
Research Article

Separated Control and Data Stacks to Mitigate Buffer
Overflow Exploits
Christopher Kugler1 and Tilo Müller1,*

1Department of Computer Science, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany

Abstract

Despite the fact that protection mechanisms like StackGuard, ASLR and NX are widespread, the development on new
defense strategies against stack-based buffer overflows has not yet come to an end. In this article, we present a novel
compiler-level protection called SCADS: Separated Control and Data Stacks that protects return addresses and saved
frame pointers on a separate stack, called the control stack. In common computer programs, a single user mode stack
is used to store control information next to data buffers. By separating control information from the data stack, we can
protect sensitive pointers of a program’s control flow from being overwritten by buffer overflows. To substantiate the
practicability of our approach, we provide SCADS as an open source patch for the LLVM compiler infrastructure. Focusing
on Linux and FreeBSD running on the AMD64 architecture, we show compatibility, security and performance results. As
we make control flow information simply unreachable for buffer overflows, many exploits are stopped at an early stage of
progression with only negligible performance overhead.

Keywords: Stack-based Buffer Overflows, LLVM, Separate Control Stack
Received on 02 September 2014; accepted on 05 January 2015; published on 05 October 2015
Copyright © 2015 T. Müller and C. Kugler, licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.5-10-2015.150477

1. Introduction

Security in software has a long history. After one of the
most prominent examples of malware, the Morris Worm [16,
chapter: “The Internet Worm”], gained a lot of media attention,
steadily more and more exploits have been developed to abuse
several vulnerabilities, present in frequently used programs.
As a counter measure, scientists began to develop patches and
protection mechanisms, to be integrated into programs, to fix
vulnerabilities or at least make it as unfeasible as possible
for attackers, to abuse them any further. This triggered a
long-lasting race, with the task for both of the two sides
(attackers and defenders) to be the first to explore a new or
old vulnerability and attack or fix it before the opponent gains
knowledge about it. This race is still ongoing today, now that
security in the IT sector is even more important than ever
before. And until today, one of the most frequently abused
vulnerabilities, already part of the attack strategy of the Morris
Worm, is still not fixed satisfactorily. The talk is of buffer
overflows. Buffer overflows are a vulnerability in programs
that is caused by missing range checks on buffers, which makes
them an inherent problem of the used programming language.

C is one of the languages that does not perform any range
checks on buffers by specification, thus it is not supporting
the prevention of buffer overflows a ll b y i tself. According
to the TIOBE-index [28], C is still the most commonly used
programming language as of 2014, which may be the main

reason why buffer overflows are so dangerous and well-
known, even in modern software. Of course, in the history
of IT security, many attempts have been made to eliminate
the vulnerability of buffer overflows. Though the developed
defensive schemes either were not able to protect against
all consequences of a buffer overrun, or they had other
disadvantages, like a non-negligible performance overhead.

Protection schemes that focus on incorporating a
posteriori boundary check for buffers (against the language’s
specification), lower the performance of programs written
in C severely, and are therefore not the favored protection
mechanism of choice, because C as a programming language
is mostly used because of its well-known high performance
features. Some supporting protection concepts like Data
Execution Prevention (DEP) [18] and Address Space Layout
Randomization (ASLR) [26] share the idea of not protecting
the overrunning buffers at all, but instead target to enfeeble
any exploits that abuse buffer overflows, by reducing the
amount of options an exploit has, as soon as the redirection
of the program’s control flow has occurred. But history
once again has proven, that this strategy also is not the
answer to everything. The invention of DEP, although it
was a very important progress to be made in the field of IT
security, has spawned attack schemes such as Return Oriented
Programming (ROP) [23, 25], which is able to bypass the
protection offered by ASLR and DEP to successfully exploit a
program.

1

EAI Endorsed Transactions
on Security and Safety

*Corrsesponding author. Email: timuller@cs.fau.de

EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

The main reason why ROP can be successful is the fact
that neither DEP nor ASLR protect the Return Instruction
Pointer (RIP) from modification, which is the most popular
target of exploits for control flow manipulation. A rather
obvious conclusion to this situation is that a better strategy
may be to protect the RIP and equals, hence to use a security
mechanism which sets in at a temporal stage of protection
between DEP/ASLR and boundary checking of buffers. The
approach we present within this article is based on just this
idea. The protection of control flow data like the RIP can be
maintained in many different ways, and our concept is not
the first to take up this strategy. Nevertheless, our approach
is defined by the way it addresses this task, by introducing
a second stack to the generally single stack of a runtime
environment. The two stacks, namely the control stack and
the data stack, are supposed to manage different types of data
without mixing them, to fulfill the protection of control flow
data, especially the RIP. For this reason the defensive concept
we introduce is given the name Separated Control and Data
Stacks (SCADS).

2. Design and Implementation

Control-Stack

Data-Stack

Heap

BSS-Segment

Data-Segment

Text-Segment

Figure 1. Userland memory layout of a program
compiled with SCADS.

SCADS is based on the idea of separating the data which is
stored on the stack of a process. It shall not be possible for an
attacker to manipulate and redirect a program’s control flow
after a buffer overflow occurred. To achieve this separation,
we introduce a second stack, the so called data stack). While
the remaining, native stack of the unified model now shrinks in
size and becomes the so called control stack. For the purpose
of preventing misunderstandings, we denote the original stack
of the non-SCADS runtime environments as unified stack.

In consequence to the twofold stack usage, the process
memory layout experiences a few changes. Figure 1 roughly
indicates the new memory layout that is accompanied with the
usage of SCADS. The memory segment of the unified stack
is now occupied by the control stack, and in contrast to the
original memory layout there now exists an additional memory
segment between the heap and the control stack: the data stack.
We further describe the exact location of the data stack in the
forthcoming sections, but for now we want to mention that the
control stack cannot collide with the data stack when it grows
downwards, as both the control and the data stack are fully
able to grow automatically.

Both of the newly introduced stacks manage mutually
exclusive types of data. To clarify what kind of data is stored
on each of the stacks, we classify two types of data that can be
identified on the unified stack:

Control Flow Data This type of data is responsible or at least
capable of managing the control flow of the program.
The most important example of control flow data is
the return instruction pointer, which is stored on the
stack every time a function is called. Common exploits
often modify the RIP, to redirect the control flow to pre-
delivered shellcode or other source of malicious code.

Regular Data This data type is everything but control flow
data. It includes all data which is necessary for
computations but does not influence the control flow,
e.g. buffers. Moreover local variables and saved data
registers are considered to be of the type of regular
data. Regular data, especially buffers, are often used by
common exploits to gain the ability to modify nearby
control flow data.

The idea of separation originates in the aspiration to
construct a runtime environment, which is immune to
overwriting control flow data such as the RIP, consecutive
to a previously enforced abuse of regular data, for example
through a buffer overflow. A detailed analysis regarding this
immunity is realized in section 4. It is crucial that no data
stored on the data stack gives any hints on the location of
the control stack, which is already inherently achieved by the
separation of the two before mentioned data types. Moreover,
it is necessary to prevent the detection of the control stack
location by brute force attacks. Therefore the location of the
data stack is partially randomized and implicitly with it also the
gap between the control and data stack. The purpose of a non-
static offset between the control and the data stack requires

2EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

both of the two stacks to be referenced by a register, which
allows access to the stack pointers (and frame pointers if used)
as known from the unified stack.

Listing 1: Exemplary assembly code that indicates which
of the two stacks is influenced by a corresponding machine
instruction (green: control stack; yellow: data stack).

push %r14

sub 8, %rsp
mov %rbp, %r14

sub 8, %rbp

mov %rbx, (%rbp)

sub 8, %rbp

mov %rcx, (%rbp)

call function

mov (%rbp), %rcx

add 8, %rbp

mov (%rbp), %rbx

add 8, %rbp

add 8, %rsp

pop %r14

ret

In consequence to the data separation, the machine
instructions of the x86 ISA can now also be classified into
different categories. Some of them influence the state of the
control stack, others the state of the data stack, and still others
do not have an influence on any of the two stacks. Listing 1
illustrates the responsibility of the two stacks for different
machine instructions, by the help of an exemplary assembly
program. The code highlighted in green influences the control
stack, the code in yellow influences the data stack and the code
in gray does not have an influence on any of the stacks, mainly
because it does not perform a memory access.

2.1. Initialization of Data Structures
The initialization phase is an essential process of the SCADS
concept. All necessary data structures, that are needed to
guarantee the protection of the control flow data, are created
and initialized. The summarized task of the initialization phase
is to set up a runtime environment that is conform with the
SCADS concept. A program is supposed to be compatible
with the SCADS environment as soon as the main-function is
entered, such that initialization operations must be completed
before.

2.1.1. Linking the Initialization Module. As we do
intend to separate the initialization phase from the actual
program code, we perform the initialization before the body
of main is executed. One way to achieve this would be to
hard-code the initialization mechanism into the compiler, and

let it place the machine instructions at the very beginning of
main. But this is not be the method of preference because
anything that is to be executed before the main function should
not be the task of the compiler, but the task of the linker. So the
initialization phase is encapsulated within a separate module,
which is linked to the binary and builds a wrapper around the
main function.

Listing 2: Command-Line to link a SCADS-binary with the
init module.

clang -Xlinker --wrap=main -o scads_bin
scads_module.o init_module.o

An exemplary command-line, which is used to link a binary
with the initialization module, is illustrated in listing 2.
The here defined object file init_module.o contains a
function called __wrap_main. By passing the -Xlinker
-wrap=main flags to the linker, it is advised to replace
every call to the function main with an invocation of the
function __wrap_main. To ensure the invocation of the
original main function, the __wrap_main function must
make a call to it after the initialization is finished. Everything
that is contained in, and performed by the initialization module
is now be described in section 2.1.2.

2.1.2. The Initialization Process. The initialization
itself consists of a couple of steps to be performed. Figure 2
shows the single steps of the initialization phase by the help
of a control flow diagram. As mentioned in section 2.1.1,
the initialization is implemented within the __wrap_main
function, which is called by the _start function. When the
__wrap_main function is entered, the runtime environment
still consists only of one single stack, the unified stack. This
stack is used during the whole initialization to allocate and
set up the second stack, the data stack. By the end of the
initialization, we no longer reference the unified stack by
its original name but call it control stack. Because after the
initialization steps, the behavior of the unified stack equals the
behavior of the control stack, as explained in section 2.3.

For the whole initialization process, no lib-functions are
used but only raw system calls without wrapper functions
around them. The reason for this approach is a compatibility
issue which occurs when functions of a custom library
compiled with SCADS are used before the initialization of the
data stack has finished. In such case, the program aborts due to
a segmentation fault. This topic is further explained in section
7.4.

Allocation of the Data Stack Before any computations for
the allocation of the data stack can be made, the arguments
of the main function argc and argv (passed via %edi and
%rsi) must be saved, because the registers containing them
are used by various function and system calls. The two registers
are therefore copied onto the unified stack until the data stack
is created. Although the argv pointer is overwritten later on
anyway, it yet stores the information about the location of the

3EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Allocation

Copying

Finalization

safe main arguments
(argc + argv)

restore
main arguments

(argc + argv)

determine desired
Data-Stack address

adjust Data-Stack
address

(Randomization)
allocate memory
segment using

"mmap"

copy argument list
from Control-Stack

to Data-Stack

set new stack
pointer

jump to main

Figure 2. Control-Flow diagram of the initialization
phase step-by-step.

command-line arguments, which needs to be known for later
copying of the arguments, as explained in section 2.1.2.

Afterwards a desired, raw starting address for the data stack
segment is computed. This is achieved by retrieval of the
unified stack address (i.e. the current value of %rsp), which
is the control stack address later on. As shown in figure 1, the
data stack is determined to lie below the control stack, within
the unallocated memory gap between the unified stack and
the heap. To prevent the data stack from being placed inside
the control stack, we first obtain the maximal extension of the
control stack, which can be retrieved via the getrlimit syscall
by passing the RMLIMIT constant as resource parameter. By
default the maximal extension size of the stack is defined to
be 8 MiB.

addressData,static = addressCtrl + 8 ∗maxExtensionCtrl
(1)

addressData,f inal = addressData,static + randomEntropy

with randomEntropy ∈ [−223, 223 − 1]
(2)

We use the value returned by this syscall to identify the
maximal starting address (control and data stack grow both
from high to low addresses) for the data stack, satisfying the
condition that the data stack does lie below and not inside the
extensible area of the control stack. Within a 64-bit address
space, there is no lack of leeway, so we can define the raw
static starting address of the data stack, as shown by formula
1, without introducing any complications. With a default value
of 8 MiB for the maxExtensionControl variable, this leads
to a starting address of the data stack, 64 MiB below the
control stack extension during the execution of the data stack
allocation.

Nevertheless, as already indicated, the so computed
address is just a static one. Meaning that apart from the
maxExtensionControl variable, there is no other variable
factor to influence the resulting address. For processes with
equal maximal stack extension, the gap between data and
control stack would remain always the same. If an attacker
could obtain this information, pointers could be misused
similar to the attack scheme by Bulba [17]. Knowing that
the maximal stack extension is a parameter to rarely change,
this static sized gap would be the regular case and therefore not
sufficient to guarantee an anonymous location of the control
stack relative to the data stack.

Listing 3: Allocation of the data stack via mmap.
// this variable is placed on the control stack
int control_stack_address = 0;

void *segment_addr_final = (void*)(((long
long)&control_stack_address) - ((long
long)DATA_STACK_OFFSET));

const int MMAP_SYSCALL_PROT = PROT_READ | PROT_WRITE;
const int MMAP_SYSCALL_FLAGS = MAP_PRIVATE |

MAP_ANONYMOUS | MAP_GROWSDOWN;
const int INITIAL_STACK_SIZE = PAGE_SIZE;
const int FD = -1;
const int OFFSET = 0;

// invoke mmap
void *data_stack_ptr =

invoke_mmap_syscall(segment_addr_raw,
INITIAL_STACK_SIZE, MMAP_SYSCALL_PROT,
MMAP_SYSCALL_FLAGS, fd, offset);

We want to prevent this to not cause any vulnerabilities
for exploits, which may abuse the known relative position
of the control stack. Therefore as shown by formula 2, the
final starting address of the data stack’s memory segment is
further enhanced by adding a random component to it. The
variable randomEntropy in formula 2 is a pseudo-random
value which is computed using klibc’s [4] rand and srand
functions. We randomize the 24 least-significant bits of the
static address by adding the signed pseudo-random value

4EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

randomEntropy which lies in the interval [−223, 223 − 1].
This means the data stack can be adjusted in both directions, to
high and low addresses, depending on the sign of the pseudo-
random value.

With the final data stack address, we can now allocate the
memory segment using the system call mmap. The entire code
that is executed for the allocation is illustrated in Listing
3. As result of the allocation, we receive an anonymous,
non-executable memory segment of initial size of one page,
including read- and write-privileges. The MAP_GROWSDOWN
flag, which is passed to mmap, allows the data stack to grow
in size, just like the control stack does. The growth of the stack
is an essential property, because it allows the allocation of the
stack with the minimal size of one memory page, so that no
unused memory is wasted. However the growth of the data
stack, with the MAP_GROWSDOWN flag activated, is a bit more
complicated than one would expect. A short explanation of the
addressed complexity is given in section 2.2.3. Also note that
MAP_GROWSDOWN is a Linux specific flag. The equivalent on
FreeBSD is the MAP_STACK flag, and the call to mmap is
accordingly adjusted, depending on the operating system, the
binary is compiled and linked on.

Copying of Command-Line Arguments In general, no
data migration needs to be performed that transfers data from
the control stack on to the data stack, with one exception.
We implemented SCADS in such a way that all data gets
automatically separated and stored at its destination, from
the moment of the invocation of the main function. But
there is one important block of data, that gets stored on the
control stack even before main is executed. The talk is of
the command-line arguments, which shall not remain on the
control stack, and therefore do get migrated onto the data stack
within the initialization process.

According to the control flow chart of figure 2, the next
step after the allocation of the data stack is the copying of
the command-line arguments from the control stack onto the
bottom of the data stack, we just mentioned. It is vital for the
SCADS concept that the arguments are no longer addressed on
the control stack. By copying them onto the data stack we once
again enforce the important condition of separating control
flow data from regular data, as all command-line arguments
are classified as regular data and so shall not remain on the
control stack.

The goal is to prevent exploits from abusing the argv
pointer to reach control flow data and modify it. Thus, to
successfully prohibit such actions, the argv pointer must not
contain an address, that points to the control stack. Hence we
copy all arguments onto the data stack as mentioned before.
To perform this task, the argument list is parsed from the
control stack, to identify the overall space that is needed to
store the arguments on the data stack. After the whole block
of command-line arguments has been copied, the addresses
of the argv array pointing at the arguments, are no longer
consistent. Therefore, the whole argv array is translated to
the new locations of the arguments, and placed on the data

stack, where the main function can reach it. Last but not least,
the argc variable, indicating the number of arguments, and
the argv pointer, pointing at the start of the arguments array,
are restored into the registers %edi and %rdi to fulfill the
parameter interface of the main function.

