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Abstract

A precise positioning of transmitting nodes enhances the performance of Cognitive Radio (CR), by enabling
more efficient dynamic allocation of channels and transmit powers for unlicensed users. Most localization
techniques rely on random positioning of sensor nodes where, few sensor nodes may have a small separation
between adjacent nodes. Closely spaced nodes introduces correlated observations, effecting the performance
of Compressive Sensing (CS) algorithm. This paper introduces a novel minimum distance separation aided
compressive sensing algorithm (MDACS). The algorithm selectively eliminates Secondary User (SU) power
observations from the set of SU receiving terminals such that pairs of the remaining SUs are separated by a
minimum geographic distance. We have evaluated the detection of multiple sparse targets locations and error
in l2-norm of the recovery vector. The proposed method offers an improvement in detection ratio by 20%
while reducing the error in l2-norm by 57%.
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1. Introduction
The spectrum scarcity along with inefficient spectrum
usage has motivated the development of Cognitive Radio
(CR). The increasing demand of high data rates due to
large numbers of portable hand-held devices initiated
significant research in the field of interference miti-
gation and effective spectral utilization. CR provides
a promising solution to the existing problem by effi-
ciently using the underutilized spectrum to facilitate
services by Dynamic Spectrum Sharing (DSS) for both
licensed and unlicensed users. CR technology is based
on the concept of learning the state of channel use of
Primary Users (PUs), and subsequent efficient allocation
of channels and transmit parameters to Secondary Users
(SUs). This allocation takes into account maximum
acceptable interference levels to PUs and the through-
put and performance requirements of SUs.

In a Cognitive Radio Network, both PUs and SUs
share the same channels. Since SUs have lower priority,
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the channel use is constrained by a maximum accept-
able level of interference to PUs. Many efforts have
been made in previous literature [1][2] to tackle the
issue of interference mitigation but only a few research
papers have been published on channel collision avoid-
ance based on the utilization of a Radio Environment
Map (REM). To generate a REM, the locations of the
transmitters and their transmit power levels need to be
accurately estimated. From this estimation, the received
power level throughout a two dimensional area may
be estimated. For the REM, the received power levels
interpolated over a two dimensional geographic area
are obtained through the use of analytic equations for
signal propagation.

In CR, the REM is extremely useful in secondary
user channel and transmit parameter selection. This
selection must be made with the dual requirements of
SU communication effectiveness and bounded interfer-
ence to PUs. The bounded interference to PUs can only
be maintained if the PU locations and received power
levels from other PUs, are known by SUs. Therefore an
accurate REM is crucial for effective CR operation.

In [3], a cooperative algorithm is formulated that
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takes the received signal strength at each SU to create a
weighting function and uses it to compute the location
of multiple PUs. Although it has relatively low compu-
tational complexity, it requires a high density of SUs,
and the performance degrades with channel fading. The
work in [4] and[5] is based on the concept of using sec-
torized antennas to detect Direction of Arrival (DOA)
of a signal. The phase information of a received signal
is exploited to estimate the position of PUs. However,
this technique might not be feasible for a practical CRN
implementation due to antenna requirements which
may be impractical for portable devices.

In this paper we adopt a Compressive Sensing (CS)
technique to retrieve the locations of multiple transmit-
ting PUs in a CRN. The approach relies on a location
fingerprinting approach, where a certain geographic
area is discretised into equally spaced grid points. The
PUs are assumed to be positioned at a subset of the grid
points. The SUs are also assumed to be positioned at
some known locations in the area of interest. Each SU
measures Received Signal Strength (RSS) from target
PUs. From this set of measurements, there is an attempt
to recover the PU locations and transmit power levels.
It is usually the case that the number of PUs is much
smaller than the number of grid points. Consequently,
the set of equations for power levels transmitted by
PUs is underdetermined and there are many possible
solutions. When the number of PUs is much smaller
than the number of grid points, the sparsest solution for
the set of equations yields accurate power levels at the
correct grid points. Compressive sensing can be used to
obtain the data required for the formulation of the REM.
Similar techniques were used in [6], [7], [8] and [9].

