

 The Graphical User Interface for Controlling Delta

Robot Movement through G-Code

 Riska Analia 1, Nur Afif Gozali 2, Daniel Sipahutar3, Susanto4, Eko Rudiawan Jamzuri5

 { riskaanalia@polibatam.ac.id 1, afifghoz23@gmail.com 2, danielsipahutar19@gmail.com 3,

susanto@polibatam.ac.id 4, ekorudiawan@polibatam.ac.id 5 }

Department of Electrical Engineering, Politeknik Negeri Batam, Batam, Indonesia

Abstract. This research aims to develop a Graphical User Interface (GUI) to control the

delta robot using the G-Code command in real time. The proposed mechanical design of

the delta robot adopts a parallel arm mechanism. As the primary controller, the Arduino

Uno has been chosen as a bridge to translate the joint command from the computer to the

robot stepper motor. Furthermore, we proposed the G-Code command to control the delta

robot end effector. The system interface was carried out using the C# programming

language and the.NET frameworks. As G-Code translation, we proposed an inverse

kinematics equation derived from a trigonometric to decode command into joint

movement. Finally, the experiment was carried out in real-time to verify our interface. As

an experimental result, the proposed system successfully translates the G-Code command

into end effector movement.

Keywords: delta robot, parallel arm, G-Code, inverse kinematics, graphical user

interface.

1 Introduction

Recently, the delta robot has become one type of pick-and-place robot commonly used in
the industrial sector. The delta robot is constructed with three parallel arms, which can move in
3-DoF freely. Some delta robot configurations developed by researchers are parallelogram
limbs [1-2], prismatic joints [3], and spherical magnetic joints [4]. The development of the delta
robot needs to consider kinematics and the Graphical User Interface (GUI), besides
construction. Both kinematics and the GUI must be developed to make it easy for the user to
analyze the current robot states. The kinematics equation determines the relationship between
the end effector pose and the robot joint actuator. The kinematics equation can be derived with
different approaches. As presented in [5], they used the geometric method, while in [6], they
used the DH model.

On the control system side, the researcher has conducted some research. Su et al. [7]
controlled the tracking ability of the delta robot using PID, adaptive control, and sliding mode
control. The experiment was carried out in simulation to investigate the effectiveness of the
proposed controller. On the other hand, Azad et al. [8] performed the backstepping design to

ICAE 2022, October 05, Batam, Indonesia
Copyright © 2023 EAI
DOI 10.4108/eai.5-10-2022.2327484

(a) (b)

Fig. 1. The delta robot mechanical (a) top view, (b) the parallel arm joint.

Control a linear delta robot in simulation. In [9], they analyzed and simulated the solid work to
get the exact motion process and then verified it with FANUC Robot M-2iA and ROBOGUIDE
in a real-time application. While [10] they implemented the non-linear proportional derivative
control (NPD) to overcome the delta robot tracking problem. They testified to the proposed
method in parallel Delta-4 robots in real-time application [11]. An interface should be
developed by employing the delta robot to move according to the motion command. In [12],
Matlab software has been used to analyze kinematic movement. Moreover, the user can also
control the joint actuator directly. Matlab was also used in [13] to calculate the forward and
inverse kinematics. However, the simulation is performed using SolidWorks and used
LabVIEW to create a user interface for the robot. This robot was developed as a virtual sorting
machine. Some development of delta robot GUI currently only has a function to control joint
actuator directly. However, the robot should be controlled by moving its end effector in the
actual environment. In Computer Numerical Control (CNC) machines, the G-Code is
commonly used to define the movement of the machine tip. The machine tip will move
according to position coordinate and desired speed by giving a G-Code command. We adopt
this system to develop the GUI and overcome prior research limitations [13]. Additionally, we
used the C# and .NET frameworks as development tools for system design.

The rest of this paper is presented below. First, Section II discusses the proposed
mechanical design of the delta robot, and then we elaborate inverse kinematics equation of the
proposed design. Furthermore, we present the G-Code conversion and software design. Finally,
the result and conclusion of this paper are presented in Sections III and IV.