Finalization Two more small steps need to be accomplished
to finalize the initialization phase. We already computed the
starting address of the data stack and know the offset to the end
of the argument list, which is now also located on the data stack.
But we must place this address where the program expects it.
The SCADS environment is configured to have %rbp manage
the stack pointer of the data stack (see section 2.2.1). Hence,
the starting address of the data stack, below the argument
section, is placed into %rbp using inline assembler. Finally,
a call to the main function is made to initiate the program’s
true control flow, which from then on uses the SCADS runtime
environment, including the control and the data stack.

2.2. The Data Stack

As explained in the previous section 2.1, the data stack is a
completely new memory segment. This segment was and is
not present in a runtime environment with the unified stack.
Its allocation is done during the initialization phase (see 2.1.2).
Nevertheless, the newly created data stack stores most of the
data that is stored on the unified stack, and therefore its size
does only differ very slightly from the size of the unified stack.
Its location is designed to be below the control stack, within the
unallocated memory space between the heap and the control
stack. However its position is not completely static, as it is
partially randomized to improve the protection against several
exploits.

2.2.1. Register Occupation. The data stack occupies at
most two registers for which we have chosen %rbp as stack
pointer and %r14 as optional frame pointer. The reason we
not chose %rsp to be the data stack’s stack pointer is based on
an architectural matter, which forces the use of %rsp for the
control stack. A more detailed explanation of this can be found
in the forthcoming section 2.3, which focuses on the control
stack.

Knowing that %rsp is reserved by the control stack, it is
obvious to use %rbp as stack pointer of the data stack, because
it is not occupied by the control stack which does not need a
frame pointer for its memory management. The %rbp register
is most of the time used as a specific purpose register anyway,
but we reserve it permanently for the usage as stack pointer. In
contrast, the reservation of register %r14 as frame pointer is
not permanent.

2.2.2. Managed Data Types. On the data stack, we store
all sorts of data which are of the regular data type. This
includes first and foremost static sized buffers allocated within
a program, and in general all sorts of local variables (excluding
data that is placed on the heap). There is no machine instruction
defined by the x86-64 ISA that implicitly uses %rbp without

5EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

Stackframe #1

Stackframe #2

(saved data registers)

Local Area

...

parameter #7

parameter #8

(saved data registers)

Local Area

...

+16

- localOffset

High

Low

saved frame pointer

RIP

saved frame pointer

RIP

+24

+32

+0

+8

(a) Several stack frames of the unified stack with
frame pointer offsets for data structures

Stackframe #1

Stackframe #2

(saved data registers)

Local Area

...

parameter #7

parameter #8

(saved data registers)

Local Area

...

+0

+8

+16

- localOffset

High

Low

(b) Several stack frames of the data stack with
frame pointer offsets for data structures

Figure 3. Detailed representation of the unified stack in
comparison to the data stack (using the AMD64 calling
convention).

the register defined as operand. Because of this fact, by using
%rbp as stack pointer of the data stack we do not end up with
problems of storing control flow data like the RIP on the data
stack by mistake.

Figure 3(b) shows a compilation of stack frames on the
data stack. It is clearly shown that due to the missing frame
pointer and RIP on the stack, the parameters stored on the
stack are starting at frame pointer offset +0 bytes on a 64-bit
architecture. The figure 3 fulfills the concept of the AMD64
calling convention, thus parameter 1 to 6 are not stored on
the stack but passed via registers. In contrast to the data stack,
the parameters on the unified stack (figure 3(a)) are starting at
frame pointer offset +16 bytes. Hence, for the implementation
of the parameter access on the data stack, all offsets must be
subtracted by 16.

The data stack is also responsible for the storage and
retrieval of any callee-saved data registers (not including the
frame pointer register, which is classified as control flow data)
at the beginning and the end of a function. In this context, a
second difference towards the unified model exists, which
concerns the topmost access to the data stack. We cannot use
push and pop instructions on the data stack, because these
instructions implicitly use the register %rsp for storage of the
corresponding data, but we define %rbp as stack pointer of
the data stack. The solution is to simulate the push and pop
instructions on the data stack with a chain of usable, alternative
machine instructions, which do not create any side effects
on memory regions we want to keep clean from regular data.

Listing 4: Usage of push/pop instructions on the unified
stack.

push instruction
push %rbx

pop instruction
pop %rbx

Listing 5: Simulation of push/pop instructions on the data
stack.

push simulation
sub 8, %rbp
mov %rbx, (%rbp)

pop simulation
mov (%rbp), %rbx
add 8, %rbp

Listing 5 demonstrates how the regular push and pop
instructions from listing 4 are translated to operate on the data
stack. Every push and pop is simulated by two instructions,
consisting of either sub/mov or mov/sub. As we now use two
instructions, instead of one, this simulation scheme may have
a negative effect on the performance of the program.

2.2.3. Automatic Growth. The data stack is able to grow
automatically, just like the control stack, which is managed

6EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

by the kernel. The flag MAP_GROWSDOWN, which is passed
to the mmap system call, enables the feature of the newly
allocated memory segment, to grow downwards. But there
may be some complications with large stack frames (by large
we mean frames with a size larger than one page). It may be
necessary to treat such stack frames in a special way to allow
the stack to grow correctly. Though, this is a complication
dependent on the operating system. On FreeBSD the stack
extension can be performed the same way on small as well as
large stack frames (as shown by listing 6), without introducing
any performance overhead. But on Linux, a large stack
frame must be extended page-wise (as shown by listing 7),
as otherwise the program’s execution is likely to abort.

Listing 6: Stack extension for a large stack frame on the
unified stack.

stack extension
sub 10000, %rsp

Listing 7: Translated stack extension for a large stack
frame on the data stack.

stack extension
sub 4096, %rbp
mov %rax, (%rbp)
sub 4096, %rbp
mov %rax, (%rbp)
sub 1808, %rbp

During our analysis on Linux, we have made the observation
that it is impossible to extend the size of the data stack in one
step for large stack frames, by modifying the stack pointer
%rbp only once. Instead it is necessary to extend the stack in
steps of single pages (generally 4 KiB large), to ensure that
the operating system can allocate guard pages at the top of
the growing stack correctly. This circumstance makes need
of a chain of instructions to be generated for the extension
of the data stack for large stack frames. The chain consists
of instructions to modify the stack pointer in direction of
growth and touch (make a write access) the stack at its current
extension. This ensures that the exception handler of the guard
page, at the top of the stack, gets invoked, to let the operating
system extend the stack by one page. Listing 7 shows the
translation of a normal stack extension for a large stack frame
(shown by listing 6) to the extension mechanism needed for
the data stack.

If the data stack’s extension is not specially treated, as shown
in listing 7, and instead extended normally, as illustrated in
listing 6, the program aborts with a segmentation fault due to
a memory access to not allocated memory. By extending the
stack pointer by more than about one page’s size (depending
on the position of the stack pointer in the current stack frame),
the guard page at the top of the stack is skipped and the next
memory access takes place at the unallocated memory region
between the data stack and the heap.

2.3. The Control Stack
The control stack stays at the place of the unified stack. This
means that it is allocated by the kernel of the operating system
at load time of each program. Due to the fact that it now stores
much less data compared to the unified stack, the control
stack is of rather small size and generally not exceeds the size
of one page with the exception of heavy recursion. It keeps
the direction of growth from high addresses to low ones and
expands towards the data stack.

RIP #1

saved FP #1

Stackframe #1

RIP #2

saved FP #2

Stackframe #2

Stackframe #3

...

...

16 Byte

8 Byte

8 Byte

(a) Several stack frames of the control stack with
frame pointer in use

RIP #1
Stackframe #1

RIP #2
Stackframe #2

Stackframe #3

...

...

16 Byte

8 Byte

8 Byte

-- Alignment --

-- Alignment --

(b) Several stack frames of the control stack without
usage of frame pointer (including optional 16 byte
alignment)

Figure 4. Detailed representation of the control stack.

2.3.1. Register Occupation. By the nature of the x86-
64 architecture, the stack pointer of the control stack must be
stored in the register %rsp. This is justified by the fact that the
%rsp register is implicitly used by the processor for storing the
RIP in memory. So every RIP that results from a function call is
stored at the memory location %rsp points to. Using a different
register as the stack pointer would lead to the consequence that

7EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

generated return addresses would not be stored on the control
stack in the first place, thus becoming necessary to copy or
move them to the control stack, right after a function has been
called. Not only would this lead to a significant performance
loss, because a couple of instructions would be needed for
copying the addresses. Moreover it would construct a severe
vulnerability that would eliminate the necessary condition of
separation for a secure environment, defined by the concept
of SCADS. The only other reasonable choice for the use of
%rsp would be as stack pointer for the data stack. Therefore
we would store the most vulnerable control flow data, namely
the RIP, on the data stack. Hence, it is actually mandatory to
use %rsp as stack pointer for the control stack.

2.3.2. Managed Data Types. The control stack is
responsible for the maintenance of control flow data. To be
exact, the control stack stores return instruction pointers and
saved frame pointers only. This means, that it handles existing
control flow data except of function pointers. Our SCADS
implementation is yet only prototypical and the usage of the
control stack is intended to be extended in the future. But the
handling of function pointers is a rather complex task, as the C
specification on the usage of pointers of any type, as function
pointers, is far from strict.

“A pointer to an object or to void may be cast to a pointer to
a function, allowing data to be invoked as a function (6.5.4).
A pointer to a function may be cast to a pointer to an object or
to void, allowing a function to be inspected or modified (for
example, by a debugger) (6.5.4).”[5, J.5.7 Function pointer
casts]

The loose specification of function pointers, produces
the need to treat any arbitrary type of pointers as function
pointers, because such transferring casts are not prohibited.
Nevertheless, the storage of regular pointers (classified as
regular data) on the control stack in general enforces the
mixing of regular data and control flow data on the control
stack, which threatens the security of the primary control
flow data such as the return addresses. Accordingly, as long
as function pointers remain ambiguous, as defined by the C
specification, there is no proper solution to find the right place
for their storage. So far, function pointers could be cast into
pointers of any other type and vice versa, without offending
the terms of their specification. This is the main reason why we
do not configure the control stack to handle function pointers
in SCADS.

Because %rsp is used to store the stack pointer of the control
stack, it is further possible to use push and pop instructions for
storage and retrieval of data on the control stack. This makes
the implementation of the control stack extremely simple, as
we do not need to change any machine code generation in the
compiler, which concerns the storage and removal of RIPs and
the frame pointer of the data stack. They are implicitly stored
and retrieved from the control stack by usage of the call, ret,
push and pop instructions.

2.3.3. Alignment. Alignment is an optional feature in
SCADS which enables compatibility to legacy code, e.g.

legacy libraries; it can be enabled by a flag at compile time.
When code compiled with SCADS is not confronted with
legacy code, this feature is not necessary for a program. The
purpose of stack alignment has various reasons. In case of
a 64-bit architecture like x86-64, every memory address is
represented by an 8 byte value. Since we only store at most
two addresses per function call on the control stack, it is
always implicitly 8 byte aligned. The planned usage of the
control stack would not require any coarser alignment. But
to be compatible to legacy code, which uses the control stack
for storage of control flow data, as well as regular data, an
8 byte alignment would not be sufficient in some cases. To
fulfill a maximum of 16 byte alignment, in case no frame
pointer is in use, we extend the control stack by another 8
byte using the sub and add instruction. On the other hand, if a
frame pointer is enabled for a stack frame, the stack is already
16 byte aligned and thus no further operations are performed.
Figure 4 shows the two cases which do either not need a forced
stack alignment, because the frame pointer is in use, or a stack
alignment needs to be enforced by adding gaps of 8 byte of
memory to each stack frame.

2.4. Implementation in the LLVM Back-End

We briefly want to describe, what was done to implement
SCADS in the LLVM back-end in practice. As our
implementation’s target architecture is the x86-64 architecture,
most of the modifications have been made to the files belonging
to the x86 back-end. A complete list of files (with full project
path), which have been modified is:

• include/llvm/CodeGen/CommandFlags.h

• include/llvm/Target/TargetOptions.h

• include/llvm/Target/TargetFrameLowering.h

• lib/CodeGen/PrologEpilogInserter.cpp

• lib/CodeGen/PrologEpilogInserter.h

• lib/CodeGen/TargetFrameLoweringImpl.cpp

• lib/Target/X86/X86RegisterInfo.h

• lib/Target/X86/X86FrameLowering.h

• lib/Target/X86/X86RegisterInfo.cpp

• lib/Target/X86/X86FastISel.cpp

• lib/Target/X86/X86ISelLowering.cpp

• lib/Target/X86/X86FrameLowering.cpp

• lib/Target/X86/X86ISelLowering.h

• tools/llc/llc.cpp

8EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

Note that the code for the initialization module is completely
independent from the Clang/LLVM compiler and has therefore
been excluded into a separate file we named main_wrap.c.
The name arises from the fact that the initialization module is
linked to the program in such a way, that it wraps around the
main function and calls it as soon as the initialization is done.
While the files llc.cpp, CommandFlags.h and TargetOptions.h
have only been adjusted to implement the various flags we
integrated to let the user decide about the features to use, the
rest of the listed files contribute to the actual functionality of
SCADS. The set of flags now contains the following four:

• -num-stacks [number of stacks]

• -enable-xor-encryption

• -enable-legacy-callback-compat

• -enable-legacy-stack-alignment

As most of the features of SCADS do not interfere with any
function’s body, but just need to make changes to the prolog
and epilog of functions, the file that was most important for
SCADS’ implementation is the file X86FrameLowering.cpp.
In this file, the whole prolog and epilog mechanism for every
source code function is implemented within the two functions
emitPrologue(. . .) and emitEpilogue(. . .). It is implemented
how the stack extension is managed (regarding normal and
large stack frames), which way registers are to be pushed and
retrieved from the data stack (as push/pop are not usable on
the data stack), and the functionality of the compatibility flags,
as well as the XOR encryption (see section 2.5).

The LLVM back-end is structured in such a way, that
every hardware architecture has its own back-end, separated
from any other back-end, to implement the generation of
code for just one specific architecture. This also applies
for the x86-architecture. For that reason, one of our goals
during the implementation of SCADS was to interfere as
few as possible with other hardware architectures. Largely,
we have accomplished this task, but there is one upper
class every single back-end inherits from, which we had to
modify, hence also taking influence on the implementation
of other back-ends. In the class TargetFrameLowering of
the file TargetFrameLowering.h, we included a couple of
data structures and added a second constructor to handle
the management of more than one stack. In fact, the class’
structure has been modified in such a way that it would be
easy to let its inheriting classes handle an arbitrary number of
stacks in future. The newly added constructor is only used by
the x86 back-end. Some data structures like the StackDirection,
that were originally single values, have been transformed into
arrays to manage multiple values of the same type (i.e. multiple
stacks instead of just one). Nevertheless, the access on these
arrays is fully managed through read-only functions of that
class, which we adjusted in such a way that they hide the
information from the caller of the read data structure being an
array. So the behavior of the non-modified back-ends remains
the same.

Although we had to make a few major changes to the
architectural design of the compiler’s class structure, we have
implemented SCADS in such a way that the compiler is fully
downward compatible. If the -num-stacks flag is set to “1”,
the compiler generates code the way it did before we modified
it. The rest of the yet not mentioned files, listed above, have
experienced minor modifications to maintain the new register
occupation for the data and the control stack, and to adjust the
offsets to the data structures on the data stack.

2.5. Extension: XOR-Encryption
The SCADS approach alone is designed to protect control flow
data, especially the return address, from abuse by malicious
code injection. Nevertheless, in this section we want to
introduce an extension to the SCADS approach, which also
targets the protection of the RIP. This approach is similar to
the one presented in [14, section 3.1(c)]: By encrypting the
RIP with XOR, we can enforce an enhanced security level
regarding the integrity of any stored RIP on the control stack.

Every time a function is entered, at the very beginning
of the function, the RIP is encrypted. The decryption of the
previously encrypted function takes place at the very end of
each function. Thus the return address remains encrypted for
the whole runtime of the function (including its sub-calls),
until the decrypted state of the return address is needed again,
to jump back to its caller. So the implementation of the scheme
only requires us to extend the prolog and epilog of every
function, generated by the compiler.

To preserve the performance as much as possible, the
encryption algorithm is reduced to a simple XOR with
the current value of the stack pointer. As performing the
XOR operation twice on a single value obviously results
in its identity, it can be used for encryption as well as for
decryption of the return address equally. Listing 8 shows the
implementation of the XOR-encryption within a function’s
prolog and epilog.

Listing 8: Implementation of the XOR en-/decryption.

prolog: encryption of RIP
xorq %rsp, (%rsp)
...
epilog: decryption of RIP
xorq %rsp, (%rsp)

Here we use the stack pointer for the encryption of the
return address. Nevertheless, it would also be possible to use
the current frame pointer (if present) to fulfill this task, as
shown in [14, section 3.1(c)]. Yet, because the RIP is stored on
the control stack, which does not own a frame pointer, the only
possibility would be the use of the data stack’s frame pointer.
But the location of the data stack can be easier obtained by an
attacker than the one of the control stack. So an attacker might
have a better chance to create a malicious, encrypted return
address, whose decrypted result could be a valid address, if

9EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

the data stack’s frame pointer would be used for encryption.
Therefore it is wise to choose the %rsp register (i.e. the stack
pointer of the control stack) for the encryption process.