In a physical system, some of the SUs will be
closely geographically located. Having closely placed
SUs introduces correlated observations which may
increase the observation coherence. Performance of CS
algorithms relies heavily on the coherence of the obser-
vations from SUs. High coherence among the power
measurements makes it difficult for matrix inversion,
which may cause inaccurate recovery of the sparse vec-
tor. To improve the performance of the CS algorithm, we
propose a novel Min-dis-aided CS (MDACS) algorithm.
The approach aims to improve the performance of CS
algorithms by selectively removing measurements of
closely spaced SUs from the set, such as to increase
the minimum distance separation between adjacent
SUs. The algorithm priorities the RSS of a SU before
completely eliminating it from the set. The process
generates a refined set of SUs with certain distance
separation and high RSS. Our method achieved superior
detection of multiple PUs with significantly fewer SU
measurements, compared to random deployment of
SUs.

In this paper, the locations of SUs are specified by two

dimensional vectors. Both the cases of uniform distri-
bution and Gaussian distribution were considered for
the random assignment of SU positions. Irrespective of
distribution used, our novel approach of pre-selecting
SU power measurements appears to achieve reliable
detection ratio with fewer receiving nodes. Section
II discusses the background of compressive sensing.
Sections III-V describe the system model. Section VI-
IX presents the simulation results which validate the
effectiveness of our proposed method. The conclusion
is given in Section VII.

2. Compressive Sensing
The CS technique is an approach for the solution of
an under-determined set of equations for which the
solution vector is known to be sparse. Some data
vectors are sparse while others can be made more
sparse by an appropriate basis transformation. A typical
example would be the time frequency pair. A signal,
which is a linear combination of several frequency
components, can be easily retrieved by exploiting the
sparsity in frequency domain. The complex Fourier
Transform basis functions can be used to represent the
time domain signal with few non-zero coefficients. In
such case the CS algorithm can be used to obtain a
sparsest solution vector to a set of underdetermined
equations. The sparse vector, xN×1 is the solution with
the minimum number of non-zero elements. If yM×1 is
the raw observation vector obtained by the SU power
measurments, there exist the following relationship,

y = φx, (1)

where φM×N is a measurement matrix, representing the
power propagation losses from each grid point to each
SU. In [7] it states that, a matrix φ satisfies Restricted
Isometry Property (RIP) condition, when all subsets of
S columns chosen from φ are nearly orthogonal. Once
this is true, there is a high probability of completely
recovering the sparse vector with at least M = CK ×
loge(N/K) measurements (where K is the number of
PUs and C is a positive constant) using l1 -minimization
algorithm [10]. This can be can be expressed as,

min
∥∥∥~x∥∥∥

1
= min

∑
i

|xi |

subject to
~y = φ~x. (2)

This formulation is valid for a noiseless scenario
but when external noise is considered the algorithm
is modified to a Second-Order Cone Program for an
optimized solution for a defined threshold [10]. This
can be stated as,

min
∥∥∥~x∥∥∥

1
= min

∑
i

|xi |
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subject to ∥∥∥~y = φ~x
∥∥∥

2
≤ ε, (3)

where ‖·‖p is the lp−norm and ε is the relaxation
constraint for measurement errors. The sparest solution
for ~x is the solution with minimum ‖~x‖0. However,
the CS algorithm is effective because the same solution
vector usually has minimum l0 norm and minimum l1
norm [10].

