

Gemini AI as a Driver of Change: Impact on German Language and Literacy Education

Yumna Afra¹, Amelia Mahmuddin², Maria Thessalonika Sitorus³, Priskila Yosefina Natalia Sinaga, Lestari Marbun, Sarah Novelina Pakpahan

{yumnaafra88@gmail.com¹, ameliamahmuddin6@gmail.com², mariathessalonikasitorus@gmail.com³}

Medan State University, Medan, Indonesia

Abstract. This research explores the transformative impact of Artificial Intelligence in foreign language education, with a particular focus on how Gemini AI influences German language learning. Adopting a mixed-methods approach, the study involved 25 students and 5 teachers to examine AI's role in enhancing linguistic skills. Through comprehensive data collection, the study found significant improvements in language proficiency, with quantitative results showing an increase in performance from 68 to 80 on standardized tests. Statistical analyses, such as Chi-Square testing, revealed a strong correlation between the frequency of AI platform use and improvements in language skills. Additionally, 85% of participants reported greater motivation to learn, demonstrating the potential of AI to transform educational experiences. However, the study also highlights key implementation challenges, such as limited technological access and the need for targeted professional development for educators. The findings provide valuable insights into AI-powered language learning strategies, underscoring the importance of thoughtful integration of technology into modern educational systems.

Keywords: Artificial Intelligence, Language Education, Digital Literacy, German Language Learning

1 Introduction

In today's digital era, the rapid advancement of Artificial Intelligence (AI) is revolutionizing various industries, with education being one of the most significantly impacted sectors. In language learning, AI is reshaping traditional teaching methods by providing highly personalized and adaptive learning experiences that cater to individual student needs. This shift is especially noticeable in foreign language education, where AI-driven tools, such as Gemini AI, offer real-time feedback, track student progress, and tailor learning activities to enhance language proficiency. By integrating AI into the language learning process, students can engage in more interactive, self-paced, and efficient learning, making language acquisition more accessible and effective.

Gemini AI stands out as a transformative innovation in foreign language education, particularly designed to aid students in mastering the German language. Unlike conventional learning tools, Gemini AI operates as an intelligent system that customizes educational content to suit the unique abilities and progress of each learner. This tailored approach not only speeds up language acquisition but also boosts student motivation and strengthens their understanding of complex linguistic elements. By adjusting to each student's needs, Gemini AI ensures a more

engaging and effective learning experience, making it a valuable resource for those seeking to improve their German language skills.

The integration of technology into language education dates back to the advent of Computer-Assisted Language Learning (CALL) in the 1960s. Although CALL pioneered the use of computers in language instruction, it struggled to meet the real-time needs of individual learners effectively. In comparison, contemporary AI solutions like Gemini AI address these shortcomings by offering dynamic feedback and fostering interactive learning environments that enhance engagement and facilitate deeper learning (Richards et al., 2014). AI-driven personalized learning empowers students to advance more efficiently in mastering complex aspects of the German language, such as grammar, pronunciation, and vocabulary. The ability of AI to provide instant feedback plays a crucial role in the language learning journey, helping learners understand intricate grammatical rules and refine pronunciation—key components for achieving effective communication. (Luckin et al., 2016).

Recent studies reveal that AI contributes not only to the improvement of language skills but also to the advancement of digital literacy among learners. In this context, digital literacy goes beyond mastering reading, writing, and speaking in a language; it includes the ability to navigate and effectively use digital technologies—an essential competence in today's technology-centric world. (Khalil & Ebner, 2015). This study aims to investigate the potential of Gemini AI in enhancing German language literacy, with a particular emphasis on improving language proficiency, boosting learner motivation, and developing digital literacy skills. By analyzing the experiences of students and educators who utilize Gemini AI, the research seeks to offer valuable insights into how AI can transform language learning approaches and significantly enhance the quality of German language education.

This study aims to examine the intricate relationship between AI and the educational landscape, emphasizing the critical role of strategically integrating technology into language instruction. By investigating the experiences and outcomes of both learners and educators using AI tools such as Gemini AI, the research seeks to reveal how these technological advancements can reshape traditional teaching methods and address long-standing challenges in language acquisition. The anticipated findings aim to offer valuable insights into AI's transformative potential, demonstrating its capacity to enhance language proficiency, boost learner engagement, and promote digital literacy. Furthermore, the study intends to guide educators and policymakers on best practices for implementing AI, ensuring its ethical and effective use in education.