We want to mention that we define the approach of XOR-
encryption of the RIP within our SCADS environment as more
effective, because of the fully dynamic randomized positioning
of the data stack towards the control stack. In contrast the
randomization (or “float” as they call it) of Fu’s and Wang’s
approach [14, section 3.1(b)], takes place during compile time,
which lowers the effect of the XOR-Encryption, due to the
fact, that the stack address may be known more likely.

3. Related Work

In history, many different approaches have been invented to
pit themselves against the menace of exploits of all kind,
from which some are similar to our approach. We want to
have a discussion on these related schemes and point out the
differences between them and SCADS.

3.1. StackGuard

StackGuard [10] is a compiler-based security measure that
focuses on the protection of return addresses and saved frame
pointers, just like SCADS does. To achieve this task, binaries
must be recompiled into code which places so called canaries
(or canary word[s] [10, chap. 3]) on the stack, right below a
return address or saved frame pointer. These canaries are in
general 8 byte sized values, which can be of different, common
types: random canary, terminal canary, and XOR canary [22,
sec. 2.2]. Random canaries consist of randomly generated
values, terminal canaries include characters that cannot be
used within an attack vector of an exploit, and XOR canaries
are random canaries which are additionally encrypted with
the return address of the corresponding stack frame. While
these three types do possess their own specific properties,
the security of the whole concept strongly depends on the
anonymity of any created canaries. On every removal of a
stack frame, with a subsequent jump to the previous control
flow, the previously stored canary is checked for integrity
and this way allows to detect buffer overflows that may have
modified the protected data. When a buffer overflow occurs,
the attack vector is placed in the buffer and further, potentially
overwriting the return address. But to reach the return, the
attacker must overwrite the canary linearly. Thus it is vital for
the delivered security level that an attacker must not be able to
reproduce the correct value of the canary.

There exists an extension of StackGuard, called Mem-
Guard [10, sec. 3.2], which offers a higher security level
than StackGuard itself. But with the higher security level, this
concept “suffers substantial performance penalties compared
to”[10, sec. 4.2.2] StackGuard. For that reason, we are not
discussing MemGuard in this article, because performance
preservation is one of the main goals of SCADS. A detailed
analysis of SCADS’ and StackGuard’s security quality in
comparison, is held in section 4.

With StackGuard, a slight performance overhead may be
attached, because the placement of the canaries on the stack
requires the execution of “7 [more machine] instructions”[10,
sec. 4.2.1] per function call, than without the usage of
StackGuard. This performance overhead is generally very
small, but may sum up to a noticeable amount when the
number of performed function calls is rather high. In contrast,
SCADS does not introduce additional machine instructions for
each stack frame, hence there is no significant performance
overhead in general. The memory overhead of StackGuard is
negligible, as the only additional memory that is used, arises
from the canaries placed on the stack. With canaries of 8 byte
size on a 64-bit system, the average call-depth of the program
must be high to create a significant memory overhead. SCADS
produces a small initial memory overhead at program start,
that is likely to be compensated at runtime.

3.2. StackShield

StackShield [2] is a defensive concept similar to SCADS in
specific ways. In 2008, the idea of StackShield was revisited
for the binary rewriting tool TRUSS (Transparent Runtime
Shadow Stack) [27], with the difference that a return address is
compared to its shadow copy rather than enforcing its integrity
by restoring a backup value.

By managing a redundant storage area, that contains return
addresses of the regular control flow, StackShield reminds
of the control stack of SCADS which being separated from
the main stack. The storage area of StackShield though, is
located in the data segment of a process’ memory space. Within
this memory space, StackShield manages redundant copies
of any return address, created during runtime. The original
return addresses from the stack, however, remain at their
original memory location and are not modified. The objective
of StackShield is to prevent the permanent modification of
a return address by comparing its value with its copy in the
redundant storage area, before the ret machine instruction
is executed. In case a buffer overflow occurred and modified
the return address maliciously, StackShield does notice the
modification and perform a counter action. It is up to the
programmer to define the behavior in such a case. StackShield
may either abort, due to a detected exploitation attempt, or
overwrite the modified return address with its original value
from its copy and keep the program running, even though
some local data may have been altered and causes undefined
behavior. Just like StackGuard and SCADS, StackShield is a
security mechanism that is compiler-based. This means that it
the activation of StackShield within a binary does require to
recompile the program, but not to modify the source code.

StackShield does not protect data like saved frame
pointers but only the return address. This introduces some
vulnerabilities to exploits not focussing on the modification
of return addresses solely. In a later version, support for the
protection of function pointers with an address range check
has been introduced, although this mechanism brings in a
couple of additional machine instructions to be executed and

10EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

therefore decreases the performance noticeably. The overall
performance overhead of a binary with StackShield activated
may not be underestimated, because the overall management
of the redundant storage area, incorporated into every prolog
and epilog of a compiled function, is again quite expensive.
Like StackGuard, StackShield’s performance overhead is thus
bound to the number of calls that are made within a program,
while SCADS’ performance overhead is only static.

The memory overhead of StackShield is also similar to the
one of StackGuard. Every new stack frame requires a few
additional bytes to store the redundant return address as well
as minor collateral data used to maintain the data structures of
the redundant area in the data segment. Unless a program does
not have a very high average call-depth, the memory overhead
is not large at all.

3.3. Multi-Stack Approaches
During our research, we found two existing concepts which are
especially similar to our approach as they make use of multiple
stacks, just like SCADS does. These two concepts are MSC
(“Multiple Stacks Countermeasure”) [29, p. 63ff.] and SCISM
(“Stack Control Information Separating Mechanism”) [14].
While these approaches are closely related to ours, there exist
some essential differences having an influence on the security
and other properties. We explain these differences and point
out what sets SCADS apart from MSC and SCISM in the
following.

3.3.1. MSC. MSC is a security measure based on the idea
of separating data on the stack to different memory locations.
However, MSC follows a much more excessive strategy of
data separation by using not only two different stacks but up to
five stacks. The five stacks and data they manage are classified
upon risk levels that indicate how likely data is to be used for
exploitation, as indicated by [29, p. 64, table 3.1]. Thus MSC
separates all data, stored on the stack, in a fine-grained way,
to prevent correlation between data types, that shall be strictly
isolated from each other. As all other previously presented
concepts, MSC is a compiler-based approach as well. For the
maintenance of the five newly introduced stacks, the compiler
that implements MSC uses the frame pointer of a stack frame
and modifies the offsets to any local data to redirect the access
onto the stack of desire. So in contrast to SCADS, MSC does
not reserve a register (or pair of registers) for every single
stack that is added to the original one. This method forces
the location of every single stack to be static, thus defined at
compile time. In our view the static location of every stack
and also the static offset between all stacks can introduce a
security vulnerability for exploits making use of random write
access. Such exploits can easier find the data on corresponding
stacks that they need to modify, because the relative position
is known before execution.

MSC tries to address this problem by placing all character
buffers on a stack where nothing but buffers are stored.
However, as explained in [29, p. 63, sec. 3.3.1], it is also
possible to store character arrays within a struct, and the data

of structs does not get separated across stacks (see [29, p. 68,
fig. 3.2]). This proves the approach is kind of “over-engineered”
because it is possible to gain random write access during an
attack, when a struct containing a buffer inhabits an arbitrary
pointer. An example for such an exploit is shown in section
4. We classify the security level of SCADS in such a scenario
as more safe, because it is capable of protecting against these
exploits.

According to the performance analysis that has been
performed in [29, p. 70, sec. 3.4.1], MSC does introduce only
minor performance impacts. SCADS is also designed to cause
as few performance overheads as possible. Nevertheless, the
fact that MSC does not occupy an additional register for the
maintenance of the stacks may result in more optimal code.
The memory overhead that comes with MSC is rather high:
“The drawback of this countermeasure is that it results in gaps
on the remaining stacks, resulting in wasted memory” [29, p.
69]. All five stacks are allocated with the same size, which is
the maximum size of the unified stack, that needs to be known
at compile time. For the storage of the specific data types, that
are placed on each of the five stacks, no reordering is fulfilled,
to prevent an internal fragmentation as shown by [29, p. 69,
fig. 3.3]. This leads to the problem that MSC causes a memory
overhead of 5 ∗ sizeof stack when all five memory segments
are mapped to physical memory, which happens as soon as all
of the stacks have been used once with an arbitrary operation.
So in contrast to a binary that is not been protected with MSC,
the memory overhead is increased fivefold and the overall
overhead is dependent on the size of the stack, leading to an
even worse decline in memory usage, the higher the original
stack memory consumption of a program is.

With SCADS we do have an initial memory overhead that
cannot be weed out, but in comparison to MSC, SCADS tends
to compensate the initial memory overhead the more memory
is used by an application at runtime, instead of even increasing
the overhead. Furthermore, the initial memory overhead with
SCADS is of static size and is explicitly one page (needed
to be allocated for the initialization of the data stack) while
the memory overhead of MSC is dynamically increasing with
the maximum size of the stack. Regarding memory analysis,
Younan states [29, p. 72, sec. 3.4.2] that it may be possible to
reduce the memory consumption for future work, but it is not
an available feature yet.

With SCADS we have the full ability to eliminate the frame
pointer in stack frames, which do not need a frame pointer
for their data management, whereas MSC is designed to be
dependent on the use of a frame pointer in every stack frame.
“[The] frame pointer is used as a fixed location access [. . .]
because the value of the register containing the stack pointer
changes whenever a variable is pushed or popped from the
stack” [29, p. 68, sec. 3.3.2]. Hereby MSC unfortunately loses
a simple performance optimization technique.

3.3.2. SCISM. SCISM [14] again is a similar concept to
SCADS, though it differs in some essential details. SCISM
manages two stacks for data separation, very similar to

11EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

SCADS. It allocates the second stack, that is responsible for
the storage of the control flow data, within the data segment.
One difference to SCADS is the size of the stack, managing the
control flow information. In SCISM the stack is allocated with
fixed size, defined at compile time. In case the size of the stack
is not sufficient, the additionally created control-flow data
is migrated to an isolated area within the heap. This forces a
permanent, performance-decreasing check for data to be stored
on the “local stack” [14, sec. 3.2], whether it already exceeds
the maximum size. SCADS allows an automatic growth of
the control stack, therefore making any boundary checks
unnecessary and allowing a more dynamic way of using the
stack. SCISM’s behavior in this case is not only decreasing
the performance, especially when the size if the stack gets
exceeded, but it also causes an initial memory overhead due to
the local stack initialization with a static size.

Another performance-limiting difference between SCADS
and SCISM is the task specification for the two stacks. SCISM
uses the original unified stack for the storage of regular
data, while the stack in the data segment is responsible for
the storage of control-flow information like return addresses
and saved frame pointers. SCADS twists the management
vice versa, by using the unified stack (managed by %rsp)
as control stack, and the data stack is the memory segment
to be newly allocated. This may sound like an unimportant
difference, but in fact it has an influence on the performance
of the security measure. The call and ret instructions of
the x86-architecture are defined to use the the register %rsp
for their memory access (either storage or retrieval of return
addresses) and there is no option to alter this behavior. The
consequence for SCISM is, it has to perform copy operations
to move the return address between the stacks, because it
is not implicitly placed on the right stack. This results in a
performance overhead for SCISM which is not present in
SCADS, because the control stack is managed via %rsp,
causing all return addresses to be immediately stored in the
right place, thus making any copy operations unnecessary.
However, in consequence to the different usage of the two
stacks, SCISM does not incorporate incompatibilities to legacy
code, as the calling convention is not altered and parameters
are accessed via %rsp.

Just like MSC, SCISM does not make use of reserved
registers for the maintenance of its stacks. This again causes
the problem, that the location of the local stack is not
randomized at runtime. “The offset of the first address for SFM
data area from the begin of the static data block is float and
decided randomly within a certain constant c [. . .] The offset is
fixed in once compile[d] and varied in different compilers.” [14,
sec. 3.1] Furthermore the fact that the data segment’s start
address is also not randomized by ASLR on Linux, makes it
especially easy for an attacker to reach the local stack and its
managed data when random access write is gained. Once more
we want to emphasize that we consider a known location of the
second stack as a severe vulnerability towards various exploits
(as shown in section 4)

3.4. Hardware-Assisted Approaches

In 2009, Francillon et al. [13] presented a multi-stack
approach similar to SCADS in the sense that data and control
information are stored separately on two distinct stacks.
In their work, however, the authors propose a hardware-
assisted modification for embedded systems like the AVR
micro controller and prove the effectiveness of their approach
based on FPGA simulations. A hardware-assisted solution
has the advantage that insructions like call and ret can be
modified in a way that return addresses are placed directly on a
secure stack without being accessible for user instructions like
mov. On the downside, hardware-assisted solutions cannot be
deployed to end-users easily and cannot be elevated to the x86
architecture easily.

Only established companies like Intel and AMD are in the
position to deploy security-related hardware changes with a
practical impact for x86. In a U.S. patent from July 2014 [11],
AMD proposes the encryption of return instruction pointers. In
this approach, data and control information are not separated
on two distinct stacks – and hence, control information can still
be overwritten. But as instruction pointers are encrypted, they
cannot be modified in a predictable manner. This solution is
not available on the market during the time of this writing, but
the patent states a minimized performance overhead similar to
SCADS because the encryption takes place in hardware. As an
advantage over SCADS, recompilation of existing code will
not be required.

With the Memory Protection Extensions (MPX) [7, 21],
first proposed in June 2013 as an extension for Intel x86
architectures, Intel presented a concept built upon the idea
of integrating boundary checks for buffers. This way, buffer
overflows shall be prevented and with it any exploits that make
use of buffer overflows. The mechanism of MPX addresses
exploitation prevention at an even earlier stage than SCADS.
A compiler, which implements the mechanism of MPX is used
to integrate the boundary checking into any program code to
be compiled. Boundary checking, however, is not present in
the specification of the programming language C.

For the boundary checks, “Intel MPX introduces new
bounds registers and new instructions that operate on bounds
registers” [7, sec. 9.3]. These bounds registers are split up into
a high and low part of 64 bit size each. When configured for
a buffer, such a bounds register represents the lower as well
as the upper bound of the corresponding buffer, according to
its length. Before an element within the buffer is accessed, a
check using its assigned bounds register is made to verify that
the access does not exceed the limits of the buffer: “An out-
of-bounds memory reference then causes a BR exception.” [7,
sec. 9.3]. As long as boundary checking can be performed
for any single buffer, MPX should be capable of preventing
all buffer overflows. However, MPX does not have unlimited
bounds registers, but only four of them. A topic of interest
might be what happens when more than four buffers are active
within a single stack frame. In case MPX saves any of the
bound registers to the stack to switch between the buffers to be

12EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

operated, this introduces another vulnerability as soons as an
attacker finds a way to modify the value of the bounds register
on the stack. Unfortunately, we were not able to solve these
questions at the time of this writing, because MPX was not yet
available yet.

4. Security Evaluation

We now inspect the security that can be achieved by using
SCADS as defensive approach against known stack smashing
techniques. The task to visualize and explain the security level
of a defensive method can be highly complex. The achievement
of a formal verification is impossible when it comes to a
randomized memory layout, which is an essential requirement
of SCADS to guarantee the protection against advanced types
of exploits. Therefore we do not seek to verify the security of
SCADS formally, but instead focus on giving as many relevant
examples of common stack smashing exploits as possible. We
apply these exploits to programs compiled with SCADS to
analyze their effectiveness.

At the same time, we want to discuss the effectiveness of
SCADS in contrast to other security measures to point out
the uniqueness of our defensive technique. To perform this
task, we stick with the most commonly used and widespread
alternative approaches known, which we decided to be
StackGuard [10] and StackShield [2]. Both of these methods
share the high priority target with SCADS to protect the return
instruction pointer from illegal misuse and modifications. Thus
they are suitable for an appropriate comparison with SCADS,
regarding the level of protection that can be achieved in each
case.

In case the return address can be modified permanently
without notification, any of the three concepts can be seen as
vulnerable against an attack. Thus we simplify our security
analysis to exemplary exploits which try to modify the return
address permanently. Any tasks beyond the modification of the
return address, which are normally performed by real world
exploits to invoke the execution of malicious code are ignored
in this analysis. Any attack vector we construct for an exploit
does therefore only include the data to overflow a supplied
buffer and to reach a return address by whatever means.
For the details that follow on the successful modification of
return instruction pointers, the reader may have a look at the
known literature [17, 19, 20], where several stack smashing
techniques are explained and referenced entirely.

As shown in listing 9, each of our test binaries is compiled to
incorporate the StackGuard, StackShield or SCADS defensive
mechanism. The compilation of the SCADS binary is slightly
more complex, because the flag which enables SCADS
(-num-stacks) has been implemented in the compiler’s
back-end (LLVM). Hence, the LLVM build process needs
to be split up into three parts (intermediate code generation,
machine code generation and linking), as long as SCADS is not
enabled by default. We used StackShield v0.7 and GCC v4.6.3
for generating the binaries with StackShield and StackGuard
activated.