3. System Model
Let us consider a square area discretized into equally
spaced P × P grid where, K PUs are randomly
positioned at unique grid points. For simplicity of
illustration, we assume that each PU is assigned
a single dedicated sub-channel to carry out duplex
communication with the base station. Now to observe
radio environment and detect the free spectrum,M SUs
are deployed randomly in the area of interest. Unlike
[6] and [8] the SUs are not placed on the grid points. We
adapted a more realistic approach of allowing the SUs
to be placed at some known locations in the area. They
have the added flexibility of being positioned at non-
discretized points on the map. The SUs are controlled
and managed by a central node called the Fusion Centre
(FC). There exist a common control channel between
central node and SUs for effective communication of
RSS observations and channel allocation information.
The FC processes the signal level measurements and
manages SU channel allocation. The most crucial
assumption in the model is that, spatial coordinates
of both the grid points and SUs are known a priori
by the FC which receives sensing information from
each individual SU. The received power at a SU is a
function of distance between the PU and SU as well
as shadowing loss. The wireless channels are corrupted
by noise and are also considered to be affected by
lognormal shadowing. The simplified path-loss model
as a function of distance may be described as,

P athlossdB(d) = K1 + 10ηlog10(
d
d0

) + α, (4)

where,

d is transmission distance in meters,

d0 is the reference distance of the antenna far field,

K1 is a dimensionless constant in dB,

η is the propagation loss exponent,

α is the shadowing loss in dB.

K1 is a unit-less constant that relies on the antenna
characteristics and average channel attenuation and
K1dB = 10log10(K1) [11]. α accounts for the random
attenuation of signal strength due to shadowing where
α in dB scale is a Gaussian random variable with

PU

SU

FC

Figure 1. System model demonstrating the positioning of PU,
SU and FC

zero mean and standard deviation σdB = 5.5dB [3].
This model was used in [3] for both multipath and
shadowing characterization.

4. Localizationusing compressive sensing
This section combines the location dependent RSS
information at each SU to formulate a sparse matrix
problem, which can then be solved using the CS method
to obtain the exact location of PUs in a CRN. Our grid
layout consists of N grid points, with grid resolution w
in both x-axis and y-axis. The N grid points are located
at {Vn, 1 ≤ n ≤ N }, where Vn is a two dimensional
position vector. The M SUs are located at {Um, 1 ≤
m ≤M}, where Um is also a two dimensional position
vector. Earlier in Section III we mentioned K PUs are
positioned only at K discrete grids where K < N . The
FC is assumed to have prior knowledge of Vn and Um.
Using the distance information and signal propagation
model described in (4) a measurement matrix Φ is
constructed. The entries of the matrix are the channel
gain and are expressed using the following equations,

dmn =‖ Um − Vn ‖2, (5)

Φmn = 10
−P athlossdB(dmn)

10 , (6)

where dmn is the distance between mth SU and nth grid
point and Φmn is the pathloss between mth SU and nth

grid point. Let Y be a M × 1 column vector where the
mth element, Ym, represents the summation of received
power from K PUs on mth SU.

Ym =
K∑
k=1

Qm,k , (7)

where,

Qm,k = 10
Qm,k,dB

10
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and,

Qm,k,dB = Pk,t − P athlossdB(dmk)

where, Qm,k is the power received at SUmwhich

was transmitted by PU k,

Pk,t is the power transmitted by user k,

and, dm,k is the distance between SU m and

PU k.

Equation (6) and (7) may be combined to formulate a
CS problem similar to (2). It is assumed that the FC has
complete knowledge of Φ . Therefore,

Y = ΦX (8)

with XN×1 being a N × 1 column vector, that is to be
recovered using CS approach described in Section II.
In a realistic scenario, the observations are corrupted
with noise power vector Pn. The elements of Pn are
statistically independent with variance σ2

n , and are chi-
square distributed with 1 degree of freedom. We can
include the effect of additive noise by,

Yn = ΦX + Pn. (9)

Since the model assumes having only few PUs on a
large grid size N , the vector XN×1 satisfies the sparsity
requirement for accurate recovery using a CS algorithm.
Due to its sparse condition, the vector will have only
few nonzero elements representing the transmit powers
while the indices corresponding to non-zero elements
indicate the grid points on which transmitting PUs
are located. Hence using a single compressed sensing
problem we can jointly estimate both the locations
and transmit powers of multiple PUs by solving (3)
described in Section II. From the estimation, FS can
approximate the received power level throughout a two
dimensional area, using the path loss model in (4).