2 Mechanical Design and Method

2.1 Mechanical Design

The delta robot's mechanical design can be seen in Fig. 1. Fig. 1 (a) represents the top
view of the delta robot, and Fig. 1 (b) illustrates the mechanical design fully. The motor is
placed on the robot's top and arranged in a triangular position. The distance from the based
robot center to the motor is about 20 cm, and the distance between each motor is around 25 cm.
In terms of the arm, the length from the motor to the first joint is 16 cm and from the joint to the
end effector is about 33 cm. The robot configuration can be seen in Fig. 1 (b), and the actual
delta robot's prototype is described in Fig. 2. Fig. 2 (a) is the robot top view, and Fig. 2 (b) is

(a) (b)

Fig. 2. The prototype of delta robot (a) top view, (b) the parallel arm joint.

(a) (b)

Fig. 3. The delta robot joint configuration on (a) base robot, (b) end-effector.

The robot arm joint. In contrast to our previous work in [14], which used servo actuators and
pneumatic grippers, we used 24 VDC stepper motors in this work. We made the main base
from multiplex material and the short arm from 3D printed material. Furthermore, the end-
effector gripper design can be seen in Fig. 2 . We add the ball joint in between to connect the
small arm to the long arm and ensure the robot can move in 3 DOF accordingly. This ball joint
is illustrated by the green arrow in Fig. 2 (b). Moreover, Arduino Uno has been chosen as the
main controller to translate the G-Code command into actuator movement. We also used C#
and .NET frameworks to design the GUI, translating G-Code into actuator movement.

2.2 Inverse Kinematics

We still adopt our previous Equation in [14] to obtain the robot inverse kinematics. The
first step of obtaining the inverse kinematics is to arrange the parallel arm joint coordinate in
cartesian as visualized in Fig. 3. Fig. 3 (a) is related to the main base of the delta robot, and
Fig. 3 (b) denotes the robot end-effector. The F1-F3, which is described in Fig. 3, is denoted
as the main base, while the E1-E3 illustrates the robot's end-effector, which is connected to the
parallel robot arms. The 𝑓 illustrates the distance from the main base center to the steeper
motor shaft at the main base, and 𝑒 is the length of each parallel arm to the end-effector.

(a) (b)

Fig. 4. The parallel arm position of F1 in (a) Y-Axis (b) X-axis.

 When the arm is moved, then it can generate the right angle as presented on Fig. 4, we
denoted this angle as 𝐸1′, beside 𝐸1′, and we also assumed that the other symbol which has
been generated by this transformation, such as 𝐽1, the joint between robot body and the end-
effector. Another, the 𝑓𝑒 and 𝑟𝑒 also generated in this assumption. The 𝑓𝑒 denoted to the fix
parallel arm's length from the stepper motor to the arm and 𝑟𝑒 from the arm to the end-effector.
In order to determine the length from 𝐸1′ to 𝐽1, we need to rotate the first motor to the Y-axis,
as seen in Fig. 4 (a). From this construction, we can determine the arm length aligned with the
Y-axis using Equation (1). The 𝐸0 on Fig. 4 (a) represented the center of the end effector and
𝑥0, 𝑦0, 𝑧0 were the first step of each arm. Moreover, the 𝐸1′ was the result from 𝐸1 arm on the
end-effector, 𝐽1 movement on Y-axis, and formed the triangle shape on the arm edge.
Therefore, 𝐸1′𝐽1 can be obtained by using a Pythagoras which was described in Equation (1).

𝐸0 = (𝑥0, 𝑦0 , 𝑧0)

𝐸1 = (𝑥0, 𝑦0 − 𝑒, 𝑧0)

𝐸1′ = (0, 𝑦0 − 𝑒, 𝑧0)
} 𝐸1𝐸1′ = 𝑥0

𝐸1′𝐽1 = √𝐸1𝐽12 − 𝐸1𝐸1′2 = √𝑟𝑒2 − 𝑥0
2

 (1)

After the 𝐸1′𝐽1 has been determined, then we rotated the first arm to the X-axis, as
presented in Fig. 4 (b). The proposed of rotating the arm is to obtain the 𝜃 for the delta robot
input movement. As presented in Fig. 4 (b), we assumed two triangles were generated after
rotating the arm on the X-axis. The 𝜃 that will be determined was located on the small triangle,
yet we have to find the 𝑌𝐽1 and 𝑍𝐽1 beforehand. The 𝑌𝐽1 and 𝑍𝐽1 can be obtained by using

Equation (2)-(3). If we substitute Equation (2)-(3) with Equation (1), then it can be transformed
into Equation (4)-(5).

