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Abstract: Temporal Fusion Transformers (TFT) is a Transformer model for multi-step 
forecasting tasks. Because TFT models can integrate decoders to import various types of 
inputs, including static covariates, known future inputs, and other exogenous time series 
observed only in the past, which are well performed in the multi-step prediction of time 
series. To learn temporal relationships at different scales, TFT uses a cyclic layer for local 
processing and an interpretable self-attention layer for long-term dependence. TFT 
leverages specialized components to select relevant functions and inhibits unnecessary 
components through a series of gating layers to achieve high performance in a wide range 
of scenarios. When the model was proposed, it was considered to have good interpretability. 
As the research continues to increase, people put forward a lot of different opinions about 
this. This paper focuses on the explain ability of the TFT model and its attention 
mechanism. 
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1 INTRODUCTION 

Traffic flow is an important index to measure traffic conditions. Multi-step forward traffic flow 
prediction can help the traffic management agency to alleviate traffic congestion in advance and 
make the urban planning bureau more reasonable road planning [4]. It has a certain reference 
value for improving the prediction accuracy of multi-step leading speed [7]. However, accurate 
forecasting of traffic flows is particularly challenging due to the difficulty in capturing the 
spatio-temporal dependence of traffic data[5-6] 

Previous studies have mainly focused on various traditional statistical methods [8], such as vector 
autoregression-based (VAR) model and comprehensive autoregression-based moving average 
(ARIMA) model [9]. Recently, more and more neural network-based models have been applied 
to the field of traffic prediction [10]. Since the prediction of traffic flow is mainly based on the 
temporal correlation of traffic flow series, the circulating neural network (RNN) has been widely 
used to solve this problem. RNN can capture the time evolution of traffic speed, especially the 
long-time memory (LSTM) can learn the long-time dependence of speed series. Multiple RNN's 
were designed to predict [11]. However, the traditional RNN model has two problems: the huge 
demand for computing resources in the training process and the inability to consider long-term 
dependence [2]. To overcome the above shortcomings of RNN, researchers have begun to study 
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a new structure: the attention mechanism. Attention mechanism is widely used in the field of 
time series prediction because it can more effectively model dependencies sequentially [12]. 

In order to solve the above problems, this study adopts the transformer based time fusion 
transformer (TFT) structure to predict the traffic speed. Unlike the above methods, TFT is able 
to take into account a variety of input variables, and several new architectures have been 
introduced in TFT to improve predictive performance. (1) TFT uses gate control module and 
variable shielding network to fuse time information of velocity data of different scales together. 
The static information encoder is used to encode the number of detectors in the data acquisition 
field0 [2]. (2) TFT uses sequence-sequence layer to capture short-term time correlation in traffic 
speed time series, and uses self-attention mechanism to capture long-term time correlation in 
traffic speed time series. The research results of this paper are mainly reflected in two aspects :(1) 
When the prediction time is 30 min, the TFT model has a good prediction accuracy for multiple 
lanes. (2) In practice, the explainability of TFT models is difficult to determine. 

2 DATES 

 

Figure 1: 31 sensor collection points 

The experimental data set is comes from the PeMS system of the transportation department of 
California, USA. In this experiment, I selected 31 sensor collection points in the San Jose Area 
and collected data for a total of 91 days from 2022/1/1 to 2022/4/1 for every 5mins. The data 
from January 1 to March 25 were selected as the training dataset to determine the model 
parameters and optimize the over parameters. The data from March 26 to April 1 were selected 
as the test dataset to conduct performance evaluation. Missing values are averaged using 
adjacent values. And abnormal value use the same time value of last week.  



3 METHODS 

3.1Quantile output and loss functions 

TFT supports quantile prediction. Let 𝑖 represents unique entities in the traffic time series 
dataset. The definition of multi-step prediction problem can be simplified into the following 
formula: 

 
𝑦 𝑞, 𝑡, 𝜏 𝑓 𝝉, 𝒚 , : , 𝒛 , : , 𝒙, : , 𝒔  (1) 

 
where，𝑦 𝑞, 𝑡, 𝜏  under the point in time t, the first to predict the future tau on q points a 
numerical. 𝑓 ∙  is the prediction model. 𝒚 , :  :historical target variable.  𝒛 , :  :Time-
varying variables that can be observed Past-observed Inputs. 𝒙, :  : Apriority-known Future 
Inputs. 𝒔 :Static Covariates. 