5. Data Processing
Based on the problem formulation in Section IV, YM×1 is
a power observation vector with each row representing
sum of RSS received from K PUs on mth SU, and ΦM×N
is the measurement matrix with channel gain from
each grid point. The small grid separation adds large
coherence between the columns of the measurement
matrix and this may violate the RIP condition[12]. A
matrix transformation may be employed to increase
the incoherence between the columns. We adopt a
data processing technique described in [6] and [8] to
decorrelate the rows which are the observation of signal
strength from grid points on each SU. Let T be a

processing operator,

T = SR+ (10)

where, S = orth(ΦT )T . The built in function of Matlab,
orth(B) returns an orthonormal basis of the range of
B, and BT returns the transpose of B. R+is the Moore-
Penrose pseudoinverse of a matrix R, where R = Φ .
Applying the operator T on both sides of (9) yields,

SR+(Yn) = SR+ΦX + SR+Pn = SΦ+ΦX

+ SR+Pn = Ax +ω

Y
′

= AX +ω. (11)

Let Y
′
be SR+(Yn), the noisy processed observation

vector. A = SΦ+Φ be the processed measurement
matrix and ω = SR+Pn is the processed measurement
noise. The row vectors are being orthogonalised by S
while the columns are decorrelated by the influence of
Φ+Φ . Hence we can claim that matrix A satisfies the RIP
condition. Note that [6] and [8] considered Φ+Φ = IN ,
as a diagonal identity matrix. Although Φ+Φ acts like
an identity on a portion of the space in the sense that
it is symmetric. However it is not an identity matrix.
After applying the processing operator, CS may be used
to recover the sparse vector from processed observation
Y
′
, via l1-minimization program [6].

6. SimulationAndResults
The localization accuracy of the CS algorithm can be
effected by certain external factors such as Signal to
Noise Ratio (SNR), shadowing, density of SUs and distri-
bution of SUs. This section analyses the dependency of
these factors on the performance parameters of three l1
constrained optimization algorithms (L1-Magic, OMP
and CoSAMP) to produce an accurate result. L1 Magic,
CoSAMP, and OMP are three numerical algorithms for
constrained l1 vector optimization [13], [14] and [15].
The performance parameters may be categorized as,

DetectionRatio =
[
PUDet
PUT otal

]

Normalized Error P er Grid P oint =
1
N

∥∥∥Xorg − Xest∥∥∥2

where PUDet is the number of detected PUs; PUT otal
is the number of the PUs in the network; Xorg is the
original sparse vector; Xest the recovered vector using
CS algorithms. The average absolute error between the
vectors Xorg and Xest is obtained by simulation. This
is used to evaluate the accuracy of the algorithms to
reconstruct a sparse vector with a minimum number of
non-zero coefficients. Furthermore to study the impact
of each factor, the simulation is analyzed independently
to demonstrate the robustness and reliability of the
algorithms.
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6.1. Simulation Setup
The simulation is carried out on a 43 × 43 (i.e. N =
1849) square grid with a grid separation of 80m. Among
the 1849 grid points, 10 PUs are uniformly distributed
on the grid points. The transmit power is random
and uniformly distributed over the range of 1 to 5
Watts. The scenario consists of 160 SUs with a two
dimensional, zero mean, Gaussian spatial distribution
with standard deviation σsd . The shadowing factor is log
normal distributed.

Simulation (I) - Impact of SNR. Signal to noise ratio is
one the crucial factors effecting the performance of each
algorithm. SNR is calculated at the receiver as the ratio
of average received powers at a SU to σ2

n . Where,

σ2
n is the variance of the additive, zero mean, Gaussian noise.

Then,

SNR(dB) = 10 log10(
1
M

M∑
i=1

Yi
σ2
n

).

