Library.

To figur out the coupling problem of different tem-
poral scale, we introduce the controller of integration
steps and simulation steps beside the two curren t inte-
gration method Runge-Kutta 4 and Dormand-Prince
8(5,3). This controller is main tain in the solve statemen t
of GAML and would be call at each simulation step.
In the figur 4, an equation-based model in form of
algebrics is represen ted into GAML syntax that are
called Equation. Set of equations make a System of
equa tions. This type of entity will be integrated by our
GAMA ODE (Ordinary Differential Equation) Solver
packag e.

5.3. Represent classical SIR model in EBM and
ABM formalism.

The firs experimen t show that we can easil y modeling
the classical SIR in form of equation-based and also
agent-based. As in the figur 5, an differential equa tion
can be declare with two expression. The firs one on the
left of “=* is the keyw ord diff followed by the name of
integrated variable and the time variable t:

diff ( <integrated variable>, t )
= <calculating expression >;
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+extend

dr ST
—=p—-71 ,I.E diff(l,t) = (beta * S * I/ N) - *1);
Apache Common Maths dt ﬂN Ii\ > = et )
ODE Integrator dR

= )3 R(\i\l O diffRY) = (gamma *I);

}

dt

Figure 5. Representation of an equation-based model in an
simulation platform.

An EBM is then represen ted as a attributes of agent with
a block of equa tions:

equation <name_identifier> {
diff (...) = ...;
diff (...) = ...;

6. Results

6.1. Discussion on the methodology

The EBM submodel describes the dynamics of the
epidemic at the global scale: host popula tion is
considered at global popula tion through density
measuremen ts. The ABM submodel describes the
dynamics of strain evolution at the individ ual level: at
each momen t, one can describe which strains are active
and which have been removed. One shoul d notice that
the global level for EBM is indeed embedded in the
individ ual level for strains: to each individ ual strains
corresponds a density of infected popula tion.

6.2. Adjust the parameters to calibrate EBM and
ABM

The ABM simula tion resul t is a stochastic resul t, instead
of EBM’resul ts are deterministic. Our proposition
allow modeler to calibr ate the SIR model in ABM fi
with  EBM. We launch the simulation with following
parameter: N = 500; I = 1.0; S = N - I; R = 0.0; beta
= 1/2.0; gamma = 1/3.0. After 100 simulations, the SIR
model and agent model presen t significa t differences
from (figur 6):

- popula tion initial (N)

- effect of size grid (grid size)

- effect of topol ogies (neighborhood size)

The transition beta from EBM to ABM is then adjust
an amoun t alpha. We rela unch the simulation 100 times
to expl ore the value of alpha. We found the fixes alpha
= 0,45 (figur 7). We have also found several criterias
that would be effect the fitnes between SIR EBM
and ABM are: difference of synchronous/asynchronous
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Figure 6. Adjust the beta parameter of SIR model to calibrate
EBM with ABM result.
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Figure 7. Adjust the beta parameter of SIR model to calibrate
EBM with ABM result.

(infect others vs is infected); random walk; effect of
beta; dispersion; effect of movement speed.

6.3. Study of the dynamics of multi-strains
epidemiological model

with our proposed coupling methodol ogy, modeler can
easil y study the multi strain epidemiol ogical model by
the implemen tation like in the figur 8. agent strain
can be created an removed dynamicall y in time of
sim ula tion.

As in the case of a constant number of strains,
competitiv e exclusion prevails: the strains with lowest
fitnes eventuall y disappear , while the one with the
highest remains. As mutations allow the appear ance of
new strains, strains with higher fitnes appear (higher
Ry = B/y ratio), and it is possible to exhibit a genetic
drift. In figur 9, it is shown that evolution favours
an increase of B (better contamina tion ability) and a
decrease of y (longer infection duration).
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species S

{

equation evol simultaneously : [Strain]
{
diff (first(S).Ssize, t) = mu - mu * self.Ssize -
sum (Strain accumulate (each.betal *
(1 + each.betal * cos_rad(2 °pi * t)) * each.Isize

)) * self.ssize;

}

species Strain
{
reflex mutation when: (flip(mutation probability))[]

equation evol simultaneously : [S]
{
diff (self.Esize, t) = (self.betal *
(1 + self.betal * cos_rad(2 °pi * t)) *
first(8) .Ssize * self.Isize)
- (self.alpha + mu) * self.Esize;
diff (self.Isize, t) = self.alpha * self.Esize
- (self.gamma + mu) * self.Isize;

Figure 8. Multi-strain SIR model declared in Gama platform
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Figure 9. The result of

6.4. Regenerate spatial information from EBM to
ABM

In this experimen t (figur 10), we save the attributes,
especiall y the location and the contamina tion status
of all agents when we do a switch from ABM to
EBM model. Then when re-assign to agents. The image
represen t the regeneration algorithm in figur 10 is two
exam ple resul ts. With the same manner , we have do 100
times of simula tion and compare the state of popula tion
with and without a switch in the table 11 to see the
efficient of algorithm.

7. Conclusion

This paper has proposed a hybrid approach combining
modeling equa tions and agents, as well as its implemen-
tation on the modeling platform Gama. We are inter-
ested in the represen tation of this approach theoretical
epidemiol ogical models. We illustr ate the construction
of a class of models based on a SIR model in which
people are represen ted by agents when their density

EAI Endorsed Transactions on
Context-aware Systems and Applications
092016 - 03 2017 | Volume 4 | Issue 11 | el



Nghi Quang Huynh et al.

Figure 10. Regeneration of spatial information algorithm, the
example result: (a),(d) population before the switch, (b)(e)
population at threshold without a switch, (c)(f) population
regenerated from (a)(d) after a switch

Random Switch Number of Spatial

seed threshold simulation Regeneration
Percentage

0.5 500 100

1950 5 49%
1.0 1950 5 500 100 43%
3.14 1950 5 500 100 46%

Figure 11. Average result by simulate 100 times the spatial
regeneration algorithm.

is low, and equations with higher density, a tilt mech-
anism for moving from an approach to the other. We
compare this model with existing models and presenta
method to determine the parameters during transitions
betw een models. In particular , we seek to establish a
link betw een the parameters of the mathema tical model
and represen tation of contacts and travel agents in a
spatial environmen t. We are also interested in how to
compensa te the loss of information on spatial structures
when moving an agent model to a mathema tical model.
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