2 Theory and Method

This research investigates the impact of Gemini AI on enhancing German language literacy and education, with a specific emphasis on boosting student motivation, engagement, and language proficiency. The study is grounded in the theoretical framework of Computer-Assisted Language Learning (CALL), a concept that has historically highlighted the role of technology in facilitating language acquisition. Over the years, CALL has progressed alongside technological advancements, incorporating innovations like AI to provide more interactive, adaptive, and personalized learning experiences. By exploring Gemini AI's contributions, this research seeks to demonstrate how such tools can reshape traditional approaches to language education and address persistent learning challenges.

According to Richards and Rodgers (2014^{3rd}), CALL initially introduced computer-based tools that allowed language learners to practice and develop their skills. However, AI-driven applications like Gemini AI advance this concept by delivering real-time feedback and creating customized learning paths based on each student's progress and learning preferences. This adaptive and personalized method enhances the effectiveness of language learning, particularly for complex languages like German, where mastering grammar and pronunciation presents notable challenges (Li & Lalani, 2020).

A key challenge in learning German is keeping students motivated, particularly due to the language's complexity. German is renowned for its complex grammar rules, case system, verb conjugations, and compound word structures, which can be overwhelming for learners. Many students struggle to maintain motivation when they encounter difficulties in mastering these elements. This study incorporates a motivational framework to examine how Gemini AI helps sustain student motivation by offering a more personalized learning experience, tailored to individual progress and needs. By adapting to each student's pace, Gemini AI aims to make the learning process less daunting and more engaging. As Luckin et al. (2016) suggest, motivation in language learning is closely tied to a student's ability to engage with content that is relevant and suited to their personal progress. Gemini AI tackles this challenge by dynamically adjusting the difficulty of exercises in real-time, ensuring that students face challenges that are appropriately tailored to their current skill level. This approach prevents frustration from overly difficult tasks and instead provides manageable obstacles that foster continuous progress. By offering personalized learning experiences, Gemini AI helps students stay engaged and motivated, making their German language learning journey more enjoyable and rewarding.

A major challenge in learning German is keeping students motivated, particularly due to the language's complexity. German is characterized by its intricate grammar rules, case system, verb conjugation, and compound word formation, which can be daunting for learners. Many students struggle to stay motivated when they encounter difficulties in mastering these aspects. This study applies a motivational framework to explore how Gemini AI supports student motivation by personalizing the learning process. By tailoring lessons to each student's needs and progress, Gemini AI helps keep learners engaged and motivated throughout their German language learning experience. As suggested by Luckin et al. (2016), motivation in language learning is closely related to students' ability to engage with content that is relevant and appropriate to their personal progress. Gemini AI addresses this challenge by dynamically adjusting the difficulty of exercises in real-time, ensuring that students face manageable challenges rather than becoming frustrated with tasks that are too difficult. This adaptive approach helps learners remain engaged and motivated throughout their German language learning journey. During the data collection phase, semi-structured interviews were conducted with five German language teachers who had integrated Gemini AI into their teaching practices. The interviews aimed to gather qualitative insights into how the AI tool impacted students' language literacy and motivation. Teachers were asked to share their observations on student engagement, progress in language skills, and any improvements in areas such as grammar, pronunciation, and vocabulary. Additionally, questionnaires were distributed to 25 students using Gemini AI to gain further perspectives on their learning experiences. The questionnaires distributed to the 25 students focused on their perceptions of their progress in learning German, specifically in areas such as reading comprehension, writing accuracy, and oral communication. Students were also asked about their motivation, engagement, and overall satisfaction with the personalized learning experience offered by Gemini AI. These questions aimed to gather insights into how effectively the AI was supporting their learning and maintaining their interest in the language acquisition process.

This research employed a qualitative case study approach to explore the experiences of five German language teachers and 25 students who regularly use Gemini AI in their language learning. The data collection process was methodically planned and carried out in multiple stages. In the initial planning phase, the researchers identified key challenges in learning German, particularly the difficulties students face in maintaining motivation and improving literacy skills. Research tools, such as questionnaires, interview guides, and observation templates, were developed to assess how Gemini AI influences students' learning outcomes, particularly in literacy, speaking, and writing skills.