Yi is the received RSS from all transmitting PUs at ith

SU. As the received signal power is position dependent,
SNR will vary with respect to the positioning of SUs.
Such scenario prompted us to take the average SNR
over M elements of the observation vector. Fig 2(a)
and (b) shows the plots for detection ratio of PUs and
normalized error per grid versus average received SNR
in dB. As shown in Fig.2 (a) when SNR < 12dB, L1-
Magic performs better than CoSAMP however when
SNR > 15dB, CoSAMP outperforms L1-Magic and OMP.
At a higher SNR = 25dB, both CoSAMP and L1-Magic
achieved a detection ratio of 1 while OMP is at 0.6.
Fig.2(b) shows that, with gradual increase in SNR,
CoSAMP generates fewer normalized errors per grid
compared to L1-Magic and OMP. Even at a low SNR
= 15dB, CoSAMP produces 50% and 54% less errors
compared to L1-Magic and OMP.

Similation (II) - Sampling Ratio. Sampling ratio M
N is

another major factor that has a significant impact on
the performance of these algorithms. In this simulation
we start with 200 SUs to detect the position of 10 PUs,
where at each iteration 20 SUs are randomly removed
to observe the effect of reduced sampling points. The
SNR is kept constant at 25dB. The plots in Fig.3 follows
a similar trend as in Fig.2. At very low sampling ratio
of 0.05, almost all three algorithms fails to recover
an accurate sparse solution as solving an undermined
system with such small number of measurements is not
feasible regardless of any methods used. However with
increase in sampling ratio, CoSAMP achieves detection
ratio of 1 using 10% less SUs compared to L1-Magic.
OMP seems to require higher number of SUs to meet the
accuracy of CoSAMP and L1-Magic. Similar conclusion

Figure 2. (a) Detection ratio for normal distribution (b) detection
ratio for uniform distribution

Figure 3. (a) Sampling ratio vs detection ratio (b) sampling ratio
vs normalized error per grid

can be drawn from Fig. 3(b), where the graph of
normalized error per grid for CoSAMP as a function
of sampling ratio decreases much rapidly compared to
the other two algorithms. Results from simulation (I)
and (II) indicate that, CoSAMP is more robust and can
perform with superior results compared to other two
algorithms. The next set of simulations will be carried
out using CoSAMP and L1-magic only.

7. Impactof SU Distribution
In the previous section, the simulations were carried
out using SU positions, generated from a two
dimensional, zero mean, Gaussian spatial distribution
only. This section analyses the influence of the spread
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Figure 4. (a) Detection ratio for normal distribution (b) detection
ratio for uniform distribution

of a particular spatial distribution, used to obtain
location of SUs in a CRN. The two dimensional SU
positions are two dimensional random vectors with
statistically independent elements. Two cases were
considered. In the first case each element is uniformly
distributed over [−Xmaxσsd , Xmaxσsd]. In the second
case, each element is zero mean Gaussian distributed
with standard deviation {Xmaxσsd}. For each of the
cases, simulations were carried out with 100 different
scenarios. The PU positions are kept constant and the
shadowing factor is log normal distributed. The first
set of simulations shows the detection ratio of the
optimization algorithms, where uniform distribution
and Gaussian distribution were considered for the
random assignment of SU positions. The second set
aims to provide a deeper insight into the effect of
the spread of a particular spatial distribution on the
coherence of the measurement matrix Φ and average
received SNR at each SU.
While keeping the SNR constant and the number
of SUs and PUs constant, the σsd is varied in the
range [1.5, 6.5]. Fig. 4 shows the results for the first
set of simulations. The figure illustrates the ability
to detect the presence of PUs, for a set of SUs
drawn from (a) Gaussian normal distribution and
(b) uniform distribution respectively. The results are
averaged out over 100 scenarios. In Fig 4(a) the SU
positions are extracted from a zero mean Gaussian
normal distribution. As σsd is varied, the detection
ratio increases from 0.7 to 1 and maintains the
maximum, until σsd = 4 for L1-Magic and σsd =
5 for CoSAMP. When σsd > 5, the detection ratio
has a downward slope irrespective of the algorithms
used. And at σsd = 6.5 it reaches a minimum point.
The set of SUs extracted from a Gaussian normal
distribution have a significant proportion of the SUs