TFT generates point prediction intervals by simultaneously predicting different percentiles (e.g., 
10, 50, and 90) for each time step. Quantile prediction is generated using the linear transform 
output of TFT’s decoder. Joint minimization of quantile loss was used to train TFT, and the 
outputs of all quantiles were added as follows: 

 

ℒ Ω, 𝑾
𝑄𝐿 𝑦 , 𝑦 𝑞, 𝑡 𝜏, 𝜏 , 𝑞

𝑀𝜏
∈∈

 
(2) 

 
𝑄𝐿 𝑦, 𝑦, 𝑞  𝑞 𝑦 𝑦 1 𝑞 𝑦 𝑦  (3) 

 
where, Ω is the training data field containing samples, 𝑾 represents the weight of TFT, 𝑄 is 
the set of output quantiles (Q={0.1,0.5,0.9} used in the experiment).  ℒ Ω, 𝑾  is the loss of 
quantiles q under the average prediction point of a single sequence. In this formula, due to 
𝑦 𝑦  and 𝑦 𝑦  will be one negative, one positive, so the formula can be converted 

into:  

 
𝑄𝐿 𝑦, 𝑦, 𝑞 max 𝑞 𝑦 𝑦 , 1 𝑞 𝑦 𝑦  (4) 

 
In order to avoid the problem of inconsistent prediction dimensions under different prediction 
points, the author also did regularization processing, number 2 because only two quantiles of 
P50 and P90 are concerned here: 

 

𝑞 𝑅𝑖𝑠𝑘
2 ∑ ∑ 𝑄𝐿 𝑦 , 𝑦 𝑞, 𝑡 𝜏, 𝜏 , 𝑞∈

∑ ∑ |𝑦 |∈
 

(5) 



4 MODEL ARCHITECTURE 

 

Figure 2: The framework of Temporal fusion transformers model. 

4.1 GRN (Gated Residual Network): 

TFT consists of four main components, namely, gate mechanism, variable selection network, 
static covariate encoder, time processing and multilevel prediction interval prediction. The 
gating mechanism, which functions to skip all unused components of the architecture, provides 
adaptive depth and network complexity to accommodate different data sets and scenarios. The 
gated residual network (GRN) can make the nonlinear calculation between variables and targets 
of the model more flexible. GRN contains two types of input: primary input a and optional 
context c.  

 
𝐺𝑅𝑁 𝑎, 𝑐 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝑎 𝐺𝐿𝑈 𝜂  (6) 

  
𝜂 𝑊 , 𝜂 𝑏 ,  (7) 

   

𝜂 𝐸𝐿𝑈 𝑊 , 𝑎 𝑊 , 𝑐 𝑏 ,  (8) 

   
ELU is the Exponential Linear Unit activation function which is defined in follower equation: 

𝑓 𝑥

𝑥
𝛼 𝑒𝑥𝑝 𝑥 1  

𝑖𝑓 𝑥 0
𝑖𝑓 𝑋 0       

 𝑓
1

𝑓 𝑥 𝛼 
𝑖𝑓 𝑥 0
𝑖𝑓 𝑋 0

 (9) 



𝜂  and 𝜂  are intermediate layers; 𝜂 , 𝜂 ∈ 𝑅 ; 𝜔 is an index to denote weight sharing. 
Letting γ ∈ 𝑅  be the input the GLU is shown in following: 

 
𝐺𝐿𝑈 𝛾 𝜎 𝑊 , 𝛾 𝑏 , ⨀ 𝑊 , 𝛾 𝑏 ,  (10) 

 
Where 𝜎 ∙   is sigmoid activation function. 𝑊 ∙ ∈ 𝑅 , 𝒃 ∙ ∈ 𝑅  are the 
weights and biases. Via the GLU, GRN can control the structure of the model and neglect the 
unnecessary layers. Flexibility can be provided to inhibit any architecture that is not required 
for a given data set. Ensure the flow of effective information. The exact relationship between 
exogenous inputs and targets is often unknown in advance, making it difficult to foresee which 
variables are relevant. In addition, it can be difficult to determine how much nonlinear 
processing to do, and there may be situations where a simpler model will meet our needs -- for 
example, when the data set is small or noisy. In order to make the model flexibly apply nonlinear 
processing only when needed, we propose a controlled residual network. GLU can control the 
degree of nonlinear contribution. 

4.2 VSN (Variable Selection Network) 

The variable selects the network, and the corresponding input variable is selected at each time 
step. The variable selection network can screen out which variables are more important to the 
prediction problem and also remove all noise inputs in the TFT that may affect the prediction 
performance. 

While multiple variables may be available, their correlation and specific contributions to the 
output are usually unknown. TFT is designed to provide instantiated variable selection by using 
a variable selection network applied to static and time-dependent covariates. In addition to 
providing insight into which variables are most important to the prediction problem, variable 
selection allows the TFT to remove any unnecessary noise inputs that might negatively affect 
performance. Most real-world time series data sets contain features with less predictive content, 
so variable selection can greatly aid model performance by leveraging learning capabilities only 
on the most significant features [3]. 