(𝑌𝐽1 − 𝑌𝐹1)2 + (𝑍𝐽1 − 𝑍𝐹1)2 = 𝑟𝑓2 (2)

(𝑌𝐽1 − 𝑌𝐸1′)2 + (𝑍𝐽1 − 𝑍𝐸1′)2 = 𝐸1′𝐽12 (3)

(𝑌𝐽1 − 𝑓)2 + 𝑍𝐽1
2 = 𝑟𝑓2 (4)

(𝑌𝐽1 − 𝑌0 + 𝑒)2 + (𝑍𝐽1 − 𝑍0)2 = 𝑟𝑒2 − 𝑥0
2  (5)

Fig. 5. The system block diagram of the G-Code interface.

Fig. 6. The delta robot's Graphical User Interface (GUI).

After the 𝑌𝐽1and𝑍𝐽1have been determinedusing Equation (2)-(3) or (4)-(5), then the 𝜃 can be

represented under Equation (6). We assumed that the 𝜃 represents the 𝐸0 coordinate at the
end-effector. Therefore coordinate of the end-effector when it moved can be determined by
Equation (7). Because the angle generated from the parallel arm was about 120°, we used this
angle to determine the coordinate at the end-effector as presented in Equation (7).

𝜃 = arctan (
𝑧𝐽1

𝑦𝐹1−𝑦𝐽1
)

𝜃 → 𝐸0 (𝑥0, 𝑦0, 𝑧0)
 (6)

𝐸0
′ (𝑥0

′ , 𝑦0
′ , 𝑧0

′) {

𝑥0
′ = 𝑥 cos(±120°) + 𝑦 sin(±120°)

𝑦0
′ = −𝑥 sin(±120°) + 𝑦 cos(±120°)

𝑧0
′ = 𝑧0

 (7)

2.3 System Block Diagram

The system block diagram of the G-Code interface is represented in Fig. 5. This system
consists of two main systems: the G-Code generator and the actuator system. On the G-Code
generator, as presented in Fig. 5, we developed the interface using the C# programming

language, where the GUI can be seen in Fig. 6. As we can see in Fig. 6, our interface has the
input G-Code to pop up the command from the text file, and then we need to click the Execute
Input to execute this command. Once the Execute Input has been pushed, the 𝜃 of each arm will
appear in the Data Theta text box. On the G-Code interface, we used the general command to
move the delta robot according to the coordinates given to the robot. For example, sending the
code G00X-150Y-15Z- 350 means that the robot will move to coordinate -150 on the X-axis, -
15 on the Y-axis, and -350 on Z-axis. Moreover, this code will be parsed in the parsing data
process to collect the coordinate data. The coordinate data at the input of the end effector will
be used for the inverse kinematics. After the system calculates the kinematics result, we send
the data to Arduino Uno through serial communication. The Arduino Uno will convert the
angle data into electric pulses so the drive motor can understand the command. For activating
the motor driver, we used the 24 VDC as the power source, and this motor driver will send the
pulse to each stepper motor to move accordingly with the input coordinate from the G-Code
interface.

3 Experimental Results

In order to verify our system in real-time, the experiment has been done in this section by
ordered the robot to move accordingly to the G-Code command, including testing the G-Code
interface to the robot movement and the robot movement separately. As presented in Fig. 6. In
Fig. 6, we send in about ten commands from our G-Code interface to make the robot move
accordingly with the input. And then, let the system generate the 𝜃 for each arm according to
the input command from the G-Code.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. The movement of the delta robot according to the G-Code command.