Figure 5. (a) Spread of distribution vs coherence of measurement
matrix (b) spread of distribution vs average received SNR.

positioned around the origin. With the spread of
the distribution gradually increasing, the SUs are
pushed further away from the centre. The sharp tail
of Gaussian distribution, extending towards infinity
often forces some of the SUs to be positioned at a
distance, where channel noise is large with respect to
received signal strength. This may cause significant
error in the construction of measurement matrix.
This may also result in an incorrect recovery of
the sparse vector. However due to large distance
separation from the transmitting node, the observations
at receiving nodes are mutually independent to
each other. The independent observations reduces the
coherence between the columns of the measurement
matrix. Fig. 5(a) clearly shows the gradual reduction
in coherence of the measurement matrix for normal
distribution with an increase in σsd . But in Fig. 5(b)
the average received SNR at SUs are also decreasing
monotonically while reaching a minimum of less than
20dB. The received SNR is an average value, with
some nodes having a received SNR of negative dB or
close to 0dB. This explains the behaviour for normal
distribution in terms of recovering the sparse vector.
In Fig. 4(b), the uniform distribution have a slightly
different trend. In case of normal distribution, the
algorithms achieved detection ratio of 1 at σsd =
2. On the other hand uniform distribution requires
σsd = 2.5, for at least one of the algorithms to hit
a detection ratio of 1. This is solely due to higher
coherence between the columns of measurement matrix
as shown in Fig. 5(a). In spite of having relatively
higher received SNR compared to normal distribution, a
large coherence resulted in a poor detection ratio < 0.5.
However uniform distribution achieved to maintain the
maximum detection ratio for a larger range of σsd [3,
5.5] compared to [2, 3] in case of normal. This is due to
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higher received SNR as shown in Fig. 5(b). The working
simulations clearly establishes a relationship between
the geometry of SU positions and effectiveness of the CS
algorithms. The plots also indicates that, with large σsd ,
CS fails to perform efficiently in spite of having lower
coherence between the columns of Φ .

8. Minimumdistance aided CS algorithm(MDACS)

The following section introduces the Minimum distance
aided CS algorithm (MDACS). The proposed modifi-
cation incorporates received SNR at each individual
SUs to deduce the perfect set of measurement nodes.
The output of the algorithm is a set of selected SUs,
which helps to enhance the performance of CS algo-
rithms. Prior to the improvements, the existing min-
dist algorithm [16] relied on selecting a pair of SUs
with a specific distance separation between adjacent
SUs. The value of separation can be specified by the
user. Once the pair is selected, the algorithm randomly
removes a SU from the chosen pair. The method iter-
ates through a loop and repeats the procedure until,
a refined set is generated such that all SUs are sep-
arated from the adjacent SUs by the specified value.
With incremental increase in distance separation, the
algorithm sequentially eliminates SUs from a given set,
until the l2- norm error of the recovered sparse vector
is greater than some predefined value. As the previous
algorithm depends on random removal of SU nodes,
there may be situations where SUs with higher RSS
may be accidently eliminated. As a result corrupted
measurement data may get included in the observation
vector. Such scenarios may restrict CS algorithms from
successfully retrieving the sparse vector. Considering
the issues with the existing algorithm, the modification
uses the RSS at each SU to produce a refined group of
SUs with certain geometry. Algorithm 1, provides an
informal high-level description of the modified method.
The new set of SUs have the required minimum distance
separation between each adjacent nodes and high RSS.
The separation allows the observation to be indepen-
dent reducing the coherence in the measurement matrix
and high RSS reduces the chance of observations being
corrupted by channel noise. Fig. 6 (a) and (b) evaluates
the detection ratio of MDACS compared to the existing
min-dist algorithm. In Fig. 6(a) the detection ratio has
a consistent pattern compared to unusual pattern in
Fig. 6(b). The inconsistency is due to random removal
of SUs with higher RSS values. Simulation results in
Fig. 7(b) shows that, in case of MDACS, the SUs have
higher received SNR compared to min-dist. The number
of SUs for both the modified and unmodified algorithms
are almost identical. Fig. 7(a) indicates that modified
algorithm can achieve maximum detection with slightly
smaller number of SUs, while maintaining relatively
higher SNR.

