
Object Detection and Pose Estimation using Rotatable
Object Detector DRBox-v2 for Bin-Picking Robot

Eko Rudiawan Jamzuri, Agristia Riski Pinandita, Riska Analia, and Susanto
{ekorudiawan@polibatam.ac.id, pinandita69@gmail.com, riskaanalia@polibatam.ac.id}

Department of Electrical Engineering, Politeknik Negeri Batam, Batam, Indonesia

Abstract. This research aims to identify and estimate the object’s pose to support bin-picking
robot perception. In this research, we proposed the usage of the ArUco marker as a visual land-
mark of the detection area. Furthermore, the image of the detection area is processed by rotatable
object detector DRBox-v2 to get the object’s position and orientation in the camera frame. In
the final process, the resulting DRBox-v2 position and orientation are transformed into a two-
dimensional world coordinate as the final estimated pose. Based on the experimental result, the
object detection yields an Average Precision (AP) of 0.54 while a threshold score of 0.5 is used.
As the pose estimation result, the proposed method yields an average position error of 0.21 cm
and a maximum position error of 0.28 cm. For the orientation error, the system achieves a max-
imum orientation error of about 1.23 degrees with an average orientation error of 0.58 degrees.
This research contributes to the possibility of camera usage and end-to-end deep learning detector
supporting bin-picking research.

Keywords: rotatable object detection, pose estimation, DRBox, deep learning, bin-picking

1 Introduction

A manipulator robot is used in the industry to do object manipulation tasks. The object ma-
nipulation process can be classified into two main tasks: picking and placing objects. In the picking
process, the object will be picked randomly from a defined robot working area. The picking task
success rate depends on the accuracy of the robot sensor in recognizing objects and estimating object
pose. The higher error in pose estimation will cause the robot gripper to fail to grasp the objects. The
process of recognizing objects, estimating the pose of objects, and picking up objects in a random
environment is known as bin-picking.

The manipulator robot requires additional sensor integration to perform bin-picking tasks. The
sensors commonly used for bin-picking applications are laser, 3D scanner, camera, and combination.
The laser and 3D sensor detection results are pretty accurate for estimating the pose of an object.
However, processing this sensor data requires high-cost computing because the sensor data is pre-
sented in a point cloud. In addition, the price of laser and 3D scanners is higher than the camera

ICAE 2022, October 05, Batam, Indonesia
Copyright © 2023 EAI
DOI 10.4108/eai.5-10-2022.2326587

sensors. Currently, the use of camera sensors is the main alternative as a cheap sensor for bin-picking
applications.

The camera sensor only produces image output, while the robot manipulator needs object class
and estimated object pose as decision input. The vision system that can detect objects and estimate
objects’ pose needs to be emphasized to develop an excellent bin-picking arm robot. Cameras for
bin-picking applications must be accompanied by an object recognition system capable of process-
ing color images to produce outputs object position and orientation. The object’s position can be
represented as a translation vector concerning the reference coordinate system. At the same time,
the object orientation can be described by a rotation matrix which states the object’s rotation about
a particular axis in the reference coordinate system. These outputs will be used as a reference for
decision-making for the robot to carry out the task of taking objects.

Some researchers introduced many approaches to estimate the object pose using a camera.
Based on the camera model, the approach can be generalized into two types: RGB or depth camera.
[1], [2], and [3] presented the usage of RGB cameras for object pose estimation in bin-picking robots.
The RGB camera usage needed a sequential process for estimating object pose. As presented in [1],
the process is started by detecting the object’s Region of Interest (ROI). [1] used YOLOv3, the
improvement version of YOLOv1 [4] and YOLOv2 [5], as an object detector model to detect this
ROI. Furthermore, the object’s orientation is estimated using Fisher’s linear discriminant from the
resulting ROI coordinates. In contrast with [1], [3] used the same YOLO detector to detect the object
directly. Then, the background removal process follows from this patch image object. Finally, [3] fed
this post-processing image into a dual stream autoencoder to generate a 3D model of the object. An
exciting approach is delivered by [2]. Instead of using a deep learning detector, [2] used a Histogram
of Oriented Gradient (HOG) to detect objects in the image. Then, the object patch image is fed into
Convolutional Neural Network to predict the object’s position and orientation. Moreover, the CNN
presented by [2] can predict the occluded and unoccluded objects.