The results of this movement are represented in Fig. 7, where Fig. 7 (a) was the movement
of command G00X0Y-Z-350, this command let the robot move to coordinate (0,0,-350), which
is the initial coordinate before moving to another command. On Fig. 7 (b) the robot moved to
command G0X-60Y-30Z-300, which was in the coordinate (-60, -30, -300). As for Fig. 7 (c),
the robot moved to coordinate (30,50,-300), which was the position result from command
G0X30Y50Z-300. The next step, which is illustrated on Fig. 7 (d), describes the movement of
the delta robot for G0X30Y-80Z-300 allowed the robot to move in coordinate (30, -80, -300)
and Fig. 7 (e) G00X0Y-Z-350 in the coordinate (0,0, -350), this movement allowed the robot
to went back to its original position to do next movement. After the robot went back to its
original position, then on Fig. 7 (f), we commanded to move to coordinate (-10, 10, -300) with
the G-Code command represented as G0X-10Y10Z-300, then moved to coordinate (30, -20, -
300) as presented on Fig. 7 (g) for command G00X30Y-20Z-300. Furthermore, the rest of the
picture represented G4P2 Fig. 7 (h) where this command meant to ask the robot to delay its
movement in about 2 seconds, and went back to its original position with command G00X0Y-
Z-300 as presented Fig. 7 (i), and Fig. 7 (j) for command G28 to stop the robot movement. In
order to understand the result of this movement, a permanent marker has been attached to the
robot’s end-effector. The marked result from this experiment can be seen in Fig. 8, which was
the “A” letter.

While the robot moves accordingly with the G-Code input, the interface result during the
movement of making the letter “A”, the angle of each joint has been recorded in this interface.
The 𝜃 of each joint presented in Fig. 9 will be changed accordingly with the G-Code
command, the change was illustrated by the graph on Fig. 9. As for the 𝜃 of each arm joint
which was generated by the kinematic, represented in Table I. The result of Table I showed
that each coordinate could transform into an angle as input for the Arduino, in the case of
making letter “A”, the 10 commands were needed by the robot. The interesting point is that the
commands G00X30Y-20Z-300 and G4P2 produced the same angle for each parallel arm. This
is because the command G4P2 allows the robot to delay the movement by about 2 seconds, so
the angle is still the same as the previous one.

Fig. 8. The result of the G-Code command.

Fig. 9. The G-Code interface while running the command.

Table. I. The result of 𝜃 angle of each joint is generated from the coordinate.

Command

End-effector

Coordinate (mm)
The angle of 𝜽 (°)

X Y Z 𝜽𝟏 𝜽𝟐 𝜽𝟑

G00X0Y-Z-350 0 0 -350 25 25 25

G0X-60Y-30Z-300 -60 -30 -300 5 -15 3

G0X30Y50Z-300 30 50 -300 21 0 11

G0X30Y-80Z-300 30 -80 -300 -4 16 27

G00X0Y-Z-350 0 0 -350 25 25 25

G0X-10Y10Z-300 -10 10 -300 11 10 6

G00X30Y-20Z-300 30 -20 -300 5 6 17

G4P2 30 -20 -300 5 6 17

G00X0Y-Z-300 0 0 -300 9 9 9

G28 0 0 -274 0 0 0

4 Conclusion

This paper presented the design of a delta robot and a simple G-Code interface under C#
programming and implemented in real-time application. In order to generate the movement of
the delta robot, we used the same kinematic Equation as our previous work. As we can see in
the experiment results, our G-Code interface can send the command, and the delta robot's
kinematic can understand the command. Each 𝜃 of the parallel arm can also be determined in
real-time application. In the future, we will consider adding a vision system to detect the
object's color and coordinate so that this robot can be used as the pick and place instrument.

References

[1] R. Clavel, "Device for the movement and positioning of an element in space," U.S. Patent 4 976

582, Dec. 11, 1990.

[2] Li, Y., Shang, D., & Liu, Y. (2019). Kinematic modeling and error analysis of Delta robot

considering parallelism error. International Journal of Advanced Robotic Systems.