Algorithm 1: Minimum distance aided CS algorithm

Input: {su_pos, mindist, snr_dB, error}
Output: Ref ined set of SU , XM×1
Method:

d → mindist ;
snr → snr_dB ;
Q→ 0;
min_dist→ min{pdist(SU_POS)} ;

while (min_dist < d) do

(i) Find SU pair with separation less than d;
(ii) Extract the SU with higher SNR;
(iii) Create new set with extracted SUs;
(iv) Feed the refined set into CS algorithm;
(v) Q = (l2-norm of recovery vector) - Q;

if (Q > error), then
break;

end

end while

Return SU_POS, XM×1

Figure 6. (a) Detection ratio of MDACS (b) detection ratio of
existing algorithm.

8.1. Simulations

To verify the robustness of our proposed MDACS algo-
rithm, the simulations were carried out for two different
sets of distributions. First for Gaussian random distri-
bution and second for uniform random distribution. In
the previous section the simulations were conducted
only with Gaussian random distribution. In Fig. 8 the
effectiveness of our proposed MDACS algorithm is ver-
ified in order to successfully detect the presence of PUs
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Figure 7. (a) No of SU vs minimum distance separation (b)
Average received SNR vs minimum distance separation.

using L1-Magic and CoSAMP algorithms. For each dis-
tribution, σsd is kept constant at 2.5. Fig. 8(a), shows the
detection ratio plots for each of the MDACS algorithms
with respect to the different sets of distributions used
for SU positioning. In x axis, we gradually increase the
minimum distance separation between the SUs until the
detection ratio drops below a certain threshold. Fig. 8(a)
shows that for a set of SUs extracted from a uniform dis-
tribution, L1-magic and CoSAMP has a detection ratio
< 0.8, when minimum distance separation is greater
than 300m and 400m respectively. A similar trend can
be observed in case of normal distribution, where the
detection ratio drops below 0.8 at a distance separation
of 500m and 700m. From the results, it can be seen
that the CS algorithms can maintain a higher detection
ratio for a larger distance separation in case of normal
compared to uniform. Moreover as shown in Fig. 8(b),
with systematic elimination of SUs from a random set,
our MDACS algorithm achieved to reduce the number
of measurements by 28% for normal distribution and
21% for uniform. In both cases CoSAMP outperformed
L1-Magic in terms of achieving higher detection ratio.

8.2. Effect on Characteristics of Measurement Matrix
The systematic removal of measurement nodes, impacts
the overall structure of the measurement matrix.
Fig. 9 gives a deeper insight into the characteristics
of each distribution by evaluating parameters, such
as coherence of measurement matrix and average
received SNR at SUs (observation vector). In previous
simulation, with an incremental increase in distance
separation, the number of SUs are decreasing. The
reduction is due to elimination of SUs by the MDACS
algorithm. This has a direct impact on the coherence
of the measurement matrix as shown in Fig. 9(a). The
measurement matrix is a rectangular matrix, where the

Figure 8. Evaluation of minimum distance algorithm for two
different sets of distribution (a) Optimization algorithm for normal
distribution (b) optimization algorithm for uniform distribution.

Figure 9. Impact of minimum distance separation on coherence,
average received SNR and No of SU.

rows are the observations from each SU. A reduction
in number of receiving nodes pushes the coherence of
the measurement to a higher value, hence making it
difficult for a matrix inversion. For uniform set, the
matrix coherence reaches a maximum value of 0.9635
compared to 0.9510 for normal set. According to the
theory of CS, a successful recovery of sparse vector is
not feasible with matrix having high coherence between
the columns. From the working simulations and results,
we can clearly conclude that, SU positions extracted
from a Gaussian distribution offers better recovery
using MDACS algorithm compared to uniform.