Studies using the RGB-D camera approach are presented in [6], [7], [8], [9], and [10]. Gener-
ally, the approach is similar to estimating pose using an RGB camera. Deep learning detector models
are still needed to segment the objects. The difference is in post-processing techniques, while depth
image is used. For example, a study by [6] used YOLOv4 to detect and sort the object. From the
YOLOv4 bounding box output, point cloud data is acquired from the depth image. The point cloud
data is aligned with the 3D CAD model to estimate the object pose. [8] utilized similar techniques
with [6]. However, the object is detected using MaskRCNN [11]. Instead of producing a bounding
box, MaskRCNN yields a polyline representing the object’s boundary. So, the extraction of point
cloud data is more refined. Furthermore, in the pose estimation, [8] used Semantic Point Pair Fea-
ture (SPPF) techniques which are not needed a 3D CAD model reference. In contrast with [6] and
[8], which used depth images for post-processing, [7] used depth images for pre-processing input
images. The depth image is used for the background removal process. So, the image fed into the
deep learning detector only consists of an object with a constant background. In this research, [7]
proposed rotated RPN for object detection. The dual stream technique was introduced by [9], which
used dual stream CNN to extract features from RGB and depth images in a single stage. However,
point cloud processing is beside this stream to extract the 2D object regions. One technique is pre-
sented in [10], which is not needed depth image post-processing. The depth image is used directly

to measure the object’s distance from the camera. So, the object’s 3D position can be determined.
This study aims to detect and estimate object pose using a camera with deep learning approach.

We proposed a deep learning rotatable object detector to detect the pre-trained objects and estimate
their two-dimensional pose in the camera frame. Furthermore, we introduced the usage of the ArUco
marker as the landmark of the Region of Interest (ROI). The recognized visual markers and objects
are then combined to estimate object pose in the world coordinate.

The rest of this paper will be conducted as follows: Section II presents the material and method
used in this research, which is the research dataset, object detector, and pose estimator, followed
by the evaluation method of this research. Section III describes the overall experimental research
results and will be closed with the conclusion and future work in Section IV.

2 Material and Method

This section will discuss the materials and procedures utilized during the research. This in-
vestigation commences with collecting image datasets of objects to be discovered. In addition, the
rotatable object detection technique is employed to train the annotated data. The trained model will
then be evaluated to determine the system performance and error rates.

2.1 Image Dataset

The first step in this research is collecting images from the research environment. We used the
UR2 robot workspace area as the research environment shown in Figure 1. As seen in Figure 1, the
robot is mounted at the top of the table. Besides, a camera is mounted pointing directly at the table
surface. This camera will capture all objects on the table surface. We placed four ArUco markers on
the table surface, which serve as landmarks to limit the camera detection area. Next, we used three
text markers as experimental objects as our research testbed. We put these text markers inside a bin
at the top of the table.

Figure 2 describes the procedure of collecting the image dataset in this research. The first
step of dataset collection is placing text markers randomly inside the bin so that the position and
orientation of text markers vary. Then, we triggered the camera to capture color images and recog-
nized the ArUco marker with the OpenCV library. From the detected ArUco markers, we can obtain
each marker’s identity and coordinates. Next, these marker coordinates are used as references to
transform and crop the detection area. The image transformation aims to change the image view to
parallel with the camera, making it easier to scale from pixel units to distance units.

Equation 1 and 2 explained the perspective transformation, where the known parameters are
the initial coordinates of point-i (xi,yi) and the desired coordinates of the point-i (x′i,y

′
i). Notation

T is a 2D transformation matrix that serves to transform the point to the desired coordinate. In
our case, four initial points are used in the transformation process. These points are taken from
the ArUco marker center coordinates. As the desired coordinates, we defined fixed endpoints in
the coordinates (0,0), (300,0), (300,300), and (0,300). Therefore, the transformation process will
form a 300×300 pixels image representing the detection area. These endpoints are selected based
on the object detection model’s requirement, which needs fix-sized image input of 300×300 pixels.

Fig. 1. Research environment.

Fig. 2. Dataset collection procedure.