Listing 9: Build commands for binaries compiled with SCADS,
StackGuard and StackShield.

StackGuard build process
gcc -O0 -fstack-protector -std=c99 -o binary_name

source_name

StackShield build process
shieldgcc -O0 -std=c99 -o binary_name source_name

SCADS build process
clang -O0 -emit-llvm -S -o intermediate_name source_name
llc -O0 -march=x86-64 -num-stacks=2 -o asm_name

intermediate_name
clang -Xlinker --wrap=main -o binary_name asm_name

main_wrap.o

4.1. Simple Buffer Overflow

As first example we want to present a simple exploit abusing
buffer overflows. It is only successful on older systems and
binaries without further security measures in use, like ASLR
and DEP. Although the presented exploit may be rather
harmless today, we want to prove that SCADS alone protects
against such an attack, and compare the effectiveness with
StackGuard and StackShield. For this purpose we use an
abbreviation of an example presented in Aleph One’s summary
of various stack smashing techniques from 1996 [20].

The source code of the frame work, that is used to establish a
vulnerable environment for the exploit can be seen in listing 11.
Within this example, the vulnerability is caused by the function
strcpy. The function does not check the size of the output
buffer according to the size of the input data. Thus, it is easy
to cause a buffer overflow when a string as parameter is used
whose size is larger than the output buffer.

Listing 10: Attack vector to exploit framework I.

char attack_vector[120];

// fill attack_vector with 120 bytes of
value 0xff

void set_attack_vector(){
for(int i = 0; i < 120; i++){

attack_vector[i] = ’\xff’;
}

}

Our three test candidates differ in their implementation
details, so we cannot use the same attack vector for all three
concepts, with the same expectations in general. To justify
the effectiveness of an exploit, the attack vectors must be
individually defined for every single of the three concepts
we investigate. Nevertheless, this example is basic enough
that it allows the same attack vector to be used for SCADS,
StackGuard and StackShield equally. The exploit we want to
introduce with this example, constructs the attack vector in
such a manner that it writes data to the buffer, to try to linearly

13EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

Listing 11: Exploit framework I (inspired by [20]).

#include <string.h>

void overflow_function(char *str) {
char overflow_buffer[8];

// buffer overflow occurs here
strcpy(overflow_buffer,str);

}

int main(int argc, char **argv) {
set_attack_vector();
overflow_function(attack_vector);

return 0;
}

overwrite the return address which is expected to be above the
overflowed buffer.

The resulting attack vector, to perform the stack smashing
attack, is described by listing 10. We fill the attack vector
simply with 120 bytes of the value 0xff. The size of the
buffer is not necessary to be 120 bytes large, but we just chose
a size that is large enough to generate an appropriate reaction
on all three compiled binaries.

The attack strategy for this exploit is rather simple and is
outlined by figure 5. It uses the strcpy function to cause
a buffer overflow on the entitled overflow_buffer (see
listing 11). To reach the control flow information (i.e. the
return instruction pointer) on the stack, the exploit just fills the
buffer with the attack vector declared in listing 10 to linearly
overwrite all the space between the start of the buffer and the
return instruction pointer, until it eventually reaches the return
address itself.

4.1.1. StackGuard. We first take a look at the behavior
of StackGuard towards the exploit. We already know from
section 3 how the memory layout is theoretically organized
for binaries compiled with StackGuard activated. In fact the
memory layout does not differ much from the one of an
arbitrary ELF binary at runtime, without any further security
mechanisms. The essential difference is the canary that is
placed right under the saved frame pointer (or right below the
return address if no frame pointer is in use). This canary is
also the hurdle the exploit needs to surpass to be effective and
perform the action it is intended for.

In figure 6 we see what happens when the exploit overwrites
the memory of the process invoked with the StackGuard
binary. As the memory layout of StackGuard does not differ
immensely from any general layout, figure 6 does only differ
slightly from the fictive memory layout shown on figure
5. The only difference is the section that is highlighted
in red, which is obviously the stack slot that is occupied
by the canary, generated by the StackGuard compiler. By
looking at figure 6(b) to the right, we can see the change

Return Address

Frame Pointer

...

Buffer

...

...

(a) Memory layout before overflow

...

...

...

0xff
0xff
0xff
0xff
0xff
...

0xffffffff
0xffffffff

0xffffffff 0xffffffff

0xffffffff 0xffffffff

O
v
e
rfl

o
w

(b) Memory layout after overflow

Figure 5. Memory layout of the exploit framework
described by listing 11 (without the usage of any security
mechanism) before and after initiation of a simple exploit.

that has been made, after the buffer overflow occurred. The
presented exploit does not perform any actions to bypass
the stored canary, but just overwrites it completely with a
value, different from the original. As reaction, the StackGuard
mechanism detects the buffer overflow before returning from
the overflow_function (ref. listing 11), because a check
is made to verify the integrity of the canary value. Finally this
leads to a signification to the user, about the buffer overflow
that took place, and to the abortion of the program in the
end. Undoubtedly, the StackGuard mechanism has the ability
to prevent a successful exploitation by a stack smashing
technique of the presented type.

14EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

Return Address

Frame Pointer

...

Buffer

...

...

Canary (random)

(a) Memory layout of a StackGuard
binary before the buffer overflow

...

...

...

0xff
0xff
0xff
0xff
0xff
...

0xffffffff
0xffffffff

0xffffffff 0xffffffff

0xffffffff 0xffffffff

0xffffffff 0xffffffff

O
v
e
rfl

o
w

(b) Memory layout of a StackGuard
binary after the buffer overflow

Figure 6. Memory layout of the exploit framework
described by listing 11 compiled with StackGuard.

4.1.2. SCADS. Next up, we find out whether the SCADS
approach is also able to deal with the exploit, to not allow
further malicious actions to be performed. In contrast to
StackGuard, with SCADS we do have greater change in a
process’ memory layout. We want to remind the reader that
SCADS uses two stacks instead of one.

Figure 7 represents the memory layout of a process
executing the SCADS binary. Neither return addresses nor
saved frame pointers are stored on the data stack where
the overflow_buffer from our example resides. The
control flow data is here located on the control stack, which is
separated from the data stack by a large block of unallocated

...

Buffer

...

...

Frame: overflow_function

parameter

Frame: main

command-line arguments

Frame: main

Frame: overflow_function

not allocated

Return-Instruction-Pointer

Return-Instruction-Pointer

saved frame pointer

saved frame pointer

Control-Stack

Data-Stack

(a) Memory layout of a
SCADS binary before
the buffer overflow

...

...

...

Frame: overflow_function

Frame: main

Frame: main

Frame: overflow_function

not allocated

Return-Instruction-Pointer

Return-Instruction-Pointer

saved frame pointer

saved frame pointer

Control-Stack

Data-Stack

0xff
0xff
0xff
0xff
0xff
...

0xffffffff

0xffffffff 0xffffffff

0xffffffff

0xffffffff
0xffffffff
0xffffffff
0xffffffff

...

O
v
e
rfl

o
w

(b) Memory layout of a
SCADS binary after the
buffer overflow

Figure 7. Memory layout of the exploit framework
described by listing 11 compiled with SCADS.

memory. To reach the control flow data, subsequent to a
previously enforced buffer overflow on the data stack, the
attacker’s exploit needs to somehow bypass the unallocated
memory space and continue overwriting the necessary data on
the control stack.

Though, the exploit we presented is yet only simple and does
not perform any complicated actions to skip the unallocated
memory block. As explained earlier, it just overwrites the
memory above the buffer linearly. Hereby it reaches the border
of the data stack (highlighted in red within figure 7(b)) and
tries to write to non-allocated memory. This causes the process
to terminate with a segmentation fault, leaving the control flow
data on the control stack completely untouched. Consequently,
the exploit is not able to harm the control flow data within
the SCADS environment, leaving SCADS immune to such an
exploit.

4.1.3. StackShield. Last but not least, we take a look at
the result of the StackShield’s trial. It is not necessary to
visualize the memory layout of a StackShield process for this
example individually. In fact, the layout is nearly identical
to the one presented by figure 5. The only difference is the
redundant storage area located within the data segment, below

15EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

the stack. This area inhabits the copies of all redundantly
duplicated return addresses. But the fact that the data segment
lies below the stack, while the buffer overflow occurs towards
the top of the stack makes it impossible in this case to reach
any return address within the data segment, and to modify it
permanently. Instead the exploit just overwrites the temporary
return address on the stack, which is afterwards detected by
StackShield, due to a comparison of the temporary return
instruction pointer on the stack, with the redundant copy from
the data segment. Further on, this leads to the same reaction
as we have seen from StackGuard. The buffer overflow is
indicated to the user and the StackShield mechanism causes
the process to abort its execution (if not configured differently).

Therefore, also StackShield is capable to defend against the
presented exploit successfully. Summarized, we can confirm,
that all of the three defense concepts were either able to detect
and prevent the exploit from taking control over the program’s
control flow, or were completely immune to the attack scheme
by leaving no chance to reach the control flow information for a
malicious modification. So SCADS is fully capable to prevent
a successful exploitation when it comes to a simple stack
smashing technique. While this alone may not be fascinating,
the effectiveness of SCADS can only be stated step by step and
we now continue to investigate more complex attack schemes.

4.2. Frame Pointer Overwrite

In [22], Richarte Gerardo lists a few examples how to exploit
StackGuard and StackShield successfully. One of the examples
describes the modification of the saved frame pointer to alter
the control flow consequently. Though this scheme is not
usable anymore to attack StackGuard, because since the paper
[22] has been released, modifications have been made to the
implementation of StackGuard. Most notably the saved frame
pointer is now also protected by canaries placed on the stack.

The idea of altering the frame pointer to be indirectly
able to alter a process’ control flow originates from the way,
how a stack frame is cleared. Listing 12 shows the essential
machine instruction (highlighted in red) that is needed to make
such an attack possible. This instruction moves the value of
the frame pointer register into the stack pointer register. By
overwriting the saved frame pointer of a stack frame, one can
get control over the stack pointer in the next upper frame and
abuse this circumstance by setting it to a location within the
memory where a self-prepared return address lies. On return,
the instruction pointer is then set to this address, thus the
control flow is redirected to wherever the attacker wants it.

Listing 12: Machine code showing stack frame initialization.

prolog
push %rbp
sub 0xff, %rsp
...
epilog
mov %rbp, %rsp
pop %rbp

Note that the necessary instruction, which causes the
vulnerability, may not be present for every single function.
The swapping of the frame and the stack pointer can also be
replaced by increasing the stack pointer with an appropriate
value, using the add instruction (due to the stack’s direction
of growth). This leads to the same result, of the stack pointer
being set to the address right below the saved frame pointer
of the last stack frame. The Clang/LLVM-compiler uses the
sub/add instruction for most of its stack frame management.
But it may be possible that it switches to the register swapping
in some cases, when optimizations are in use.

We do not introduce an additional exploit for this attack
strategy, because the one from the previous example (see
section 4.1) can be used the same way. Nothing changes except
of the data structure, which is now the target of the exploit
and is intended to be modified. SCADS is invulnerable against
this attack mechanism, because the frame pointer is defined
as control flow data. Therefore the saved frame pointers lie
on the control stack, separated from any buffers, which may
overflow. If no more complex actions are performed by an
exploit to reach the control stack, without causing the program
to abort, then it is not possible to modify the frame pointer by
overflowing a buffer on the data stack. The scenario can be
well compared to the first example we presented within the
security analysis, where we already explained why the exploit
fails to reach the control flow information on the control stack.

4.3. Indirect Pointer Overwrite
In 2000, Bulba and Kil3r presented an article [17] that
addresses the exploitation of StackGuard and StackShield.
As we want to compare SCADS with both of them, the content
of this article is useful regarding the evaluation of SCADS’
security. Especially one attack mechanism that was introduced
by this article is of interest. It uses regular pointers within a
function, under certain circumstances, to gain the ability of
random write access to any address of the process’ memory.
This makes it possible, to bypass canaries without overwriting
them. There was no precise name given for this kind of attack
scheme, but we label it “indirect pointer overwrite”.

Listing 13: Attack vector to exploit framework II.

char attack_vector_1[64];

// text segment address of "secret()"
char attack_vector_2[9] =

"\x70\x06\x40\x00\x00\x00\x00\x00";

void set_attack_vector(){
for(int i = 0; i < 32; i++)

attack_vector_1[i] = 0x42;

// overwrites the least-significant
byte of the pointer "v_pointer"

attack_vector_1[32] = 0x48;
}

16EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

Even though, canaries have been later on improved to
protect against such exploits as well, in order to let SCADS
compete with StackGuard and StackShield, we analyze the
behavior of SCADS against this type of exploit and discuss the
differences to concepts. Note that the exploit we present in this
section, shall act as a wildcard for any type of stack smashing
technique, which makes use of random access write ability, to
perform its attack strategy. This time we set the precondition
that ASLR is activated when the exploit is executed. As ASLR
is not existent on FreeBSD at the time of this writing, the
following test cases were compiled and executed on Linux
only.

Listing 14: Exploit framework II (inspired by vul.c from [17]).

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

struct pack {
char buffer[32];
char *v_pointer;

};

void secret(){
printf("S3CR3T HAS BEEN BREACHED!");
exit(0);

}

void vuln_function (){
struct pack p;

p.v_pointer = p.buffer;

// buffer overflow occurs here
strcpy(p.v_pointer, attack_vector_1);

// writing to previously set memory
location

strncpy(p.v_pointer, attack_vector_2,
16);

}

int main (int argc, char **argv) {
set_attack_vector();
vuln_function();

return 0;
}

A sample framework allowing the execution of an indirect
pointer overwrite exploit is shown with listing 14. The
source code is taken from [17, vul.c] and displays a
vulnerable use of the regular pointer v_pointer in function
vuln_function. For a working exploit, this example needs
at least two user inputs, handled the way as shown in listing 14.
On the stack, a modifiable pointer is located, which is set to
an address within the current stack frame. This pointer is then

overwritten by the misuse of strcpy, which causes a buffer
overflow in case the output buffer is not large enough, as we
already know. Note that the key idea of this exploit is not to
overwrite the return address itself by the caused buffer overflow
(mostly because it is not possible successfully), but only to
overwrite the regular pointer, which is stored on the stack,
below the return address. The actual modification of control
flow data happens afterwards, when the modified pointer is
dereferenced, and the memory location is then overwritten, due
to a write access using the second user input. In our example
the use of strncpy on the pointer fulfills this necessary task.

Modern compilers nowadays may resort the order of local
variables stored within a stack frame, leaving any buffers to be
the topmost variables with all the rest below them. This would
affect the exploit, because it would no longer be possible to
overwrite the vulnerable pointer with a buffer overflow. Instead
a buffer underflow (similar to the examples shown in [1])
would be needed to accomplish the modification. But buffer
underflows are rare to meet, and we do not want to diverge too
far from real-world relevant exploits. That is why we included
the vulnerable pointer v_pointer as well as the buffer
into a struct, which is then placed on the stack. Reordering is
not performed on the internals of structs, therefore listing 14
fulfills all necessary conditions, explained in [17] to get the
exploit working.

With the presented attack vectors (see listing 13) we want
to overwrite the pointer with an address to the control flow
data (the return address) on the stack, and then modify it using
the second portion of the attack vector, to let it point into
a code section, different from the original control flow. We
have inserted the function secret which is actually never
called by the regular control flow of the program. With this
function we want to prove whether the exploit was successful
or not. So we use the address of secret within the text
segment as new value for the return address to be modified.
It is easy to retrieve the address of the secret function,
because the text segment is not randomized by ASLR[26]. By
analyzing the compiled binary we can obtain the address we
need and use it for the second attack vector. The exploit is
then found to be successful when the printf message of
secret appears on standard output. Note that the value of
the attack_vector_2, shown in listing 13, is bound to our
test case. Any recompilation of the binary would much likely
change the address of the secret function and therefore the
value we need to set for the attack_vector_2.

The complexity of the exploit does not longer allow
us to use the same attack vector for all of our three test
programs. It is rather necessary to use individual attack
vectors to not lower the effectiveness of the exploit on
each of the defensive concepts. In fact only the first attack
vector (attack_vector_1), which causes the overflow and
defines the address of the return instruction pointer, needs
to be altered to fit the given concept. The second attack
vector, containing the address to the code to be executed,
shall not change, as long as the source code does not change.

17EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

Nevertheless, in case it changes, the new value can be obtained
by having a look at the binary’s dump, which is of no relevance.

...

...

Buffer

vulnerable Pointer
Canary

saved FP
Return Address

O
v
e
rfl

o
w

(a) Indirect pointer over-
write on StackGuard

...

...

Buffer

vulnerable Pointer

O
v
e
rfl

o
w

...

Control-Stack

Data-Stack

Return Address

(b) Indirect pointer over-
write on SCADS

...

...

Buffer

vulnerable Pointer

O
v
e
rfl

o
w

...

Return Address
...

Stack

Data-Segment

(c) Indirect pointer over-
write on StackShield

Figure 8. Exploit using an indirect pointer overwrite on
StackGuard, StackShield and SCADS.