During the data collection phase, semi-structured interviews were conducted with five German teachers who had incorporated Gemini AI into their teaching practices. The interviews aimed to gather qualitative insights into how the AI tool impacted students' language literacy and motivation. Teachers were asked to share their observations regarding student engagement, development of language skills, and improvements in areas such as grammar, pronunciation, and vocabulary. Additionally, a questionnaire was distributed to 25 students using Gemini AI, which focused on their perceptions of progress in German language learning, particularly in reading comprehension, writing accuracy, and oral communication. Students were also asked about their motivation, engagement, and satisfaction with the personalized learning experience offered by the AI.

A key component of the study involved indirect observation of student behavior while using Gemini AI. Teachers were asked to provide written reports detailing how students interacted with the AI platform during classroom activities. These observations focused on how students utilized the AI to overcome challenges in mastering complex aspects of the German language. Specifically, teachers documented improvements in areas such as sentence structure, verb conjugation, and case agreement—elements that are often difficult for learners to grasp without immediate feedback. Additionally, the observations highlighted how the AI's real-time feedback mechanism enabled students to correct mistakes instantly, reinforcing proper language usage in a manner that traditional methods might struggle to achieve. (Luckin et al., 2016).

Learning German presents unique challenges, particularly due to its intricate grammar, which includes elements like word order, the case system (nominative, accusative, dative, and genitive), and verb conjugation patterns. These features often lead to frustration among learners, especially when they do not receive timely feedback or when the material feels overwhelming. In a traditional classroom setting, students may have to wait for teacher feedback, causing delays in correcting errors. However, with Gemini AI, students benefit from real-time feedback on their mistakes, allowing them to make adjustments and apply corrections immediately. This immediate feedback is crucial for mastering German grammar and pronunciation, significantly improving accuracy in both written and spoken language, as highlighted by Popenici and Kerr. (2017).

Learning German presents unique challenges, particularly due to its complex grammar, which includes elements such as word order, the case system (nominative, accusative, dative, and genitive), and verb conjugation patterns. These aspects often lead to significant frustration for learners, especially when they don't receive timely feedback or find the material too difficult to process. In a traditional classroom, students may have to wait for feedback from the teacher, causing delays in correcting mistakes. However, with Gemini AI, students receive real-time feedback on their errors, enabling them to adjust and apply corrections immediately. This feature is crucial for mastering German grammar and pronunciation. Instant corrections are invaluable for improving accuracy in both written and spoken language, as emphasized by Popenici and Kerr. (2017).

Overall, this study demonstrates how Gemini AI enhances German language literacy by offering a personalized learning experience that boosts both motivation and language proficiency. Through real-time feedback, the AI application enables students to instantly correct errors in grammar, pronunciation, and vocabulary, reinforcing correct language usage. This adaptive and individualized approach not only increases student engagement but also helps learners navigate the distinct challenges of learning German. As a result, Gemini AI proves to be a valuable tool in modern language education, providing effective support for students to master the language more efficiently (Richards & Rodgers, 2014). This study focuses on how Gemini AI enhances students' German literacy, including reading comprehension, writing, and oral communication skills. It also explores how AI-driven personalized learning influences students' motivation and perseverance in mastering the language. The real-time feedback provided by Gemini AI is crucial in enabling students to correct errors in grammar, pronunciation, and vocabulary immediately, reinforcing accurate language use and promoting continuous improvement in their language skills (Richards & Rodgers, 2014^{3rd}).

3 Result and Discussion

The research findings reveal significant positive effects of Gemini AI on the development of German language literacy and educational outcomes, drawn from qualitative data from interviews and classroom observations, as well as quantitative data from student surveys. The integration of Gemini AI into language instruction has resulted in marked improvements in reading comprehension, writing accuracy, speaking proficiency, and overall student engagement. These outcomes highlight the effectiveness of AI in enhancing key language skills and fostering a more interactive and motivating learning environment.

3.1 Qualitative Findings

Interviews with the five German language instructors provided valuable insights into Gemini AI's impact on students' literacy skills. Teachers consistently noted noticeable improvements in students' understanding of complex grammatical structures, which are especially difficult in German. One educator commented, "Students have shown remarkable progress in their use of correct verb conjugations and mastery of the case system. Gemini AI's instant feedback allows them to quickly correct their mistakes, leading to better retention of grammatical concepts." This observation highlights the effectiveness of immediate corrective feedback, a key factor in successful language instruction (Richards & Rodgers, 2014^{3rd}).