Finally, the formed image containing the detection area is saved into a file for the following data
annotation process.  tix′i

tiy′i
ti

= T ·

 xi
yi
1

 (1)

dst(i) = (x′i,y
′
i),src(i) = (xi,yi), i = 0,1,2,3 (2)

After the image collection process, we annotated these collected images using roLabelImg, an
annotation tool capable of marking objects with a rotatable bounding box (RBox). In the annotation
process, we marked all text markers with the same class, even though the dimension varies. As
a result, the annotation process will yield an annotation file with file extension rbox. These files
contain information about object center point location (x,y), object width (w), object height (h),
object class (c), and object orientation (θ).

(a) (b)

Fig. 3. Annotated image dataset with (a) bounding box, (b) rotatable bounding box.

The total number of annotated images is 1100 images. We separated this image into two parts:
1. for the training and 2. for the testing/evaluation. The data we used for the training process was
about 1000 samples, whereas the testing process was around 100 images. These 100 images will be
tested and evaluated in the testing process to get performance metrics of the system.

2.2 Rotatable Object Detector DRBox-v2

The deep learning object detection methods generally yield bounding boxes as object identifi-
cation results. In general, the bounding boxes have four parameters: the box center point (x,y), width
(w), and height (h). However, this bounding box cannot be used to represent oriented objects per-
fectly, particularly if the object size and object orientation need to be estimated. Figure 3 illustrates
the limitation of bounding boxes used to mark oriented objects. The bounding box area is larger
compared to the object area. Moreover, the orientation of the object is unknown. This limitation
can be addressed using a rotatable bounding box described in Figure 3. As seen in Figure 3, the
box area can represent the object area equally when using a rotatable bounding box. Moreover, the
object’s orientation can be determined by calculating the slope of the rectangle line. The rotatable
bounding box in Figure 3 is represented by the box center point (x,y), box width (w), box height
(h), and additional orientation parameter (θ), which describes box orientation.

In this research, we used rotatable object detector DRBox-v2 [12] to detect the pre-trained
objects. The selection is based on the capability of DRBox-v2 to yield a rotatable bounding box
output so that the object orientation can be estimated. DRBox-v2 is Convolutional Neural Network
(CNN) object detector initially proposed for detecting the target in the Synthetic-Aperture Radar
(SAR) images. The architecture DRBox-v2 is similar to YOLO, which recognizes and localizes
objects in a single stage. The difference is that YOLO used anchor boxes to sample positive and
negative instances, while DRBox-v2 used prior RBox to sample positive and negative ones. The
usage of prior RBox is to handle the limitation of anchor boxes, which only sample the objects with
different aspect ratios without considering the object orientation.

Fig. 4. DRBox-v2 Convolutional Neural Network architecture.

Figure 4 describes the detailed architecture of DRBox-v2. The input processed a fixed image
size of 300×300 pixels through a Convolutional Neural Network (CNN), which consists of several
layers. The function of this CNN is to extract features, while the last layer is to predict objects.
DRBox-v2 used VGG16 architecture in the feature extractor layer. In the prediction layer, DRBox-
v2 consists of K groups of channels, which described the number of previously defined RBox in
each corner (prior RBox). In each prior RBox, the prediction layer calculated a confidence score,
which indicated the target object’s probability. In addition, the prediction layer has a 5-dimensional
vector output that describes the offset value of the predicted RBox with the prior RBox. Next, the
RBox is rotated according to the offset angles to predict the priors. Then it is predicted to determine
the offset of the predicted RBox and RBox priors. Furthermore, this offset value must be decoded
to produce an RBox that matches the predicted results.

The DRBox-v2 training procedure adopts the Single Shot Multibox Detector (SSD) [13]. In
the training phase, the RBox in the dataset is grouped based on prior RBox. The grouping is based
on the ArIoU value described in equation 3. ArIoU is a non-commutative function that calculates an
oriented object’s intersection area. In the training phase, grouping is done if the ArIoU value is >
0.5. After that, the prior RBox is used as a positive sample to find the loss value L in equation 4, 5,
and 6.

ArIoU180(A,B) =
area(Â∩B)
area(Â∪B)

· |cos(θA −θB)| (3)

L(I,c,r,g) =
1

N1 +N2
Lcon f (I,c)+

1
N2

Lloc(I,K,G) (4)

Lloc = ∑
i∈Pos

∑
j

∑
m∈{x,y,l,w,θ}

Ii jsmoothL1(km
j −gm

j) (5)

Lcon f =− ∑
i∈Pos

(1− ci)
γ log(ci)− ∑

j∈Hard Neg
cγ

j log(1− c j) (6)

Notation N is the number of matched rotatable bounding boxes, and the Lcon f value is resulted
from the softmax function between all selected positive and negative samples. Variable c is a two-

dimensional vector showing the confidence score’s value. Finally, Lloc notation is a regression loss
function used by DRBox-v2 to predict rotatable bounding box parameters.