Figure 8 describes the attack strategy on all three
defensive concepts visually. One can clearly see that attacking
StackGuard in contrast to StackShield and SCADS may be
the easiest task in comparison, because of the relatively small
distance between the vulnerable pointer and the return address.
On the other hand, the defense of StackShield and SCADS
seems to be very similar in this case. Both concepts do manage
their persistent control flow data within a memory segment
different from the one that contains the vulnerable pointer.
Therefore the chance for a successful exploit depends on how
simple it is, to find out the address of the segment storing the
control flow data, to reach it and modify the return address.

In the article[17], Bulba and Kil3r did not mention the
presence of ASLR when trying to use the indirect pointer
overwrite exploit. Though, we want to extend the analysis to an
environment with ASLR activated for two reasons. First, Bulba
and Kil3r have already proven the vulnerability of StackGuard
against indirect pointer overwriting without ALSR, and we do
not want to reinvent the wheel. Second, ASLR is a necessary
component for the security of SCADS later on, regarding
this example. So to apply the same standards, we also test the
indirect pointer overwrite on StackGuard and StackShield with
ASLR activated.

The attack mechanism is closely related to the ret2ret
attack strategy[19, section 8.1], which can be applied when
ASLR without DEP is in use. Except for the direction, to
which the vulnerable pointer shall be modified. When using
the ret2ret strategy, normally the shellcode is being placed
below the modified pointer on the stack. With strcpy as
present vulnerability, it is easy to modify the least-significant
byte of such a pointer towards lower addresses, as strcpy
automatically inserts a null terminator as last ASCII-character
to the output buffer. This makes it possible to reach a NOP-
slide [19, section 8.1], delivered with the overflowing payload.

In our case, to be more precise in the case of SCADS and
StackGuard, we want to modify the vulnerable pointer in such
a way that it points to a location above itself, more specifically
to point to the return address which definitely lies above the
pointer on the stack. Altering the whole address of the pointer’s
value with the intention to hit the return address would be an
impossible task, due to unknown addresses because of ASLR.
So it is necessary to reduce the modification to as few bytes as
possible, for a high chance to hit the target destination. Under
these circumstances, the null terminator, which is inserted
by strcpy, does not come in handy. Figure 9 shows some
exemplary results of more or less well modified pointers.

We need to raise the least-significant byte of the pointer
instead of lowering it. That is why we cannot let strcpy
overwrite the least-significant byte with the null terminator, as
the produced address would, by all means, be lower than or at
least equal to the original. Thus, the produced address would
become useless for the presented exploit, as it would fail to
reach its destination. In case we try to manipulate the least-
significant byte by ourselves, strcpy would then alter the
second least-significant byte of the pointer with the inserted
null terminator, and consequently lower the address once again
instead of raising it. The only chance we have, is to set the
least-significant byte to a static value and execute the exploit
often enough, to let ASLR produce the type of address we need,
to successfully raise it towards the return address, similar to
the example shown by figure 9(c).

vulnerable_pointer = 0x????????????00XX

with ”??” ∈ [0, 28 − 1], ”XX” < attack_vectorLSB

(3)

18EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

0xffffffffffffffff
00

...

...

(a) Exploit lowering the pointer

0xffffffffffffffff
00aa

...

...

(b) Exploit lowering the pointer

0xffffffffffff0099
00aa

...

...

(c) Exploit raising the pointer

Figure 9. Exemplary results of pointer modifications
using strcpy to alter at most two least-significant bytes.

?? 0x00 0xXX
63 ... 56 55 ... 48 47 ... 40 39 ... 32 31 ... 24 23 ... 16 15 ... 8 7 ... 0Bits

Bytes ?? ?? ?? ?? ??

Figure 10. Illustration which bytes, and in which way
these bytes of a vulnerable pointer must be modified, for
the exploit to succeed with StackGuard.

To be more specific, in case of StackGuard, we need the
pointer to meet the conditions of equation 3 (also shown by
figure 10 in detail). While anything above the second least-
significant byte needs not to fulfill any condition because

these bytes are not altered, the second least-significant byte
must have the value 0x00, because there the null terminator
is inserted by strcpy, and the least-significant byte must
be of a lower value than the one we insert into the attack
vector to modify it. This way we would successfully raise
the pointer’s value to a higher address, but to hit the return
address exactly, we would also need the difference between
the two least-significant bytes of the vulnerable pointer and
the self-constructed attack vector, to be the same as the
distance between the return address’ stack slot and the address
the vulnerable pointer points to. addr(return_address) here
denotes the location of the return address on the stack.

|addr(return_address) − vulnerable_pointer |
=

|vulnerable_pointerLSB − attack_vectorLSB|
(4)

this can only be achieved by brute-force and the number of
random bytes which need to fulfill static requirements, define
the probability of the event to be met. As the address the
pointer needs to hit as target is more or less different from the
original pointer’s value, depending on the defensive concept
that is used, this also results in a more or less high chance for
the brute-force attack to be successful. Intuitively, the exploit
may therefore be most effective on StackGuard in theory. If
all the described conditions are fulfilled, the return address is
modified to point to the secret function, and its execution
shall take place as soon as the vuln_function returns.

4.3.1. StackGuard. We first want to take a look at the
exploit’s success or failure on StackGuard. As we explained,
the exploit is very likely to not succeed on the first try, but it is
necessary to execute it a couple of times to raise the chances for
a successful exploitation. For this purpose we wrote a wrapper
script which invokes the program a couple of times. The script
invokes the StackGuard-protected binary 10000 times and
just redirects the output of the program to stdout. In case the
program does not exit successfully, a message is printed to
indicate a segmentation fault. In case of a success though, we
expect the output to show the phrase printed by the secret
function. The binary that is being executed is the compilation
of listing 14, using the attack vectors described by listing 13.
In this scenario, the brute-force mechanism is twisted, as we
do not alter the input data (i.e. the attack vectors), but leave
them static for all executions. We simply let ASLR perform the
brute-force mechanism, by the randomization of the stack’s
starting address, so that we have the chance to hit the needed,
randomized address, which fits our attack vector precisely.

As a result, our indirect pointer overwrite exploit on
StackGuard, using the script for 10000 invocations, has
executed the secret-function eight times successfully, i.e.
the exploit in its entirety was successful. Two times we have
modified the canary, thus enabled StackGuard to notice the
buffer overflow, two times we have modified some addresses
erroneous, causing a segmentation fault and the rest of the
10000 invocations has not achieved a meaningful event. This

19EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

can be already classified as success for the exploit, as we were
able to manage to redirect the control flow. Nevertheless, we
have tested a couple of more invocations and summarized the
result in table 1 to strengthen the statistical value.

success detection segfault
amount 477 262 262
percentage 0.0477 % 0.0262 % 0.0262 %

Table 1. Table listing the amount of events occurred after
one million executions of the StackGuard exploit.

The second row of the table represents the percentage of
the three possible events with 1 million invocations. The table
shows that the number of detections and segmentation faults
are closely related or are identical in this case. This can by
explained by the fact that any detection leads to an abortion of
the program, thus being caught by the wrapper script to print
that a segmentation fault occurred. But in general, the exploit
could also lead to a segmentation fault, by the modification
of sensitive data different from canaries, which would then
cause the program to terminate. In our example this did not
happen even once. But more important is the fact that the
testing sequence achieved 477 successful exploitations within
1 million executions. The second row of the table shows the
percentage of the events in contrast to the number of tries,
leaving the column, which indicates the successful tries, at
far less than one percent. Nevertheless, regarding the very
small execution time of the program, which may not only be
of artificial nature if we think of background daemons with
a high response-rate, this kind of exploit can be relevant in
real-world matters.

4.3.2. SCADS. We now take a look at SCADS as
competitor. We use exactly the same exploit as we did for
StackGuard, but to ensure the operability of the exploit, we
need to alter the first attack vector when testing with SCADS.
We need to ensure that the modified pointer points somewhere
into the control stack, directly on a return address in the best
case. To find out how exactly we must modify the attack vector
to fulfill this condition (still depending on random factors
because of ASLR), we take a look at the theory of the data
stack allocation presented in section 2.1.2. We know that the
data stack is initially set 64 MiB below the control stack, and
afterwards its 24 least-significant bits are randomized. This
knowledge suffices, to limit the location of the control stack,
relative to the data stack, roughly. With the information from
equations 1 and 2, equation 5 can define the rough limitation of
the data stack (DS) location relative to the control stack (CS),
considering a maximal stack extension of 8 MiB. Equation 6
contains the same information in “simpler” readable form.

InitAddressDS + (4 ∗ 224 − 223) ≤ InitAddressCS

< InitAddressDS + (4 ∗ 224 + 223)

InitAddressDS +
7
2
∗ 224 ≤ InitAddressCS

< InitAddressDS +
9
2
∗ 224

(5)

InitAddressDS + 56MiB ≤ InitAddressCS
< InitAddressDS + 72MiB

(6)

The essential knowledge we can retrieve from these
equations is that the data stack is at least 56 MiB away from the
control stack initially (as long as the maximal stack extension
is set to 8 MiB). Moreover we know that the control stack lies
above the data stack. Therefore we can now define, that the
vulnerable pointer we modify with the exploit, must be raised
for at least 56 MiB to even come close to the control flow
data on the control stack. Though the value must be greater in
general, because the equations define the initial addresses of
the stacks (at the end of the initialization phase), before data
has been pushed onto them – which may eventually increase
the gap of the stack pointers later on.

?? 0xXX
63 ... 56 55 ... 48 47 ... 40 39 ... 32 31 ... 24 23 ... 16 15 ... 8 7 ... 0Bits

Bytes ?? ?? 0x00 0xXX0xXX0xXX

Figure 11. Illustration which bytes, and in which way
these bytes of a vulnerable pointer must be modified, for
the exploit to succeed with SCADS.

We now define how the attack vector must look like to have
a chance for successful exploitation on the SCADS binary. As
we need to raise the pointer for at least 56 MiB, we need to
increase the fourth least-significant byte of it at the minimum.
If we do modify less than the fourth least-significant byte, we
are not able to reach the control stack at all. This leads us to a
pointer adjustment defined by equation 7 and figure 11. The
attack vector itself can be deduced from this equation.

vulnerable_pointer = 0x??????00XXXXXXXX (7)

Similar to the attack vector we used for StackGuard
(equation 3), the “XX” define the last bytes of the actual attack
vector that do already overwrite the vulnerable pointer. The
other bytes fill the buffer of our example framework and are
therefore not mentioned here. The “??” are the bytes of the
pointer that are not being altered, the “XX” are the four bytes
we have to adjust to make it point to the control stack, and we
want to recall that the null byte in the middle of the address
occurs due to the behavior of strcpy, which places the null
byte as terminator beyond the last (non-null) character that
was copied. The bytes modified by the exploit can be chosen

20EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

randomly, as we need to brute-force the execution anyway.
Only the least-significant byte needs to be 8 byte aligned, as
the placement of the return address to be hit, is also 8 byte
aligned. The other three bytes can be chosen arbitrarily, and
we let ASLR generate the correct, randomized address for the
exploit once again.

success segfault
amount 0 1 000 000
percentage 0.0 % 100.0 %

Table 2. Table listing the amount of events occurred after
1 million executions of the SCADS exploit.

Table 2 shows the result of the one million executions of the
exploit, this time with the SCADS binary. We used the same
script for the brute-force attack as the one used for StackGuard,
only the binary to be executed has been replaced in the source
code of the script. There is no more detection column in the
table, because SCADS does not check for buffer overflow
occurrence. The result looks completely different from the
one of the StackGuard test case as no successful exploitation
took place and moreover all executions terminated with a
segmentation fault. The reason for this result does not lie
within an unwise choice of the attack vector, but the reason
itself is the randomized gap between the control and data
stack. ASLR does not randomize more than 32 bit of any
segment’s address and therefore, the fifth least-significant byte
of the control stack was never zero. Moreover the address
we generated with the attack vector always points into a non-
allocated memory region, due to the null byte in the middle,
and so causes the segmentation fault on every execution.

The only remaining option for the exploit to work on
SCADS, is a brute-force attack that modifies more of the
vulnerable pointer than just the lowest part of it. As the first
four bytes of the address are known to be 0x00007fff
one must set the remaining 4 bytes to any randomly chosen,
8 byte aligned value and try to execute the exploit often
enough to raise the chances of the return address to be
located at the chosen address. However, this leaves the exploit
with a chance for success that is equal to the probability
of choosing a number between [0, 229]. Hence, a successful
exploitation can be considered highly unlikely. We repeated
the test, by setting the address in the attack vector to the value
0x00007fff854c5f48, which is completely randomly
chosen, and let ASLR do the brute-force attack for us once
again. Several million executions yielded the exact same result
as shown by table 2, though. Therefore we were not able
to attack SCADS with an indirect pointer overwrite by the
execution of a brute-force attack.

As a conclusion we can say that this exploit is unable to
harm SCADS in our test case. The success is dependent on
the probability of hitting the randomized address of need.
However, this probability is rather low due to the randomized
distance of the control and data stacks, making it necessary to
perform a long enduring brute-force attack.

4.3.3. StackShield. Finally, we inspect the behavior of
StackShield towards the presented exploit. Once again we
need to alter the attack vector accordingly. We modified the
brute-force script to now alter the first attack vector in each
iteration of the loop. In detail, we now pass the 4 bytes to
our exploitation framework, that do overwrite the value of
the vulnerable pointer, thus the address where the control
flow data is supposed to lie. As already mentioned, the data
segment is not affected by ASLR, as we do not generate
position independent binaries. So our task is to reach the data
segment, and within the data segment the area that stores the
saved return addresses, to overwrite it and consequently to
manipulate the control flow of the program successfully.

Although the data segment is not affected by ASLR, and
therefore has a static address, the address may vary when a
binary is recompiled and may therefore be unknown to an
attacker. Because of that one must somehow find out where
the data segment lies. We rely on the fact that the address (or
even the top) of the text segment is known. This is a reasonable
assumption, because if an attacker owns the binary he wants
to attack (locally for example), then he can dump it and read
out the necessary address. The attack strategy is then altered
as follows. We start on a 4 byte aligned address, preferably at
the end of the text segment to speed up the brute-force attack,
and then increase the address by 4 byte every time we execute
the exploit, until we succeed, which means that we managed
to modify the redundant return address area.

Note that we were not able to successfully compile binaries
with StackShield on a 64-bit system, as it seems to not be
supported yet. Because of that, we performed the test case
on a 32-bit Linux system, which is why we are using 4 byte
addresses instead of 8 byte addresses.

We were successfully able to overwrite the return address
and redirect the control flow to the execution of the secret
function, after hitting the safe storage area of the data
segment at the illustrated address. This is clearly a prove
for the vulnerability of StackShield against indirect pointer
overwriting exploits. The main reason for the lack of protection
against the presented exploit originates from the missing
randomization of the data segment’s base address, though.
In case the data segment would also be affected by ASLR, we
may probably define StackShield as equally secure as SCADS
against this type of exploit, because the only difference
between these concepts would be the direction towards which
the vulnerable pointer must be modified, to point to the control
flow data.

Summarizing, SCADS was the only defensive concept
in this case that could successfully prevent an exploitation
through an indirect pointer overwrite attack. Both StackShield
and StackGuard were unable to secure the integrity of the
return instruction pointer, thus making it possible to redirect
the control flow of the program. Although, it is necessary to
mention that we used StackGuard with random canaries[22,
chapter 4]; a more effective protection would be the use of xor
canaries[22, chapter 4]: “The XOR random canary method
was introduced in StackGuard version 1.21” [22, chapter 4].

21EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

But it seems that XOR canaries are not yet implemented in the
GCC stable release. GCC 4.6.3 produces random canaries only
when using the flag -fstack-protector. XOR canaries
would be more useful against an indirect pointer overwrite
exploit, because they would not allow to alter the return
address without knowing the value of the canary, because an
additional XOR encryption is performed with XOR canaries.
Nevertheless, our task is to present an efficient protection
mechanism that does not need to include any further machine
code. To accomplish this task, even though the impact on
the performance may be negligible for programs with short
execution times and regarding this aspect, SCADS was able to
compete with StackShield and StackGuard.

4.4. Format String Attacks
In this section, we introduce another example of an exploit,
though more a vulnerability which we want to test our three
test candidates on. Format string attacks were widespread
due to the dirty production of source code, as format string
vulnerabilities originate from programming errors solely.
Such vulnerabilities can be abused in many different ways,
well described in [24, chapter 3]. We are not testing all of
these presented attack variations, but instead focus on the
visualization of process memory, using format string exploits.
The extraction of memory information from the stack or any
other location is often a very gladly used instrument, to prepare
for a more serious exploit, or to fix non-working exploits, with
the help of newly gained knowledge. Therefore it is also an
important task for a protection mechanism, such as SCADS, to
prevent attackers from being able to read sensitive information,
by hiding it or making its location unknown.

Listing 15: Attack vector to exploit framework III.

char attack_vector[32] =
"%p%p%p%p%p%p%p%p%p%p%p%p%p%p%p%p"

Listing 16: Exploit framework III.