Additionally, instructors praised Gemini AI's adaptive learning capabilities, highlighting its ability to tailor exercises to each student's proficiency level, enabling learners to progress at their own pace. One instructor remarked, "The individualized nature of the exercises allows students struggling with specific concepts, like the dative case, to receive targeted practice without feeling overwhelmed." This adaptability reduces frustration and fosters a more engaging learning environment, where students feel empowered to tackle difficult aspects of the language with confidence and motivation (Li & Lalani, 2020).

Classroom observations further supported the teachers' observations, showing that students who regularly used Gemini AI displayed greater self-confidence during speaking activities, particularly in their pronunciation and sentence construction. One observation highlighted a

student improving their pronunciation of complex words after receiving immediate feedback from the AI. This not only boosted the student's fluency but also encouraged peer interaction, as learners began to engage in collaborative speaking exercises, motivated by the supportive feedback environment that Gemini AI provided. The instant feedback fostered a positive, interactive atmosphere that encouraged students to practice and refine their language skills together (Popenici & Kerr, 2017).

Furthermore, in writing tasks, students demonstrated an improved ability to construct grammatically correct sentences and use appropriate vocabulary. Observations indicated that the Gemini AI platform guided learners through the complexities of German syntax and word usage, especially in forming intricate sentences and correctly applying articles. Educators noted that this focused guidance helped students overcome common challenges in writing, a significant hurdle for many German language learners. By addressing these specific issues, the AI enabled students to improve their writing accuracy and overall language proficiency.

3.2 Quantitative Findings

The quantitative analysis included a comprehensive survey administered to 25 students using Gemini AI. The results revealed high satisfaction with the platform's ability to enhance language proficiency. Notably, 85% of students reported increased motivation to learn German, attributing this to the personalized feedback provided by the AI. Learners stated that the immediacy of the feedback boosted their engagement and diminished their reluctance to participate in learning activities. This immediate reinforcement helped foster a more confident and active approach to language learning.

Questionnaire attachment: (<https://forms.gle/HqrSEAvJo3jrnCJy6>)

3.3 Chi-Square Test for Language Proficiency

To explore the relationship between the frequency of Gemini AI usage and perceived improvements in language skills, a Chi-Square test was conducted. This statistical method was selected because it allows researchers to assess whether there is a significant association between two categorical variables. By applying this test, the study aimed to determine whether students who used Gemini AI more frequently reported greater improvements in their language skills compared to those with less frequent usage.

Objective: To assess whether a significant relationship exists between the frequency of Gemini AI usage and students' reported improvement in language skills.

The survey data provides insights into the frequency with which students use Gemini AI and their perceived improvement in language skills. The categories include: (1) Usage Frequency with options "Never," "Occasionally," "Often," and "Very Often," and (2) Perceived Improvement with options "Not Helpful," "Somewhat Helpful," and "Very Helpful."

Table 1. Contingency Table Based on the Questionnaire Data

Usage Frequency	Not Helpful	Somewhat Helpful	Very Helpful	Total
Never	3	2	0	5
Occasionally	2	4	1	7
Often	1	3	4	8
Very Often	0	1	4	5
Total	6	10	9	25

Steps for Calculation:

a. *Expected Values:* The expected value for each cell is calculated using the formula:

$$E_{ij} = \frac{R_i \times C_j}{N} (1)$$

Where:

1. R_i is the row total,
2. C_j is the column total,
3. $N = 25$ is the total number of respondents.

For example, the expected value for the cell (Never, Not Helpful) is:

$$E_{11} = \frac{(5 \times 6)}{25} = 1.2 \quad (2)$$

Similarly, we calculate the expected values for all cells in the table.

b. *Chi-Square Calculation:* Using the observed values O_{ij} from the contingency table and the calculated expected values E_{ij} , we apply the Chi-Square formula:

$$X^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \quad (3)$$

After calculating the deviations and squaring them, the total X^2 value is 12.78.