2.3 Two-dimensional Pose Estimation

While the robot executes the picking task, the object pose represented in the world coordinate
has to be known. However, the DRBox-v2 represents object position in the camera frame coordinate
with pixel units. Therefore, object position conversion from camera frame to world coordinate
is needed. As described in Figure 1, our environment and camera position are fixed. Moreover,
we put visual landmarks on the table surface. Where the distance between landmarks is known,
both in centimeter and pixel, so the scaling factor in x-coordinate (sx) and y-coordinate (sy) can be
determined. Then from these scaling factors, the two-dimensional object’s position in the world
coordinate (xw,yw) can be defined by equation 7. Where xc and yc represent the two-dimensional
object’s position in the camera frame. xw

yw
1

=

 sx 0 0
0 sy 0
0 0 1

 ·

 xc
yc
1

 (7)

2.4 Evaluation Method

We used the Average Precision (AP) metric to evaluate the results of our study. AP value
describes the detector’s average accuracy under varying recall rates [14]. The higher the AP value,
the better detector performance. In order to derive the AP value, first, the model precision rate (Pd)
is calculated using equation 8, where Ntd describes the total number of true positive predictions and
Nd defines the total number of all predicted objects. Furthermore, the recall value (Rd) is calculated
using equation 9 by dividing Ntd with the total number of actual objects (Nr). Then from the resulted
Pd and Rd , the AP value can be determined using the point interpolation method introduced in [15].

Pd =
Ntd

Nd
(8)

Pd =
Ntd

Nd
(9)

θerr = asin(sin(|θ̂ −θ |)) (10)

Instead of only measuring object detection metrics, we also analyzed the performance of 2D
pose estimation. The evaluation can be done by comparing actual and predicted object poses. We
measure the proposed system performance using position and orientation errors. The position error
can indicate the displacement of the actual object with the predicted object position in the world
coordinates. We used the Euclidean distance method to represent this error. The lower the Euclidean
distance value, the better system performance. Moreover, the orientation error (θerr) can be deter-
mined using equation 10, which represents the norm of absolute orientation error of predicted object
orientation (θ̂) and actual object orientation (θ).

3 Result and Discussion

In this chapter, we will describe the results of this research. First, the results of object detection
and pose estimation will be presented, followed by the value of the evaluation metrics. In addition,
we also measure the required computational speed of the proposed system.

3.1 Training and Evaluation Result

In the training process, we used a computer with an NVIDIA Graphical Processing Unit (GPU)
GTX 1080. Moreover, we change the default configuration setting of DRBox-v2 to match the
dataset’s object dimension. Due to the camera position being fixed, the captured object will result in
a constant dimension. So, we set the prior RBox height and width interval with fixed values, 15 and
90 pixels. These values are determined after analyzing the statistically annotated RBoxes dimension
in the dataset. For the prior RBox orientation, we follow the default value of the DRBox-v2 orien-
tation interval of 30 degrees. This configuration will result in a total of 84828 prior RBoxes during
training. The pre-processing time to extract these prior RBoxes is around 23 minutes. Furthermore,
we use batch size = 16 in the training process to maximize GPU memory usage. Moreover, the
training process takes a maximum of 50000 epochs.

We store the loss function historical value to evaluate the training results of the DRBox-v2
model. Figure 5 shows the training performance while the model trained until 20000 epochs. It can
be seen from the curve that the value of the loss function is decreasing. This graph shows that the
learning process successfully minimizes the loss function. For example, it can be seen on the curve
that the loss value at the beginning of the training was in the upper of 5 for total loss, location loss,
and confidence loss. After the 2500 epoch, all loss values decreased drastically to below 1. In our
historical data, the total loss value is 0.004, the location loss value is 0.0039, and the confidence loss
value is 0.0001 in the last epoch.