#include <stdio.h>

int main(int argc, char **argv){
char format[64];

snprintf(format, 32, "%s", argv[1]);
printf(format);

return 0;
}

We now want to demonstrate how easy it can be to retrieve
useful information from process memory, that should not
be available to attackers, and we want to emphasize that

SCADS is able to significantly complicate the process of
information retrieval for format string exploits. Listing 16
shows an exemplary format string vulnerability within a
sample program, inspired by the example shown in [24, chapter
3]. Actually, modern compiler would generate a warning, when
compiling the code of listing 16, due to the missing arguments
to the printf function. However, we want to concentrate on
the benefits, an attacker can gain, when assuming that such
vulnerabilities find their way into either SCADS-, StackGuard-
or StackShield-binaries.

The mechanism of an exploit abusing a format string
vulnerability is rather simple. Format string exploits, as the
name tells, rely on the abuse of format strings, which can
give great power to an attacker when gaining full control
over them. In our example, the focus lies on the printf
function, which receives a format string as first parameter.
Format strings, as parameters, are generally in use with the
ellipsis parameter (“. . . ”), which eventually allows the
function to take a non-restricted number of parameters, whose
usage and the context is defined by the format string itself.
Any %-character with another attached character of arbitrary
value, implicitly defines a parameter, that needs to be passed to
the function outside of the format string. The most important
thing about it is, that the format-function expects as many
parameters as defined by the format string. If the number of
defined parameters in the format string is lower than the ones
passed, then the rest of the parameters is just ignored, i.e. not
used. But more important, if the number of defined parameters
is higher than the ones passed, then the missing parameters
are anyway read from the stack, where they are expected to lie.
This leads to the fact, that whatever lies on the position of the
missing parameters on the stack is used and can be controlled
by the attacker if he has the power over the format string.

In the framework of listing 16, the format string that is
passed to printf is completely user-defined (or attacker-
defined). The only thing happening before it is passed to
printf is that it is being stripped to 32 characters. So the
format string that the attacker has control of in this example,
can at most have 32 digits. With the power to control the
content of the format string, we try to read useful data from
the stack with our attack that gives hints on the location of
return addresses or similar. By inserting a couple of %p into
the attack vector, as described by listing 15, we gradually read
8 bytes step by step on 64-bit systems.

4.4.1. StackGuard. From section 3 and figure 6 we
remember the memory layout of StackGuard. So with our
format string exploit, apart from reading local variables from
the stack, we are also able to read canaries, saved frame
pointers (if present) and return addresses. This is a huge
advantage to an attacker, as the regular protection given by
canaries (apart from terminator canaries[22, section 2.2]), is
dependent on the missing knowledge of an attacker, regarding
the exact value of the canary. This way an attacker can find
out the exact value of the canary and may use this knowledge
for a continuing exploit, which imitates the canary in its attack

22EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

vector to prevent a buffer overflow from being detected, for
example. Furthermore, the saved frame pointer can be used
by an attacker to easily specify the location of self-placed
shellcode on the stack (in case DEP is not active). And the
read return address could be used to find the location of the
text segment, in case of a binary with position independent
code and ASLR activated. Eventually this illustrates that there
lies many information on the stack of a binary, compiled with
StackGuard activated, that can be well used to support any
following exploits.

4.4.2. StackShield. The stack layout with StackShield
is not much different than the one with StackGuard being
enabled, except for the missing canaries. For that reason, the
useful information that can be retrieved via a format string
exploit is also much the same. One can read the saved frame
pointer, as well as the return address. Both can be useful for
reasons that have been explained before. But there is one good
aspect about StackShield in this case as there is no information
placed on the stack, which tells about the location of the
storage area in the data segment (containing redundant return
addresses) and therefore such information cannot be extracted
with a format string exploit. In the end, there is no direct way
to gain an advantage for the permanent modification of any
return address by using such an exploit.

4.4.3. SCADS. We already know the memory layout of a
SCADS compiled program. All control flow data is separated
from the regular data by a large unallocated memory gap, lying
between the control and the data stack. So if the format string
exploit is only able to read from the data stack everything is
fine and no advantage can be gained. On the other hand, if
the exploit allows to read from the control stack that is fatal,
because all useful information lies on the control stack and
even the control stack’s location itself is supposed to stay
unknown.

Unfortunately, if we use the printf function of any legacy
library not protected by SCADS, the exploit allows to read
from the control stack because the legacy function uses %rsp
as stack pointer, thus the function reads its parameters from the
control stack. On the control stack, the exploit may find return
addresses and saved frame pointers of the data stack which are
both sensitive data that is useful to know as explained above.
But at least, as we do not maintain a frame pointer for the
control stack, there is no direct way for the exploit to find
out the control stack’s location, even though it reads from the
control stack itself.

The long-term solution to circumvent the problem that
printf reads from the control stack in case of a format
string exploit, is to port the LibC by compiling it entirely with
SCADS. This way the printf function no longer uses the
stack pointer of the control stack but the one of the data stack.
That leads to the improvement that any executed format string
exploit can only read from the data stack, where it finds no
useful information in form of a canary or frame pointer. The
data stack stores only buffers, local variables and saved data
registers, leaving no hint for the location of the control stack

and therefore no support to modify control flow data can be
earned. So porting of the LibC to SCADS is a necessary and
helpful task, which we already fulfilled on FreeBSD for this
and other various reasons (also see section 7).

4.5. Summary

SCADS is a concept that focuses on the security of the
return instruction pointer, which is a potential vulnerability
that is present in many programs. And so we presented
exploits which target to modify either the return instruction
pointer or a saved frame pointer. Exploits that succeed without
manipulating a return address or frame pointer at all, might
not be prevented well by SCADS. But by the protection of the
return instruction pointer in the first place, SCADS is capable
of protecting against many exploit, including Return-Oriented-
Programming [25], ret2ret, ret2libc, and more [19], which use
this control flow data as initial starting point for the execution
of malicious machine code.

Nevertheless there are also exploits that successfully modify
the control flow without touching the return addresses. For
example, exploits that focus on the modification of the
Global Offset Table (GOT) that supports position-independent
code [8], or any virtual function table (vtable) that implements
dynamic dispatch in C++ [12, sec. 2.1]. SCADS is yet not
intended to protect against this kind of exploits, and until it
is not extended to do otherwise in the future, we suggest to
use an additional protection mechanism along with SCADS,
which completes the defense that SCADS supplies.

5. Performance Evaluation

Besides our main task to guarantee a high security level
with SCADS, our second goal is to negatively affect the
performance of any newly compiled program as little as
possible. Accordingly, this section now analyzes the behavior
of SCADS when it comes to execution times. In general,
gaining the highest security level and the best performance is
mutually exclusive. There is always a more or less large trade-
off between these two goals. With SCADS we want to achieve
a compromise which addresses both aspects in a satisfying,
symbiotic way.

When SCADS and StackGuard are compared regarding
their performance there is an essential difference of which can
be observed. Thus, we want to define two different categories
of speed limitations:

• Static performance overhead: An overhead which
does only occur at the start or the end of a process
or user level thread. This type of performance overhead
is therefore static in the meaning of being independent
of the effective runtime of the running process. It does
only affect the performance of the whole process once
on each execution and hence the overall overhead that
is produced by a static performance overhead can be
approximated.

23EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

• Dynamic performance overhead: An overhead which
is part of the regular control flow of a process or
user level thread, which excludes the initialization and
the finalization mechanics of a process. This makes
the overhead become a repeatable constraint. It can
be part of loops inside the program, which cause
the performance overhead to rise in a dynamic way,
depending on the runtime and execution control flow of a
process. Estimating the impact of dynamic performance
overheads on the overall performance of a program is a
much more complex task, with the need of a control flow
analysis to find out how often a performance-decreasing
instruction is reached.

5.1. Theoretical Approach

According to the nomenclature introduced above, we can
classify StackGuard and SCADS in theory before we
analyze their performance on practical examples. StackGuard
inserts various machine instructions at the beginning (prolog)
and ending (epilog) of a function to be compiled. These
instructions are therefore executed, every time a new stack
frame is created and removed. Obviously the performance
overhead created by StackGuard is therefore dependent on the
total number of calls to functions with incorporated canaries
that are made. So StackGuard’s performance overhead consists
of dynamic performance overhead.

On the other hand, when we take a look at SCADS, we know
that for its implementation an extensive initialization phase
has to be performed. This initialization phase allocates the
data stack and is only executed once when a SCADS compiled
program is started, therefore it is a pure static performance
overhead. Apart from the initialization phase, SCADS does not
include further machine instructions into the control flow of a
program in the regular case, but alters the behavior of various
machine instructions to fulfill the usage of the control and
the data stack. The only dynamic performance overhead that
occurs is the storage of regular data registers on the data stack
and additionally the stack extension for large stack frames, but
this is an operating system dependent issue (as explained in
section 2.2.3). As we cannot use push and pop instructions
on the data stack, these are simulated with sub/mov and
mov/add instructions. From the official Intel optimization
manual for their x86-64 architectures [6, sec. C-25ff. / table C-
19 and C-19a], we can retrieve the information, that push and
pop both have a latency of approximately 1.5 clock cycles,
while mov combined with add or sub has a latency of 2
clock cycles on modern Intel architectures. Due to the fact that
all modern processors do use an execution pipeline [15] for
the queued instructions, the overhead that may occur when
two instructions need to be fetched and decoded instead of
one, would also result in an additional processor cycle in the
ideal case. So in case a function stores regular data registers
on the data stack, the performance overhead, even though it is
dynamic, is small compared to the non-SCADS case.

Summarizing, StackGuard’s performance overhead solely
consists of dynamic overhead while SCADS’ overhead is
mainly based on static overhead, with a rare component of
dynamic overhead. Hence, we can assume that SCADS may
preserve the performance of a program better than StackGuard
when it has a rather long execution time, while StackGuard-
compiled programs may be faster on short execution times.

5.2. Practical analysis

To verify our theoretical assumptions, we now move on to
the practical performance analysis with appropriate examples,
which shall illustrate the behavior of the two concepts and
the raw compilations without any security measures activated.
For our measurements, we do not choose common real world
software from SPEC CPU2006 [9], for example, because in
theory, it is already known where the performance bottle-necks
of SCADS and StackGuard lie. To illustrate the impact of
these properties much clearer, we deemed it appropriate to
take measurements with self-constructed test cases focussing
on the strengths and weaknesses of SCADS and StackGuard.
The results of these test cases can be applied to real world
programs accordingly.

Listing 17: Fibonacci code sample.

#include <stdio.h>
#include <stdlib.h>

long long fib(int val){
if(val == 0) return 0;
if(val == 1) return 1;
else return fib(val-1) + fib(val-2);

}

int main(int argc, char **argv){
printf("%lli\n", fib(atoi(argv[1])));

return 0;
}

5.2.1. Fibonacci as Exemplary Test Case. At first,
we want to present a simple code sample we compiled
with the four different configurations to analyze the number
of generated instructions and the time of execution. The
sample is illustrated by listing reflist:fibonacci. It fulfills the
computation of any specified fibonacci number, by calling the
function fib recursively. Consequently, the fib function is
the part of the code which takes up the lion’s share of the
program’s execution time, depending on the input parameter.
Because of that, we focus on the analysis of the fib function
and ignore the rest of the code, though we keep in mind that
the overall execution time depends on every single machine
instruction of the program, including the initialization phase
in the SCADS case.

24EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

number of instructions
GCC 24
GCC (StackGuard) 30 (+1)
Clang 24
Clang (SCADS) 24

Table 3. Listing of the number of machine instructions
generated for the fibonacci function from listing 17 by
GCC, GCC(StackGuard), Clang and Clang(SCADS).

In the appendix section, the x86-64 assembly of the
fib function of each of the four compilations can be
reviewed by taking a look at the files fibonacci_gcc_asm.txt,
fibonacci_stackguard_asm.txt, fibonacci_clang_asm.txt and
fibonacci_scads_asm.txt. The four files were created by
the usage of objdump and may help out to identify the
number of instructions that were generated. Table 3 lists the
information about the number of instructions every compiler
configuration generated during compilation. The number of
machine instructions generated by the GCC-compiler rises
significantly when StackGuard is activated. On the other hand,
the Clang-compiler produces the same amount of machine
instructions in this example, no matter whether SCADS
is activated or not. Even though some of the instructions
are rarely executed, due to the fact that if-conditions are
present in the sample code, this table provides a first indicator
on the possible performance advantage of SCADS towards
StackGuard.

 90

 95

 100

 105

 110

 115

 120

 2 4 6 8 10 12 14

#
in

st
ru

ct
io

n
s

x for evaluation of fib(x)

Number of executed instructions - Fibonacci

Clang
Clang (SCADS)

GCC
GCC (StackGuard)

Figure 12. Number of executed instructions when
running the program defined by listing 17.

To further analyze the performance, we present graphs
which display the number of executed instructions and the
overall execution times, in dependence of the input parameter
to the fib function. Figure 12 displays the number of
instructions (excluding those executed by the kernel) that are
executed when the program is run with the corresponding
parameter. Initially SCADS executes more instructions than
the other three binary versions, which is caused by the
initialization phase. But later on, approximately at a value
of 10 for the input parameter, the influence, produced by
StackGuard’s canary management is large enough to outrun

 0

 50

 100

 150

 200

 250

 300

 350

 40 42 44 46 48 50 52

ti
m

e
 i
n
 s

e
co

n
d

s

x for evaluation of fib(x)

Execution times - Fibonacci

Clang
Clang (SCADS)

GCC
GCC (StackGuard)

Figure 13. Execution times of the program defined by
listing 17.

SCADS in terms of executed machine instructions. From
then on the slope of the curve, which represents StackGuard,
rises significantly, while the SCADS curve stays close to the
ones of GCC and Clang, because it does not produce any
further performance overhead than the static one from the
initialization.

Of course, the number of executed instructions is closely
related to the overall performance/execution times we have
measured. On figure 13 the execution times of the program
defined by listing 17 are displayed from parameter 36 unto
52. It is clearly visible that the StackGuard curve departs
significantly from the three other curves represented by
SCADS, GCC and Clang. This result can be ascribed to the
values presented by table 3 and figure 12 earlier. All but the
StackGuard compilation share the same number of machine
instructions, generated for the fib function and the raised
number of instructions is a reason for an emerging performance
overhead, causing the StackGuard program to be up to almost
80 seconds slower than the other three versions.

This result verifies our thesis that StackGuard’s performance
overhead rises significantly with a high number of function
calls, while SCADS’ performance overhead is constant and
arises from the initialization phase. Though the overhead
caused by the initialization phase is not visible in figure 13,
because it lies in the range of microseconds, which cannot
be measured reliably, due to noise issues. It can only be seen
implicitly, by having a look at the raised number of instructions
that are executed, as shown on figure 12.

5.2.2. Fibonacci with Included Handicap. From
section 2.2.3 we know about the special behavior of the data
stack extension, when it comes to the management of large
stack frames on Linux. There we have already mentioned
that the mechanism may lead to a performance overhead. The
example we present in this section shall address this thesis, to
show how large the impact on the performance may be when a
stack frame has a much larger size than usual. Although this is
a Linux-specific problem, we want to analyze the performance
influence of it, for the sake of completeness. Listing 18 shows
a modified version of the fibonacci sample from listing 17.

25EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

Listing 18: Fibonacci code sample with handicap included.

#include <stdio.h>
#include <stdlib.h>

long long fib(int val){�� ��char dummy[4*4096];�� ��dummy[0] = 42;

if(val == 0) return 0;
if(val == 1) return 1;
else return fib(val-1) + fib(val-2);

}

int main(int argc, char **argv){
printf("%lli\n", fib(atoi(argv[1])));

return 0;
}

The code framed by oval boxes, represents the changes that
have been made to the original fibonacci function. We have
artificially added a buffer of size 4 ∗ 4096, which has actually
no other purpose than increasing the amount of instructions
that are executed at runtime. For that reason, the additional
instructions, and with them the whole test case, are here
entitled as a handicap, because they do only intend to decrease
SCADS’ performance for analytic purpose.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 38 39 40 41 42 43 44 45 46 47

ti
m

e
 i
n
 s

e
co

n
d

s

x for evaluation of fib(x)

Execution times - Fibonacci (handicapped)

Clang
Clang (SCADS)

GCC
GCC (StackGuard)

Figure 14. Execution times of the program defined by
listing 18.

When the source code is compiled with the SCADS-enabled
compiler version, the stack frame allocation of the fib
function becomes more complex than with any of the other
compiler configurations of our test environment. As explained
in section 2.2.3, the data stack must be extended in steps of
single pages, to allow the correct allocation of guard pages
by the operating system. This leads to the result that the stack
extension needs to be handled by 9 instructions instead of just
1 in this case. The generated assembler code can be viewed by
taking a look at the file fibonacci_scads_handicapped_asm.txt
in the appendix section. The SCADS compiler builds a chain

of machine instructions which decrease the stack pointer by
a page and perform a write access at its current position
successively, until the needed stack frame size has been
achieved. This chain of instructions affects the performance
negatively when performed often enough, because in the non-
SCADS case, the stack extension can be achieved with one
single instruction. The way SCADS handles large stack frames
is the only considerable property which introduces a dynamic
performance overhead, excluding the overhead caused by the
push/pop simulation, which is very small in comparison.
Apart from that, SCADS’ performance overhead is almost
completely static, which is responsible for the very satisfying
execution times of SCADS in general.