[3] B. Mehrafrooz, M. Mohammadi and M. T. Masouleh, "Kinematic Sensitivity Evaluation of

Revolute and Prismatic 3-DOF Delta Robots," 2017 5th RSI International Conference on Robotics

and Mechatronics (ICRoM), 2017, pp. 225-231, doi: 10.1109/ICRoM.2017.8466159.

[4] S. Ahangar, M. V. Mehrabani, A. Pouransari Shorijeh and M. T. Masouleh, "Design a 3-DOF

Delta Parallel Robot by One Degree Redundancy along the Conveyor Axis, A Novel Automation

Approach," 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 2019,

pp. 413-418, doi: 10.1109/KBEI.2019.8734975.

[5] C. Liu, G. -H. Cao and Y. -Y. Qu, "Workspace Analysis of Delta Robot Based on Forward

Kinematics Solution," 2019 3rd International Conference on Robotics and Automation Sciences

(ICRAS), 2019, pp. 1-5, doi: 10.1109/ICRAS.2019.8808987.

[6] Yong-Lin Kuo, Mathematical modeling and analysis of the Delta robot with flexible links,

Computers & Mathematics with Applications, Volume 71, Issue 10, 2016, Pages 1973-1989, ISSN

0898-1221, https://doi.org/10.1016/j.camwa.2016.03.018.

[7] T. Su, X. Liang, G. He, Q. Zhao and L. Zhao, "Robust Trajectory Tracking of Delta Parallel

Robot Using Sliding Mode Control," 2019 IEEE Symposium Series on Computational Intelligence

(SSCI), 2019, pp. 508-512, doi: 10.1109/SSCI44817.2019.9003125.

[8] F. A. Azad, S. Rahimi, M. R. Hairi Yazdi and M. T. Masouleh, "Design and Evaluation of

Adaptive and Sliding Mode Control for a 3-DOF Delta Parallel Robot," 2020 28th Iranian Conference

on Electrical Engineering (ICEE), 2020, pp. 1-7, doi: 10.1109/ICEE50131.2020.9261040.

[9] Y. Zhi-Xiang, J. -Q. Peng and M. -Y. Chen, "Adaptive Control of a Linear Delta Robot Based

on Backstepping Design," 2018 Joint 10th International Conference on Soft Computing and

Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems

(ISIS), 2018, pp. 1138-1141, doi: 10.1109/SCIS-ISIS.2018.00179.

[10] H. Zhang, K. Zhang and J. Gao, "Dynamically Based Motor Parameters for Delta Robots Using

the Specified Workspace," 2019 IEEE 6th International Conference on Industrial Engineering and

Applications (ICIEA), 2019, pp. 814-818, doi: 10.1109/IEA.2019.8715064.

[11] C. E. Boudjedir, D. Boukhetala and M. Bouri, "Non-linear PD control of a Parallel Delta robot:

Expermentals Results," 2018 International Conference on Electrical Sciences and Technologies in

Maghreb (CISTEM), 2018, pp. 1-4, doi: 10.1109/CISTEM.2018.8613618.

[12] Rodríguez-Franco, Martín & Jara-Ruiz, Ricardo & López-Álvarez, Yadira & Rodríguez, Juan

Carlos. (2021). “Development of interface for kinematic analysis of a delta-type parallel robot”.

Journal of Computational Systems and ICTs. 18-27. 10.35429/JCSI.2021.20.7.18.27.

[13] Huang, Xiaoping & Weng, Fangyi & Wei, Zhongxin & Kamruzzaman, M.M.. (2021).

Application and research of robot sorting system based on LabVIEW. Journal of Intelligent & Fuzzy

Systems. 1-8. 10.3233/JIFS-219090.

[14] Susanto, M. Rohim and R. Analia, "The Implementation of a Modest Kinematic Solving for

Delta Robot," 2019 2nd International Conference on Applied Engineering (ICAE), 2019, pp. 1-5, doi:

10.1109/ICAE47758.2019.9221720.

https://doi.org/10.1016/j.camwa.2016.03.018