After evaluating the training results, we validated the trained model to the test dataset. We
varied the confidence score threshold from 0-1 with an interval of 0.1 to study the effect of the
threshold value on the AP score. Table 1 illustrates the relationship between the confidence score
threshold and the AP score. The resulting AP score is above 0.5 if the confidence score threshold is
below or equal to 0.7. The AP score will decrease significantly if the confidence score is set above
that value. Moreover, the lowest confidence score threshold will result in a higher AP score. We get
the highest AP score of 0.69 and the lowest AP score of 0.01.

Table 1: Resulted average precision over different score threshold.

AP
0.1

AP
0.2

AP
0.3

AP
0.4

AP
0.5

AP
0.6

AP
0.7

AP
0.8

AP
0.9

0.69 0.54 0.54 0.54 0.54 0.52 0.51 0.28 0.01

Fig. 5. DRBox-v2 training performance.

3.2 Object Detection and Pose Estimation Result

Figure 6 describes the object detection results from the DRBox-v2 model. In this experiment,
we set the confidence score threshold to 0.1. The result of object detection is marked with a red
RBox. In the center of the RBox, we put a red dot indicating the objects’ center point. As seen
in Figure 6, all text markers have been marked with RBox, indicating that the detector identified
the object successfully. In addition, the resulting RBox orientation exactly matches the object’s
orientation.

(a) (b) (c) (d)

Fig. 6. Detection result on the test dataset.

After evaluating the object detection, we analyze the estimated pose estimation of the system.
The estimated pose from the proposed system is presented in Table 2. The performance of the
pose estimator can be seen in the column position error and orientation error. Table 2 shows that
the proposed method yields an average position error of 0.21 cm and a maximum error of 0.28 cm.
Furthermore, as orientation error, the proposed system achieves an average orientation error of 0.58
degrees, with the highest error of 1.23 degrees. This result indicates that the proposed system can
estimate object pose accurately.

Table 2: Estimated pose from DRBox-v2 prediction output.

Image Estimated Pose Actual Pose Pos. Err.
(cm)

Ori. Err.
(deg)x (cm) y (cm) θ (deg) x (cm) y (cm) θ (deg)

Fig. 6 (a)
38.40 32.00 -0.81 38.60 31.80 177.71 0.28 0.55
35.40 22.20 42.73 35.60 22.00 42.40 0.28 0.33
18.80 41.00 157.44 18.60 41.00 158.23 0.20 0.79

Fig. 6 (b)
40.20 21.20 160.60 40.40 21.20 159.37 0.20 1.23
41.60 34.80 132.81 41.60 34.80 41.83 0.00 0.13
28.40 32.40 30.29 28.20 32.20 32.66 0.28 0.77

Fig. 6 (c)
38.40 22.80 -11.87 38.60 22.60 166.25 0.28 0.95
21.40 25.60 159.30 21.20 25.80 158.80 0.28 0.50
39.20 32.00 157.16 39.20 32.00 157.08 0.00 0.08

Fig. 6 (d)
23.20 40.80 146.47 23.00 41.00 145.62 0.28 0.85
21.40 25.80 158.88 21.20 25.80 158.80 0.20 0.08
39.20 32.00 156.89 39.20 32.20 157.65 0.20 0.76

Average 0.21 0.58

3.3 Computation Time

We also evaluated the computation time besides experimenting with system accuracy. In this
experiment, we compare two processing devices’ performance; 1. a computer desktop that is in-
tegrated with GPU, and 2. a mini-computer that only has CPU as the processing device. The
specification detail of these computing devices is described in Table 3. The purpose of comparing
these computing devices is to determine if the proposed system could be implemented on the low
computing device.

Table 3 describes the resulting inference time for processing an image until getting the object
pose. While experimenting on the desktop computer equipped with GPU, we got an average com-
putation of around 38.51 ms for one image. Meanwhile, if we experimented with a mini-computer,
processing time would be increased by about 16 times. The mini-computer needs 631.22 ms to pro-
cess one image until getting the result. This result concludes that there is a possibility to implement
the proposed system on CPU devices. However, the computation speed needs to be reduced for a
real-time system. So, it can be concluded that GPU is needed to get real-time performance.

Table 3: Computation time over different computing devices.