Degrees of Freedom: The degrees of freedom df is calculated as:

$$df = (r - 1) \times (c - 1) = (4 - 1) \times (3 - 1) = 3 \times 2 = 6 \quad (4)$$

c. *Compare with Critical Value:* The critical value from the Chi-Square distribution table for $df = 6$ and a significance level of $\alpha = 0.05$ is 12.59. Since the calculated X^2 (12.78) is greater than the critical value, we *reject the null hypothesis*. This means there is a significant association between the frequency of Gemini AI usage and the reported improvement in students' language skills.

The analysis revealed a statistically significant correlation ($X^2 = 12.78$, $df = 6$, $p < 0.05$), suggesting that students who engaged with Gemini AI more frequently reported more substantial improvements in their language skills. This finding supports the hypothesis that increased interaction with Gemini AI is associated with enhanced language proficiency outcomes.

3.4 Paired T-Test for Pre- and Post-Use of Gemini AI

To assess the impact of Gemini AI on students' language abilities, researchers conducted a paired t-test to compare performance before and after its implementation. This method was chosen because it is ideal for comparing mean scores from two related groups, specifically the same cohort of students' pre- and post-intervention scores. The primary objective was to determine whether there was a statistically significant improvement in students' language proficiency after using Gemini AI.

Data: Students underwent German language proficiency assessments prior to and after Gemini AI usage. Additionally, teachers reported observing improvements in students' test scores post-implementation. Here are the summary statistics based on students' pre-test and post-test scores: (1) Average pre-test score: 68 (2) Average post-test score: 80 (3) Standard deviation of pre-test: 5 (4) Standard deviation of post-test: 6

Steps for Calculation:

- Difference Calculation:* The difference between post-test and pre-test scores for each student is:

$$d_i = X_{post} - X_{pre} \quad (5)$$

Where d_i is the difference for the i -th student. For the group, the average difference \bar{d} is 12.

- Standard Deviation of the Differences:* The standard deviation of the differences is calculated as:

$$S_d = 3.5 \quad (6)$$

- T-Statistic Calculation:* Using the formula for the t-statistic:

$$t = \frac{\bar{d}}{S_d/\sqrt{n}} \quad (7)$$

With \bar{d} 12, S_d = 3.5 and n = 25

$$t = \frac{12}{3.5/\sqrt{25}} = \frac{12}{0.7} = 17.44 \quad (8)$$

- Compare with Critical Value:* The critical t-value for $df = 24$ and $\alpha=0.01$ is 2.797. Since the calculated t-value (17.14) is much greater than the critical value, we *reject the null hypothesis*, concluding that there is a statistically significant improvement in students' language skills after using Gemini AI.

The results showed a marked increase from an average pre-test score of 68 to a post-test average of 80, indicating a considerable improvement ($t = 17.14$, $df = 24$, $p < 0.01$). This quantitative evidence aligns with the qualitative observations, demonstrating Gemini AI's effectiveness in enhancing various aspects of language proficiency, including grammar, vocabulary, and pronunciation.

3.5 Impact on Student Motivation and Digital Literacy

The findings of this research highlight the substantial impact of Gemini AI on students' motivation and engagement, demonstrating its benefits that go beyond just improving language skills. Analysis of interviews and survey responses revealed that the platform's personalized feedback and progressively challenging tasks played a key role in sustaining students' enthusiasm for learning German. As one student shared, "Seeing my progress in real-time really energizes me. Every time I master a new concept through Gemini AI, I experience a true sense of achievement." This statement reflects the powerful effect of immediate feedback on learners' motivation and sense of accomplishment. This feeling of accomplishment resonates with self-determination theory, which posits that motivation is driven by fulfilling essential needs for competence, autonomy, and social connection (Deci & Ryan, 2000).

Additionally, Gemini AI has played a pivotal role in enhancing students' digital literacy. Through regular interaction with the platform, students not only improved their language skills but also developed greater proficiency with digital tools that are crucial for their academic success. In today's rapidly advancing technological landscape, the ability to navigate digital resources is becoming increasingly essential. Many students reported a boost in their confidence using online educational platforms, which enriched their overall learning experiences (Li & Lalani, 2020; Beetham & Sharpe, 2013). The adaptive features of Gemini AI create a dynamic and interactive learning environment, motivating students to actively engage with the content. This increased engagement not only strengthens their command of the German language but also equips them with essential skills to effectively use technology in their educational journey. For instance, the platform offers personalized exercises that address specific challenges, such as the complexities of the dative case, allowing students to tackle these difficulties at their own pace without feeling overwhelmed.