Let 𝜉 ∈ 𝑅  be the input parameter after the transformation of the j-th variable at time t 

when Ξ 𝜉 , … , 𝜉 is the flattened vector of all past inputs at time t. Putting Ξ  and 

an external context vector 𝐜  in GRN and then through a SoftMax layer can get the Variable 

selection weights 𝑣 . So the equation is 𝑣 Softmax 𝐺𝑅𝑁 Ξ , 𝐜 . The VSN section 

uses static, past and future inputs to select important features by the following equations: 

 

𝜉 𝜉 𝒗 𝜉  (11) 

  

𝜉 𝐺𝑅𝑁 𝜉  (12) 



Different VSN is used for these three inputs which the parameters are not shared. 

4.3 SCE (Static Covariate Encoders) 

Different types of input variables should be treated differently. In this section, TFT is designed 
to generate four different context vectors, 𝐜 , 𝐜 , 𝐜 , 𝐜 . In fact, SCE is using GRN function. 
Those four contect vectors are putting into different place in the TFD section(4). To be specific, 
𝐜  is used in VSN. 𝐜 , 𝐜  are devoted to initialize LSTM. And 𝐜  is used in SEL(Static 
Enrichment) layer in TFD section. 

4.4 TFD (Temporal Fusion Decoder) 

TFT refine multi-head attention in transformer-based architectures, TFT Refine multi-head 
attention in Transformer -based architectures, To enhance interpretability. It mainly has the 
following three major modules. 

In time series data, important points are often identified based on the values around them, such 
as anomalies, points of change, or periodic patterns. TFT apply a sequence- to-sequence layer 
to reinforce those temporal relevance. Putting 𝜉 :  and 𝜉 :  in the LSTM encoder 
and decoder respectively. The input can be expressed as 

 
𝜙 𝑡, 𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝜉 𝐺𝐿𝑈 𝜙 𝑡, 𝑛  (13) 

  
𝜙 𝑡, 𝑛 ∈ 𝜙 𝑡, 𝑘 , … , 𝜙 𝑡, 𝜏  (14) 

 
n is the position index. And 𝐜 , 𝐜  from 4.3 are devoted to initialize the cell state and hidden 
state respectively for the first LSTM in the layer. 

4.4.1 SEL (Static Enrichment Layer) 

Since Static information usually has a significant impact on the accuracy of time series 
prediction, Static Enrichment Layer enhances timing feature by introducing static covariable, 
namely simply using GRN and input 𝐜  given by the static covariable encoder. 

 
𝜃 𝑡, 𝑛 𝐺𝑅𝑁 𝜙 𝑡, 𝑛 , 𝒄  (15) 

4.4.2TSL (Temporal Self-Attention Layer) 

The self-Attention module can learn long-term dependencies on time series data and provide for 
model interpretability. In TSL, it is mainly the interpretable polycephalic self-concern layer, 
plus GLU. The interpretable multi-head attention used in every moment (𝑁  𝜏 𝑘 1) 
where Θ t 𝜃 𝑡, 𝑘 , … , 𝜃 𝑡, 𝜏  

 
𝑩 𝑡  

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝛩 𝑡 , 

𝛩 𝑡 , 𝛩 𝑡  

(16) 



 

𝛿 𝑡, 𝑛 𝐿𝑎𝑦𝑁𝑜𝑟𝑚 𝜃 𝑡, 𝑛 𝐺𝐿𝑈 𝛽 𝑡, 𝑛  (17) 

 
To be more specifical, the Interpretable multi-head attention has three major parameter query, 
key and value and then use scale dot-product as following: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 𝐴 𝑄, 𝐾 𝑉 (18) 

  
𝑄 ∈ 𝑅 , 𝐾 ∈ 𝑅 , 𝑉 ∈ 𝑅  (19) 

 
Where 𝐴 ∙  is a normalization function, and N is the time steps. 

 
𝑄, 𝐾 𝑉 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾 𝑑  (20) 

 
For the multi-head aspect, this mechanism employ different heads for different representation 
subspaces: 

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 𝐻 , … 𝐻 𝑊  (21) 

  

𝐻 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊 , 𝐾𝑊 , 𝑉𝑊  (22) 

 
Where 𝑊 ∈ 𝑅 , 𝑊 ∈ 𝑅 , 𝑊 ∈ 𝑅 , 𝑊 ∈
𝑅 ∙ , 𝑊  is the Linear combinations of all the heads 𝐻 . 

Attention weights separately can’t indicate the importance of a particular feature, so TFT modify 
multi-head attention to share values in each head and employ additive aggregation of all heads. 
In other words, For V is the multi-head shared parameter, for Q and K are the multi-head 
independent parameters, then calculate the multi-head attention score weighted V, and sum the 
average output. 