8.3. Error in Recovery vector
On each iteration of the MDACS algorithm, it removes
excess SUs until, the detection ratio or the l2-norm
of the recovered sparse vector drops below a certain
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Figure 10. Difference in L2-norm of the recovery vector compared
to original vector.

threshold. The stopping criteria can be a user defined
threshold depending on the application. In scenarios
where, localization of nodes have a higher priority,
the error threshold can be raised to a higher value.
In case of joint localization and exact transmit power
reconstruction, error can be restricted to be less than 1.
Irrespective of the CS algorithms used, the sparse vector
should have the same l2 − norm, as the positioning of
PUs and their transmit power level is constant. In Fig.
10, the y-axis represents the difference is l2 − norm of
the recovered vector compared to the original vector. As
can be seen in the figure, all the four plots have a similar
starting points with slight variations, mainly due to
minor errors in accurately determining the transmit
powers. Although the plots for uniform distribution
have comparative small errors at the start, but with
incremental distance separation, there is an exponential
increase in the difference in l2-norm. The plot of
L1-Uni generates the maximum error with increasing
distance separation followed by CoSAMP-Uni, L1-Nor
and CoSAMP-Nor. The results indicates that CoSAMP-
Nor have the least error while recovering the sparse
vector, hence making it suitable for the generation of
Radio Environment Map.

9. Proposed AlgorithmComparison

The working solutions and results from previous
section, concludes that, CoSAMP-MDACS algorithm
with SU positions extracted from a Gaussian random
distribution generates maximum detection ratio with
minimum error. The previous results (Fig. 8) also
shows that, during our best case scenario CoSAMP-
(MDACS)algorithm achieved a detection ratio of 1,
with only 115 SUs. To validate the effectiveness of
MDACS algorithm, we compared the performance with

Figure 11. Detection ratio and Error comparison of proposed
algorithm compared to original CS algorithm .

original CoSAMP and L1-Magic CS algorithms. In both
cases 115 SU positions were extracted from a Gaussian
random distribution with σsd = 2.5. Fig. 11 illustrates
the impact of our proposed method in enhancing the
performance of the CS algorithms. Fig. 11(a) shows that,
our method allows 20% and 10% more detection for
CoSAMP and L1-Magic, compared to the original CS
algorithms. Even in case of evaluating the difference in
L2-norm-error, Fig. 11(b) indicates that, the proposed
technique reduces the error by 57% in CoSAMP and
17% for L1-Magic. Moreover Fig. 12(b), shows that the
set of SU generated from the refinement technique have
3% less coherence compared to a randomly deployed
set of SUs. Less coherence between the columns allows
better structure in the construction of measurement
matrix and enables the refined set of SUs to operate at a
lower received SNR of 24.95dB compared to 26.73dB as
shown in Fig. 12(a).

10. Conclusion
The paper discusses the formulation of a novel
algorithm to jointly deduce the location and transmit
power of PUs in a cognitive radio network. The
algorithm exploits the geographic location of the SUs
to extract useful information about the positioning of
PUs in a network. The proposed method introduces
a refinement technique to selectively eliminate closely
spaced SUs, in order to reduce the number of
correlated observations. The novel method allows each
adjacent SUs to have a minimum distance separation,
such that the observations at each SUs are nearly
independent. Simulation results shows that our novel
MDACS algorithm achieved significant improvements
in the overall performance of CS algorithms. Simulation
results indicate that, our proposed approach has 20%
higher detection ratio, while reducing the error by
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Figure 12. Impact of proposed algorithm on coherence and
received SNR at SUs.

57%. Moreover the results also show that our approach
generates a set of selective SUs with lower coherence
compared to random positioning. This enables CS
algorithms to offer perfect recovery at a comparatively
lower received SNR. To verify the robustness of the
algorithm, we tested our method for two spatial
probability distributions for SU positions. In both cases,
our algorithm achieved maximum detection ratio with
fewer secondary user as receive power sensing. Future
work will incorporate the construction of an efficient
Radio Environment Map, to detect free spectrum in a
geographic area.
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