Computing Devices Computation Time (ms)

CPU : Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz

38.52CPU Core : 8 cores, 2 thread per core
RAM : 16 GBytes
GPU : NVIDIA GTX1080
CPU : Intel(R) Core(TM) i3-5010U CPU @ 2.10GHz

631.22CPU Core : 4 core, 2 thread per core
RAM : 4 GBytes
GPU : None

4 Conclusion and Future Work

This paper proposed an object detection and poses estimation system using rotatable object de-
tector DRBox-v2 and ArUco visual marker. Based on the experimental result, the proposed system
accurately detects the object with an AP of 0.54 while the confidence score threshold is set to 0.5.
Moreover, the proposed system yields a low error on the estimated pose. Based on the actual and
estimated pose measurement, the average position error is about 0.21 cm, and the average orienta-
tion error is about 0.58 degrees. There is an opportunity to improve the computational speed and
detection accuracy in future works, mainly when the system is run in real-time on low-speed CPUs.
Currently, the system yielded 16 times slower processing time while implemented on the low-speed
CPUs. Additionally, this research represented the object pose with a two-dimensional pose. In a
complex environment with barrier objects available, the three-dimensional object pose needs to be
represented to make the robot possible to pick the object from a possible direction.

Acknowledgment

This research is part of the Research and Community Service for Vocational Higher Education
research grant and the Final Project at the Robotics Engineering Study Program, Department of Elec-
trical Engineering, Politeknik Negeri Batam. We thank Direktorat Jenderal Pendidikan Vokasi, Po-
liteknik Negeri Batam, and Barelang Robotics and Artificial Lab (BRAIL) for providing the equip-
ment and facilities for this research.

References

[1] Mou F, Ren H, Wang B, Wu D. Pose estimation and robotic insertion tasks based
on YOLO and layout features. Engineering Applications of Artificial Intelligence. 2022
sep;114(January):105164.

[2] Kozák V, Sushkov R, Kulich M, Přeučil L. Data-Driven Object Pose Estimation in a Practical
Bin-Picking Application. Sensors. 2021 sep;21(18):6093.

[3] Lee S, Lee Y. Real-Time Industrial Bin-Picking with a Hybrid Deep Learning-Engineering
Approach. In: 2020 IEEE International Conference on Big Data and Smart Computing (Big-
Comp). IEEE; 2020. p. 584-8.

[4] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object
Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE; 2016. p. 779-88.

[5] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE; 2017. p. 6517-25.

[6] Wong CC, Tsai CY, Chen RJ, Chien SY, Yang YH, Wong SW, et al. Generic Develop-
ment of Bin Pick-and-Place System Based on Robot Operating System. IEEE Access. 2022
jun;10:65257-70.

[7] Yao F, Wang S, Li R, Chen L, Gao F, Dong J. An accurate box localization method
based on rotated-RPN with weighted edge attention for bin picking. Neurocomputing. 2022
apr;482(xxxx):264-77.

[8] Zhuang C, Wang Z, Zhao H, Ding H. Semantic part segmentation method based 3D object
pose estimation with RGB-D images for bin-picking. Robotics and Computer-Integrated Man-
ufacturing. 2021 apr;68:102086.

[9] Soltan S, Oleinikov A, Demirci MF, Shintemirov A. Deep Learning-Based Object Classifi-
cation and Position Estimation Pipeline for Potential Use in Robotized Pick-and-Place Opera-
tions. Robotics. 2020 aug;9(3):63.

[10] Zhang H, Tan J, Zhao C, Liang Z, Liu L, Zhong H, et al. A fast detection and grasping method
for mobile manipulator based on improved faster R-CNN. Industrial Robot: the international
journal of robotics research and application. 2020 jan;47(2):167-75.

[11] He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV). vol. 2017-Octob. IEEE; 2017. p. 2980-8.

[12] An Q, Pan Z, Liu L, You H. DRBox-v2: An Improved Detector With Rotatable Boxes for
Target Detection in SAR Images. IEEE Transactions on Geoscience and Remote Sensing.
2019 nov;57(11):8333-49.

[13] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. SSD: Single Shot MultiBox
Detector. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). vol. 9905 LNCS. Springer Verlag;
2016. p. 21-37.

[14] Padilla R, Netto SL, da Silva EAB. A Survey on Performance Metrics for Object-Detection
Algorithms. In: 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP). vol. 2020-July. IEEE; 2020. p. 237-42.

[15] Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. The Pascal Visual Object
Classes (VOC) Challenge. International Journal of Computer Vision. 2010 jun;88(2):303-38.