 
𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 𝐻 𝑊  (23) 

 

𝐻 𝐴 𝑄, 𝐾 𝑉𝑊
1

𝑚
𝐴 𝑄𝑊 , 𝐾𝑊 𝑉 𝑊

1
𝑚

𝐴𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊 , 𝐾𝑊 , 𝑉𝑊  

(24) 

 



4.4.3PFL（Position-wise Feed-forward Layer） 

Apply additional nonlinear processing to the output of the self-focused layer. 

 
𝜓 𝑡, 𝑛 𝐺𝑅𝑈 𝛿 𝑡, 𝑛  

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 𝐻 𝑊  
(25) 

  
𝜓 𝑡, 𝑛 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝜙 𝑡, 𝑛 𝐺𝐿𝑈 𝜓 𝑡, 𝑛  (26) 

5 RESULTS  

Table 1: Hyperparameter search ranges. 

Hyperparameter Range 

State size 10, 20, 40, 80, 160, 240, 320 

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9 

Minibatch size 20, 30, 40，50，64, 128 

Learning rate 0.001, 0.002，0.004，0.008，0.01 

Heads 1, 2, 3, 4 

 
Bold values indicate the optimal hyperparameters.  

 

Figure 3: Prediction results of the TFT on lane 1 



 

Figure 4: Attention score of TFT on lane 1 

Table 2: Prediction results of different models. 

 model 1 base model 1-max model 1-min 
MAE 122.4416  1112.1327  1092.2562  

RMSE 190.3704  1189.4219  1170.6600  
MAPE 0.1791  1.9337  1.9264  

R2 score:  0.8751  -3.8746 -3.7220 
 model 3 base model 3-max model 3-min 

MAE 175.5456  498.4471  507.2493  
RMSE 276.9062  643.5049  663.3742  
MAPE 0.1816  0.3482  0.3395  

R2 score:  0.8723  0.3103  0.2670  
 model 14 base model 14-max model 14-min 

MAE 148.3931  170.6433  131.4054  
RMSE 199.7648  218.4773  189.1805  
MAPE 0.1483  0.1768  0.1381  

R2 score:  0.9491  0.9392  0.9544  
 model 17 base model 17-max model 17-min 

MAE 132.7735  156.7910  138.8228  
RMSE 180.2207  197.7319  174.6579  
MAPE 0.1379  0.1738  0.1509  

R2 score:  0.9537  0.9442  0.9565  
 model 19 base model 19-max model 19-min 

MAE 126.5685  151.6295  143.8309  
RMSE 277.9803  305.3027  275.6557  
MAPE 0.0956  0.1200  0.1093  

R2 score:  0.9252  0.9098  0.9265  
 model 26 base model 26-max model 26-min 

MAE 122.4416  100.8592  97.6148  
RMSE 190.3704  157.5504  159.8302  
MAPE 0.1791  0.1273  0.1283  

R2 score:  0.8751  0.9145  0.9120  



6 CONCLUSIONS 

In order to reduce the uncertainty of prediction results, for each lane, TFT was run 10 times and 
the model with the smallest loss was selected. Then, the first and last lanes with the highest 
importance of encoder variables were excluded respectively for comparison experiment. Each 
run of the model predicts a different outcome. That is because deep learning is a random 
machine learning algorithm. On the one hand, when training the neural network, the weight of 
the neural network is initialized and random. 

On the other hand, this study sets the exit rate in the algorithm to avoid overfitting. Setting the 
exit rate means that the algorithm will randomly discard some neurons and network nodes 
during training. It can be seen from the test results that in multiple modelling (more than 300 
times), the performance of the model is completely different, and its loss and attention score are 
also completely different. Further analysis shows that after removing the lane data with the most 
and least weight, the loss change of the model cannot be analysed and it is difficult to find out 
the rule. The predictive power of its models also fails to find patterns. Here, I think the main 
reason is the randomness of deep learning. In multiple learning, the parameters of the model 
obtained each time are completely different, which is difficult to reproduce. Therefore, it is 
difficult to reproduce the attention score of each model. To sum up, the explanatory power of 
its model cannot be demonstrated stably for more than 300 hours. In theory, the attention 
mechanism should be able to express certain explanatory ability, but in practice, it is impossible 
to know whether the model calculated next time will be better and more suitable to the data. The 
calculation difficulty is too complicated, and the calculation power needs are too large. 

In many experiments, the TFT model has high predictive performance and can better simulate 
the time correlation through the self-attention mechanism, which provides experience for the 
establishment of a good long-term forecast model. And the explanatory prediction process can 
be given. However, it is difficult to determine whether this model is an optimal model or an 
interpretable model. On the other hand, TFT requires a lot of data to train the model to achieve 
good predictive performance and requires a lot of time and computing power. Since graph neural 
network can capture spatial correlation, TFT and graph neural network can be combined to 
predict the traffic state of road network. Another interesting area of research is the integration 
of traffic data, geographic information, weather information and other information into speed 
forecasting. 
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