To demonstrate the performance overhead at its limits, we
have once again chosen the fibonacci function for our test case.
This time we have measured the execution up to the input
parameter 47 to illustrate both, the asymptotic tendency of
the four curves, as well as the turning point, from where the
execution with SCADS consumes significantly more time than
with StackGuard. Figure 14 shows the performance results
of the execution of the program, defined by listing 18, with
the four compiler configurations we have already used before.
Up to a parameter value of about 40, the execution time with
SCADS is very close to the one with StackGuard, even though
the measurements are a not very stable due to the very short
execution times in this range. Starting at value 41, the gap
between the curves of SCADS and StackGuard begins to grow
in size. At parameter value 47 we observe an execution time
of SCADS which accounts for about 130% of StackGuard’s.

The behavior of SCADS regarding the performance is
much worse with this test case than the one of the other
three compiler configurations. The lack of performance can
be attributed to the stack extension mechanism only, though.
Remember, that the graph of figure 13 shows the performance
results on the non-handicapped version of the fibonacci
program, where SCADS’ performance was very satisfying.
It is thus proven that the complicated stack extension, which
SCADS must use for large stack frames on Linux, is its
worst bottle-neck. It is necessary to emphasize, however, that
the presented evaluation represents a worst-case scenario for
SCADS, and does not represent the expected performance in
general cases. On FreeBSD, the behavior regarding the stack
extension is the same for small as well as for large stack frames.
We did not present any results for example listing 18, measured
on FreeBSD, because it does not cause a performance overhead
as no further machine instructions are generated compared to
listing 17.

5.2.3. Run-Length Encoding as Test Case. So far we
have presented rather artificial examples which do intend
to show the performance behavior of SCADS in extreme
scenarios, due to the amount of recursion that was part of
the test cases. We now have a look to another example which
does not include recursion. Listing 19 illustrates a program
with more real-world relevance, to demonstrate how SCADS

26EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

behaves in general situations. It is a simple form of a run-
length encoding algorithm which receives a file name through
the command-line, and stores the compressed result of the
input file in another file. To be more specific, the program
calls the function poll, which reads 256 bytes of data from
the input file, until EOF is reached. The read data is then
further processed in the while loop of the main function.
Although the buffer local_buf is not needed, we inserted it
artificially because real-world examples may contain functions
with buffers, which therefore are protected with a stack canary
by StackGuard.

file size (GiB) exec times (s)
GCC

1

24.2
GCC (StackGuard) 23.6
Clang 24.3
Clang (SCADS) 24.5
GCC

5

148.2
GCC (StackGuard) 148.0
Clang 148.7
Clang (SCADS) 148.5
GCC

10

361.2
GCC (StackGuard) 360.6
Clang 367.7
Clang (SCADS) 354.4
GCC

15

573.7
GCC (StackGuard) 563.8
Clang 591.5
Clang (SCADS) 551.6

Table 4. The execution times of the run-length-encoding
from listing 19 for different sizes of the input file.

By the nature of the run-length encoding program, the
execution time is dependent on the size of the input file,
which shall be compressed. For that reason we have generated
four files of different size (1, 5, 10 and 15 GiB), by reading
data from /dev/urandom. We have once again used the
four compiler configurations (GCC, Clang, StackGuard and
SCADS) for this test case and measured the execution times
of the program with each of the four different files as input.
The results of the measurements are contained in table 4
numerically, and in figure 15 graphically.

From the results we can see, that the execution times of
all four compiler configurations do not differ significantly. In
fact, SCADS seems to be the fastest contestant in this case,
although only slightly. But this observation may be bound to
the large amount of IO-activity that must be performed when
executing the compression program defined by listing 19. The
large files in the range of multiple gigabytes, we use as input
to our test environment, cause the need for many read accesses
to the hard drive, eventually resulting in the high percentage of
IO activity. One may think, that the IO activity overshadows
the actual CPU performance, but due to the complex caching
hierarchy implemented in modern processors such as the one

Listing 19: Run-Length Encoding code sample.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUF_SIZE 256

typedef struct record{
char current;
long counter;

} __attribute__((packed)) record ;

int poll(char *buf, int n, FILE *stream){
char local_buf[BUF_SIZE];

int ret = fread(local_buf, 1, n,
stream);

strncpy(buf, local_buf, BUF_SIZE);

return ret;
}

int main(int argc, char **argv){
FILE *input = fopen(argv[1], "r");
FILE *output = fopen("out.dat", "w");
char buffer[BUF_SIZE];
record rec;

rec.current = 0; rec.counter = 0;

while(1){
int ret = poll(buffer, BUF_SIZE,

input);
for(int i = 0; i < ret; i++){

if(buffer[i] &=& rec.current)
rec.counter++;

else{
if(rec.counter != 0) fwrite((

const void *)&rec, 5, 1,
output);

rec.current = buffer[i];
rec.counter = 1;

}
}

if(ret < BUF_SIZE){
fclose(input); fclose(output);
break;

}
}

}

we used for our measurements, and the accompanied pre-
fetching strategies that are performed in the background, this
prediction is not completely valid. The results may also reflect
the IO activity, but they can nevertheless be used to analyze

27EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 5 10 15

ti
m

e
 i
n
 s

e
co

n
d

s

file size in GB

Execution times - Run-Length-Encoding

Clang
Clang (SCADS)

GCC
GCC (StackGuard)

Figure 15. Execution times of the program defined by
listing 19.

the overall performance of our four contestants, including the
CPU performance.

6. Memory Efficiency

We now want to have a look at the memory efficiency of
SCADS. The design of SCADS is intended to split up the
data of the unified stack, without generating any new data. In
detail, the control stack takes the return instruction pointers
and saved frame pointers from the unified stack, while all other
data remains on the data stack. As long as no frame pointer is
used for the control stack, which would make need of storing
it on the control stack itself, the amount of data managed by
SCADS is invariant compared to the unified model. But one
must distinguish between allocated and used memory. The
data stack must be allocated during the initialization phase,
with a minimum of one page size. So initially instead of the
size of the unified stack, SCADS has an additional memory
occupation of one page size for the newly allocated data stack.
However, this stack is filled during runtime, as more data
is allocated on the stack, thereby decreasing the memory
overhead in comparison to the unified model. In contrast,
the control stack is already allocated by the kernel, but it
stores only a small amount of data per stack frame. That is
why the control stack is unlikely to fill up the memory that
has been allocated for it, with regular programs (programs
using recursion may be an exception). Figure 16 schematically
demonstrates the initial memory usage of the control and the
data stack in a SCADS runtime environment. The shaded,
unused memory gets filled step by step when the stacks grow
during runtime.

In addition, the action of stack alignment may cause
differences in the process of memory allocation when SCADS
is used. By default, 16 byte alignment is enforced for stack
frames to allow the correct functionality of various machine
instructions on the x86 architecture, which require such an
alignment. For example, this is a necessity for the use of
16 byte floating point registers, as the system bus raises an
exception, if such instructions are used with not correctly
aligned memory addresses. Therefore, SCADS also preserves

Figure 16. Schematic memory usage of control and
data stack after the initialization phase.

this alignment for the data stack, if not defined otherwise
by the user. The control stack, on the other hand, needs not
to be further aligned at all, because the instructions used on
addresses of the control stack require 8 byte alignment at most.
Only in case we want to use legacy libraries (or general legacy
code), which use the control stack as general purpose stack, a
16 byte alignment may be needed and can be selected by the
user, by passing a command-line flag (see section 2.3.3).

As the return addresses and the saved frame pointers are
missing on the data stack, the alignment may or may not
have to be adjusted appropriately. To be exact, in case the
frame pointer of the data stack is in use, there is no difference
between the unified and the data stack, because the return
address and the saved frame pointer both consume 16 bytes
together on a 64-bit system. Thus moving these 16 bytes to
the control stack leaves the data stack still 16 byte aligned,
implicitly. But if the frame pointer is not used, then the
resulting gap after moving the return address to the control
stack is 8 bytes large, which may cause the need for an
alignment enforcement in case the amount of bytes stored
in the local area of the stack frame is not a multiple of 16
already.

This theoretical thought clarifies that SCADS may produce
an 8 byte memory overhead for stack frames, when the data
stored in the local area is not a multiple of 16 bytes, as
already explained. But on the other hand, this condition must
be applied to the unified stack in a modified way as well. Any
stack frame of the unified stack does need a re-alignment in
case the data of the local area does not sum up to a multiple of
8 bytes with the additional condition, that it is no multiple of
16 bytes. Equations 8 and 9 describe the mentioned conditions
in a more formal way. The here defined variable f ramesize
contains all bytes stored in the corresponding stack frame,

28EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

excluding the return instruction pointer (if even present on the
stack).

DS.f ramesize|16 ⇒ no re-alignment
otherwise ⇒ re-alignment

(8)

(US.f ramesize + RIPsize)|16 ⇒ no re-alignment
otherwise ⇒ re-alignment

(9)

The resulting core statement of this reasoning is that there
may be cases where a re-alignment is needed for the data stack
but not for the unified stack on some stack frames, and there
may also be situations where the scenario is twisted vice versa.
In the end it depends on the size of the data stored in each
frame only. This includes the local area with its local variables,
buffers, and the stored registers that have been pushed onto
the stack. If the size of this composite data does not fit any
of the equations 8 or 9, the corresponding concept needs a
re-alignment for the given stack frame.

7. Compatibility Issues
By the term legacy code we refer to external machine code
that has not been compiled with the same compiler or enabled
security flag, like the one used for compiling an associated
source code of a program. In our case, an example for
incorporating legacy code into a binary could be achieved by
compiling a source code file with the Clang/LLVM-compiler
and SCADS enabled, while linking the standard LibC to
the binary, which has been compiled with a GCC version
that does not support SCADS at all. This results in mixed
machine code and the important question that comes to mind is
whether the machine code, that has been compiled by different
entities, is fully compatible to each other to guarantee correct
functionality.

Even though, to fulfill a fully consistent security level
by the usage of a compiler-based security mechanism like
SCADS, it is necessary to compile all of the code a binary
uses with the security feature enabled. But nowadays, common
software often uses different libraries, and moreover the used
libraries are dependent of further libraries, which leads to a
long chain of code to be linked to a binary either statically or
dynamically. Therefore, in general it is rather impractical to
recompile all externally linked libraries at once. That is why it
is an important task to analyze the compatibility of SCADS-
enabled machine code to arbitrary legacy code. In terms of
anticipation, our analysis has yielded that there are three types
of incompatibilities to legacy code that inhabit SCADS:

• Incompatibility to legacy functions with more than six
parameters

• Incompatibility to legacy functions, which take a
SCADS function as call-back parameter

• Incompatibility to legacy functions, which need specific
alignment (to handle floats for example)

return address

previous frame pointer

unspecified

variable size

...

memory argument eighbyte 0

...

memory argument eighbyte n

16(%rbp)

8n + 16(%rbp)

8(%rbp)

0(%rbp)

-8(%rbp)

0(%rsp)

Position Contents Frame

Previous

Current

(a) Stack frame representing the calling convention
according to the AMD64 ABI with %rsp as stack
pointer and %rbp as frame pointer.

unspecified

variable size

...

memory argument eighbyte 0

...

memory argument eighbyte n

0(%r14)

8n + 0(%r14)

-8(%r14)

0(%rbp)

Position Contents Frame

Previous

Current

(b) Stack frame representing the calling convention
according to the SCADS ABI with %rbp as stack
pointer and %r14 as frame pointer.

Figure 17. Calling conventions of AMD64 and SCADS.

7.1. Incompatible Parameter Amount

The way SCADS is designed and implemented, it changes the
calling convention defined by [3, sec. 3.2.1, fig 3.3]. Figure 17
and table 5 show the different calling convention of SCADS
compared to the AMD64 calling convention from [3].

It is clear to see that both calling conventions are identical
up to parameter six. All of the parameters from one to six are
handled with SCADS via the same registers like with AMD64.
Hence, there is no change in behavior with a SCADS-binary
when only legacy functions with less than seven parameters
are used. Consequently, SCADS is compatible to legacy code
that contains functions with at most six parameters. If a
legacy function with seven or more parameters, however, is
used by a SCADS-enabled program, then the called function
wants to read stack parameters by referencing %rbp. In our
implementation, %rbp is used as the stack pointer of the data
stack rather than a base pointer. Thus, the called function uses
the stack pointer of the data stack to read its parameters, but
the offsets to the frame pointer referencing the parameters

29EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

AMD64 SCADS
parameter 1 %rdi %rdi
parameter 2 %rsi %rsi
parameter 3 %rdx %rdx
parameter 4 %rcx %rcx
parameter 5 %r8 %r8
parameter 6 %r9 %r9
parameter 7 16(%rbp) 0(%r14)
parameter 8 8 + 16(%rbp) 8 + 0(%r14)

.
parameter n 8(n − 7) + 16(%rbp) 8(n − 7) + 0(%r14)

Table 5. Table listing the (integer) parameter passing
according to the AMD64 ABI [3] and the SCADS ABI
with frame pointer in use.

do not coincide with the offsets to the stack pointer. Hence,
in general SCADS is incompatible to legacy functions with
more than six parameters (although there may be some cases
when the behavior does not change and the parameters are
even correctly referenced).

SCADS-function

call

Legacy-function

call

call

Legacy-function

call

Legacy-function

call

...

(a) Call hierarchy without
alternating function types

SCADS-function

call

Legacy-function

call

call

SCADS-function

call

Legacy-function

call

...

!

(b) Call hierarchy with an alter-
nating structure

Figure 18. call hierarchy with mixed function types.

Even if we would decide to replace the data stack’s frame
pointer %r14 with %rbp, so that the legacy function uses
the frame pointer for parameter referencing in a SCADS
environment, this would not fix the incompatibility. The data
stack misses some data, like the RIP and the saved frame
pointer, which affects the offsets to the parameter section on
the stack (see table 5). Hence, even if a legacy function uses
the data stack’s frame pointer to access its parameters, the
offsets would differ from the AMD64 ABI, leaving SCADS
still incompatible to legacy functions with parameters stored
on the stack.

7.2. Incompatibility of Call-Back Functions

During our analysis, we stumbled across one more
incompatibility which differs from the already described
scenario. In general, when a legacy function with less than
seven parameters is called, the program behaves correctly, as
long as the called function does not leave the legacy context.
That is supposed to mean that a legacy function must not call
a SCADS-compiled function after being called by a SCADS-
compiled function itself. Figure 18 describes the scenario that
results in an undefined behavior of the program. As long as
a called legacy function does not leave its legacy context,
meaning it does call only further legacy functions and nothing
else, the behavior of the program is correct. But when at any
point a legacy function makes a call to a SCADS function,
the problem occurs. In general, this type of problem can only
occur when one of the legacy functions that are called receives
a pointer to a function to call it later on. This scenario is defined
as a call-back. So to analyze the problem, we must take a look
at legacy functions that take a function as parameter for a call-
back, and in our case, this function needs to be compiled by
SCADS.

The incompatibility once more arises from the fact, that
SCADS functions and legacy functions use different registers
for management of the stack pointer (we only refer to the
data stack here when referring to SCADS). SCADS uses the
%rbp register for maintenance of the data stack’s stack pointer
while any other common legacy compilation uses %rsp as
stack pointer, and %rbp as frame pointer if present. When a
legacy function is entered that makes use of a frame pointer,
it modifies the %rbp register, thus alters the state of the data
stack’s stack pointer. To correctly return to the SCADS context,
it is therefore necessary that the %rbp register gets restored
before the context switch is made, either by a return or a
call instruction. If the %rbp register is not correctly restored
before returning to or calling a SCADS function, the state of
the data stack, defined by its stack pointer is undefined, and
therefore results in an undefined behavior of the program as
soon as the function starts its execution. That is exactly the
problem that occurs when a program inhabits an alternating
call hierarchy, that mixes the context switches as shown in
figure 18(b), as it is the case in a call-back hierarchy. If a legacy
function, called by a SCADS function, does never call another
SCADS function at all, the context of SCADS is correctly

30EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

T. Müller and C. Kugler

restored (or maybe not even touched if no frame pointer was
used). But in case it calls a SCADS function before it returns,
it does not fulfill an automatic context recovery, which leaves
%rbp in an invalid state as already explained.

Listings 20 and 21 demonstrate visually where the
difference lies between a call-back hierarchy that does not
restore the context correctly, and a normal call hierarchy
without alternating calls, which does restore the context as
supposed to. The sample code from these listings represents an
artificially inlined calling chain, to illustrate in which sequence
the machine instructions are executed. The control flow
represented by the machine instructions must be interpreted
sequentially, although it shall convey the impression of a
function call hierarchy. The framed machine instruction
represents the context restoration in both examples. As
can be easily seen, in listing 20 the context restoration by
Legacy-function_1 is made before any other SCADS
function is called. Therefore the behavior of the whole
code snippet should be correct. Unlike in the example of
listing 20, the code from listing 21 does restore the context
of the superior SCADS-function_1 way too late. The
machine instruction highlighted in red, marks the point where
the undefined behavior occurs. At this point the function
SCADS-function_2 saves its frame pointer by using the
%rbp register, which still contains the value of the stack
pointer of the legacy function, which is in our case an address
that points somewhere into the control stack. Any usage
of the data stack’s frame pointer then accesses the control
stack at an undefined location. Because of that, the call-back
function SCADS-function_2 likely causes an abortion of
the program, or in any case, the behavior of the program is
undefined and erroneous.