Moreover, students showed significant improvements in their confidence during speaking and writing activities. Observations revealed that those who regularly used Gemini AI demonstrated greater self-assurance in pronunciation and sentence structure. The real-time feedback from the AI not only enhanced individual fluency but also fostered collaborative speaking practices. Students were more motivated to engage in paired activities, encouraged by the supportive feedback environment. Regarding writing, the platform effectively guided students through the complexities of German grammar, helping them construct grammatically accurate sentences and choose appropriate vocabulary. Teachers highlighted that Gemini AI successfully addressed common writing challenges, such as mastering sentence structure and the correct use of articles, which are often difficult for learners.

In conclusion, the impact of Gemini AI extends beyond language enhancement. Its personalized approach not only motivates students by helping them achieve small successes but also fosters digital literacy, a crucial skill in today's education. By combining language learning with technological competence, the platform empowers students to take charge of their educational journeys, thereby improving both their language proficiency and their ability to navigate digital tools effectively.

4 Conclusion

This research underscores the profound effect of Gemini AI on improving students' proficiency in the German language. The integration of this AI technology, which focuses on

personalized learning, immediate feedback, and dynamic challenges, has resulted in notable progress across various language skills. Students who consistently engaged with the Gemini AI platform showed significant increases in motivation and demonstrated substantial improvement in mastering complex aspects of the German language, such as grammar, pronunciation, and sentence structure. Educators reported enhanced participation and greater confidence among students, particularly in areas that are typically challenging for language learners. Statistical analyses provided strong empirical support: a Chi-Square test highlighted a significant correlation between the frequency of Gemini AI usage and improvements in language skills, while a paired t-test confirmed meaningful advancements in language competence after using the platform. In addition to linguistic gains, Gemini AI plays a key role in boosting students' digital literacy. This technology not only facilitates language learning but also equips students with the essential skills to navigate and engage with modern educational tools and platforms.

However, the study also highlights the importance of addressing implementation challenges. Issues such as limited access to technology and inadequate teacher training are crucial factors that must be carefully considered by educational policymakers. To fully harness the potential of AI in education, investments in technological infrastructure and continuous professional development for educators are essential. In conclusion, Gemini AI is not merely a teaching tool; it represents the future of education—personalized, interactive, and constantly evolving to cater to the unique needs of learners.

References

- [1] H. Beetham and R. Sharpe, *Rethinking Pedagogy for a Digital Age: Designing for 21st Century Learning*, 2nd ed. Routledge, 2013.
- [2] E. L. Deci and R. M. Ryan, "The 'What' and 'Why' of Goal Pursuits: Human Needs and the Self-Determination of Behavior," *Psychological Inquiry*, vol. 11, no. 4, pp. 227-268, 2000.
- [3] M. Kharis, "Pelatihan untuk Memaksimalkan Potensi Artificial Intelligence dalam Memotivasi Belajar Bahasa Jerman bagi Guru Bahasa Jerman di Malang," *JMM (Jurnal Masyarakat Mandiri)*, vol. 8, no. 1, pp. 1433-1443, 2024.
- [4] M. Khalil and M. Ebner, "Learning Analytics: Principles and Constraints," in *Proc. ED-Media 2015 Conf.*, VA: AACE, pp. 1789-1799, 2015.
- [5] C. Li and F. Lalani, "The COVID-19 pandemic has changed education forever. This is how," *World Economic Forum*, 2020.
- [6] R. Luckin, W. Holmes, M. Griffiths, and L. B. Forcier, *Intelligence Unleashed: An Argument for AI in Education*, Pearson, 2016.
- [7] MarkovML, "AI for Language Learning." [Online]. Available: <https://www.markovml.com/blog/ai-for-language-learning>. [Accessed: 2024].
- [8] S. A. D. Popenici and S. Kerr, "Exploring the impact of artificial intelligence on teaching and learning in higher education," *RPTEL*, vol. 12, p. 22, 2017.
- [9] J. C. Richards and T. S. Rodgers, *Approaches and Methods in Language Teaching*, 3rd ed. Cambridge University Press, 2014.
- [10] N. Selwyn, *Should robots replace teachers? AI and the Future of Education*, 1st ed. Polity Press, 2019.