Listing 20: Exemplary assembly code that correctly
restores the context of the function SCADS-function.

SCADS-function
push %r14
mov %rbp, %r14
...
Legacy-function_1
push %rbp
mov %rsp, %rbp
...
Legacy-function_2
push %rbp
mov %rsp, %rbp
...
pop %rbp
ret
Legacy-function_1 ###�� ��pop %rbp

ret

It may come to mind, that the usage of %rbp as stack pointer
of the data stack is actually the problem which causes the
incompatibility. But actually, it is not, because every register
which may potentially be modified within a legacy function

would produce the same problem. Nevertheless, we have
developed a method to fix this incompatibility. The origin
of the problem, as we already found out, lies within the
fact, that the stack pointer of the data stack does not get
restored in time, when a call-back hierarchy is present, as
shown by listing 21 exemplary. The solution, is to integrate
a recovery mechanism for the %rbp register that fulfills the
correct context restoration, even in a call-back scenario, and
does not affect the behavior of a program incorrectly in any
case.

Listing 21: Exemplary assembly code inhabiting an
incompatibility by the call to SCADS-function_2.

SCADS-function_1
push %r14
mov %rbp, %r14
...
Legacy-function
push %rbp
mov %rsp, %rbp
...
SCADS-function_2
push %r14
mov %rbp, %r14
...
pop %r14
ret
Legacy-function ###�� ��pop %rbp

ret

For this purpose we have implemented a legacy
compatibility mode into the LLVM back-end, which stores
the value of %rbp to a global memory location, right before
every function call that is made. And for completeness, at the
beginning of each function prolog, the value of %rbp is read
from this global location and restored before any other action
is performed within the function’s body.

Listing 22 shows the fixed version of listing 21 when the
compatibility mode is enabled. Both of the newly added
machine instructions are highlighted with a fringe. The
solution does not need to change any code of the legacy
function. The SCADS functions are now able to maintain
their context recovery by themselves as the global memory
slot decouples the task of context recovery from the legacy
function. When the function SCADS-function_2 is called,
it operates on the data stack as requested, thus leaving
the program in a correct state. It is necessary to mention
that SCADS functions calling each other directly, are now
accompanied by two redundant machine instructions, but the
behavior of the functions remains unaltered.

The implementation of the compatibility mode requires a
global symbol to be visible to every module to be compiled.
This symbol requires 8 byte of memory for a 64-bit system,
and therefore does not produce mentionable memory overhead.
The performance overhead on the other side, may be noticeable
as it is needed to integrate the recovery mechanism into every

31EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

C. Kugler and T. Müller

Listing 22: Exemplary assembly code with legacy compatibil-
ity mode enabled (solution to the problem from listing 21).

SCADS-function_1
push %r14
mov %rbp, %r14
...�� ��mov %rbp, GLOB_MEMORY_SYMBOL

Legacy-function
push %rbp
mov %rsp, %rbp
...
SCADS-function_2 ###�� ��mov GLOB_MEMORY_SYMBOL, %rbp

push %r14
mov %rbp, %r14
...
pop %r14
ret
Legacy-function
pop %rbp
ret
SCADS-function_1
...

SCADS function as long as no control-flow analysis is made
to incorporate more information into the compilation process
to reduce the number of additional machine instructions
in case. We integrated the call-back compatibility mode
in such a way that it can be enabled by passing the flag
-enable-legacy-callback-compat to the compiler
(to be more precise, to the LLVM back-end integrated into the
llc binary).

7.3. Incompatibility of Stack Alignments
While the data stack is automatically aligned by the compiler
as necessary, we have implemented the control stack in such
a way, that it does not perform any additional alignment. On
a 64-bit system, the control stack only stores 8 byte values
which automatically enforces 8 byte alignment on the control
stack. This way, no space on the control stack is wasted, and
the memory segment is filled without any gaps. If a coarser
grained alignment is needed, it may be necessary to force-
align the control stack by adding gaps of unused memory to
every created stack frame. In case a frame pointer is in use, the
control stack stores exactly 16 bytes in the corresponding stack
frame, which cancels the necessity of adding memory gaps to
fulfill 16 byte alignment for example. On the other hand, if no
frame pointer is used, then a stack frame of the control stack
is 8 byte large, due to the return instruction pointer being the
only data structure that is stored in the frame. So in this case,
a coarser grained alignment than 8 byte can only be fulfilled
by the insertion of unused memory gaps.

The execution of legacy code may require 16 byte alignment
for specific tasks. As any legacy code uses %rsp as stack

pointer, it performs all of its local memory operations on the
control stack instead of the data stack, which is referenced by
%rbp. This is the origin of the incompatibility, because the
data stack is 16 byte aligned anyway, but the control stack may
only be 8 byte aligned, which can result in problems. Some
data types handled by specific machine instructions, such
as SIMD operations to handle large floating point numbers
for example, need 16 byte aligned addresses as operands,
otherwise they cause an exception to abort the program.

To allow a correct functionality of legacy code, which makes
use of machine instructions that require 16 byte alignment on
the stack, we have implemented another compatibility mode,
that can be enabled by the user if needed. To activate the
feature, the user must pass a flag to the LLVM back-end, called
-enable-legacy-stack-alignment, when invoking
the compilation process. The mode ensures 16 byte alignment
on the control stack, by adding an 8 byte memory gap to each
stack frame that does not make use of the frame pointer. This
way every stack frame of the control stack starts on a 16 byte
aligned address, which allows any legacy code to place the
data of its call frames, so that it can be correctly processed
by any machine instructions that require the now enforced
alignment.

The implementation of the enforced alignment requires
to generate two additional instructions per function to be
compiled, which does not use a frame pointer for the data
stack. To be more precise, it is necessary to extend the control
stack in each function prolog, using the sub instruction, and
shrink it once again in each function epilog, by making use
of the add instruction. As the control stack is only extended
and shrunk by the use of push and pop in general, it is not
possible to modify already present sub and add instructions
to fulfill the task of re-alignment as we described it. Therefore
the additional instructions may cause a performance overhead,
that depends on the percentage of stack frames, which do not
use a frame pointer.

7.4. Using SCADS before Initialization

The initialization phase described in section 2.1 is responsible
for the allocation of the data stack and eventually sets up the
runtime environment of SCADS, to allow the usage of the
two stacks as soon as the main function starts to run. As we
already told, the initialization mechanism is implemented in
a function which is wrapped around the main. Therefore we
can rather logically conclude that it is not possible to use the
data stack in any code sections that are executed before the
allocation of the data stack’s memory segment is done. We
can extend this observation by stating that, before the main
function, only legacy code may be executed which makes
use of the original unified stack solely. This also includes the
initialization phase itself which is compiled with the GCC
compiler, thus its machine code does not make use of two
stacks. If this condition is not met, and a SCADS-enabled
function is executed before the main, the program is most
likely to abort with a segmentation fault, because the function

32EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

would then use %rbp as the data stack’s stack pointer, which
does either not contain any value so far, or points somewhere
on the unified stack so that the function overwrites local data
unexpectedly.

In general, the explained difficulty is not necessarily a
problem, when a legacy LibC is in use. But as soon as one
intends to use a SCADS-compiled version of the standard C
library, a program is not able to run anymore, if the compilation
process is not changed in a specific way. Before a normal
program’s main is invoked, a lot of preparatory work is
performed. The linker ensures that many modules/functions
like _start and _init, for example, normally invisible to
the developer of a program, are executed before the actual
program is run, to fulfill some necessary preparation tasks,
like the allocation of memory segments and the setup of
environment variables. To perform these tasks, these pre-main
functions do make use of various library functions from the
standard C library, which is also the reason for the difficulty
that arises when a SCADS-version of the standard C library is
used instead. All these pre-main functions are run before the
main, but moreover also before the initialization phase which
is the direct predecessor of the main. Therefore the usage of
library functions results in undefined behavior, because the
data stack is yet not allocated but already used when a SCADS-
enabled function of the LibC is called before the initialization
took place.

One first important measure is to eliminate any usage of
library calls within the initialization module itself. For that
reason, we have implemented the initialization module to
operate without using any library calls, but instead make use
of bare system calls, as necessary a couple of times. But the
modification of the initialization module solely is not sufficient
to let a program successfully use a SCADS version of the
standard LibC. We were yet not able to tweak the linker
configuration in such a way that it uses two versions of the
LibC, one (the legacy library) for the code that is executed
before the main, and the other one (the SCADS version) for
the rest. Therefore, the remaining option to fix the problem was
also to eliminate calls to LibC-functions from the pre-main
functions, such as _start.

As the _init function makes use of many chained library
functions, it would be a complex task, to set up an overlay
framework, which overwrites all the used functionality and
eventually gets compiled by the GCC to be linked to the
program. Instead we have set up an overlay framework
which overwrites the root-functions atexit, _init and
_ini_tls of the program’s initialization mechanism. We
did overwrite the functions with no functionality at all, just to
eliminate the calls to library functions. Although the action of
these functions do contribute to some essential mechanisms
of a program’s runtime environment, we have implemented
the overlay framework as described, to prove the basic and
successful usage of a SCADS-enabled LibC in practice. For
a stable compilation and official porting of the standard C
library to a SCADS version, a more sophisticated overlay or a
modification of the linker is necessary.

Nevertheless, we have used the presented overlay to compile
the standard C library of FreeBSD with our SCADS-enabled
compiler and were able to test its correct functionality for
various cases. The functions of the overlay framework do
contain the prefix __wrap_ within their name, because we
used the linker’s support for overwriting function calls, by
passing the flags -Xlinker -wrap=FUNCTION_NAME.
Finally, it is worth mentioning that the described problem
is only existent when it comes to the porting of the standard
C library. Apart from the LibC, normally no library functions
do get involved in the initialization of a general program’s
environment and therefore are not used before the main
function. Hence, most libraries apart from the LibC can be
ported and used as a SCADS-version straightforward, without
introducing similar problems.

8. Conclusion

SCADS is a security measure whose task is to hinder
attackers from exploiting programs, or to be more accurate,
to prevent attackers from redirecting a program’s control
flow unexpectedly by modifying a return instruction pointer.
Although we have implemented SCADS as a prototype for
the x86-architecture within the C-compiler Clang/LLVM, it
is actually a generic concept. In general, SCADS can be
useful with every programming language that does not perform
boundary checks on buffers by specification, thus making it
easy to gain write access on the stack with the help of a buffer
overflow. The bisection of Clang and LLVM into a front-
end- and a back-end-compiler allow for a modular support
of arbitrary programming languages. SCADS has been fully
implemented in the LLVM back-end, so any programming
language which has its own Clang front-end can be used to
compile SCADS binaries with it.

According to the security analysis from section 4, SCADS’
focus for protection lies on implicit control flow data of
each frame, including return addresses as well saved frame
pointers. In fact, the usage of a RIP is almost independent of a
program’s source code. The only option that can be set by the
C programmer to affect the organization of a function’s stack
frame is the inline keyword. If a function is forced to be inlined,
its stack frame is enrolled into the program’s text segment at
places where a call to it are made. This, however, just leads
to the elimination of a function’s RIP because no jump is
followed to be returned on afterwards. The security analysis
we have performed in section 4 has proven, that SCADS is
well capable of defending the RIP of non-inlined functions
against a couple of exploits we have tested.

The performance analysis from section 5 has shown that the
performance overhead, which SCADS produces, was only
small in our test case environment. SCADS performance
leakage is mainly static, due to the initialization phase that
must be performed on a program’s invocation. Furthermore,
the memory efficiency analysis from section 6 illustrats that
SCADS compensates its initial memory overhead at runtime.
Initially, SCADS requests approximately one additional

33EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

C. Kugler and T. Müller

page size of memory for the allocation of the data stack.
Nevertheless, this is just the initial overhead and it is rather
small compared to some related work, shown in section 3.
Hence SCADS can also be used in an environment which does
not supply plentiful memory for each program.

Finally, the compatibility analysis from section 7 states that
SCADS is at least partially compatible to legacy code. Its
greatest problem, however, are functions with more than six
parameters due to the AMD64 calling convention. Most of
the functions of the standard LibC do not have more than
six parameters, and for the remaining one we have ported
the standard LibC of FreeBSD to SCADS. For any other
library that has not been compiled with SCADS yet, further
incompatibilities may occur, making it also necessary to port
the library to a SCADS version in future.

References
[1] Cwe-124: Buffer underwrite (’buffer underflow’). http:

//cwe.mitre.org/data/definitions/124.html.
[2] StackShield: A Stack Smashing Technique Protection Tool for

Linux, January 2000.
[3] System V Application Binary Interface - AMD64 Architecture

Processor Supplement. http://www.x86-64.org/docu
mentation/abi.pdf, Oct 2013.

[4] H. Peter Anvin. klibc. http://www.ohloh.net/p/kl
ibc.

[5] ISO/IEC Committee. International standard iso/iec 9899:201x,
programming languages - c. http://www.open-std.org
/jtc1/sc22/wg14/www/docs/n1570.pdf, Apr 2011.

[6] Intel Corporation. Intel 64 and ia-32 architecture optimization
reference manual. http://www.intel.com/conten
t/dam/www/public/us/en/documents/manuals
/64-ia-32-architectures-optimization-man
ual.pdf.

[7] Intel Corporation. Intel architecture - instruction
set extensions programming reference. http:
//download-software.intel.com/sites/de
fault/files/319433-015.pdf, July 2013.

[8] Oracle Corporation. Oracle solaris 11 information library
- linker and libraries guide - global offset table (processor-
specific). http://docs.oracle.com/cd/E23824_
01/html/819-0690/chapter6-74186.html.

[9] Standard Performance Evaluation Corporation. Spec cpu2006.
http://www.spec.org/cpu2006/index.html.

[10] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, et al. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Symposium, volume 81,
pages 346–355, 1998.

[11] David A. Kaplan, Advanced Micro Devices Inc. (AMD).
Hardware Based Return Pointer Encryption. Patent
US20140173293 A1, June 2014.

[12] Karel Driesen and Urs Hölzle. The direct cost of virtual function
calls in c++. In ACM Sigplan Notices, volume 31, pages 306–
323. ACM, 1996.

[13] Aurélien Francillon, Daniele Perito, and Claude Castelluccia.
Defending Embedded Systems Against Control Flow Attacks.
In Proceedings of the First ACM Workshop on Secure Execution
of Untrusted Code, SecuCode’09, pages 19–26, New York, NY,
USA, 2009. ACM.

[14] Jian-Jing Fu and Ji-Lin Wang. Software engineering, 2009.
wcse ’09. wri world congress. In SCISM: A Solution for General
Buffer Overflow Protection, May 2009.

[15] GNU. Processor pipeline description. http:
//gcc.gnu.org/onlinedocs/gccint/Proces
sor-pipeline-description.html.

[16] Brendan P. Kehoe. Zen and the art of the internet - a beginner’s
guide to the internet. (1), Jan 1992.

[17] Bulba Kil3r. Bypassing StackGuard and StackShield. Phrack
Magazine, May 2000.

[18] Microsoft. Data execution prevention. http:
//technet.microsoft.com/en-us/library/
cc738483%28v=ws.10%29.aspx.

[19] Tilo Müller and Lexi Piminedis. ASLR Smack & Laugh
Reference. In Seminar on Advanced Exploitation Techniques.
RWTH Aachen University, Germany, 2008.

[20] Aleph One. Smashing the Stack for Fun and Profit. Phrack
Magazine, 1996.

[21] Baiju Patel. Intel Memory Protection Extensions (MPX)
Design Considerations. http://software.intel.com
/en-us/blogs/2013/07/23/intel-memory-pro
tection-extensions-intel-mpx-design-consi
derations, July 2013. Intel.

[22] Gerardo Richarte. Four Different Tricks to Bypass StackShield
and StackGuard Protection. Technical report, Core Security
Technologies, April 2002.

[23] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan
Savage. Return-Oriented Programming: Systems, Languages,
and Applications. ACM Transactions on Information and
System Security (TISSEC), 15(1):2:1–2:34, March 2012.

[24] Team Teso Scut. Exploiting Format String Vulnerabili-
ties. http://crypto.stanford.edu/cs155/pape
rs/formatstring-1.2.pdf, September 2001.

[25] Hovav Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls on the x86. In
Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS), pages 552–61, Alexandria,
VA, US, October 2007. University of California, San Diego,
ACM Press.

[26] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the Effectiveness
of Address-Space Randomization. In Proceedings of the 11th
ACM Conference on Computer and Communications Security,
CCS ’04, pages 298–307, New York, NY, USA, 2004. ACM.

[27] Saravanan Sinnadurai, Qin Zhao, and Weng-Fai Wong.
Transparent Runtime Shadow Stack: Protection against
Malicious Return Address Modifications. 2008.

[28] TIOBE Software. TIOBE Programming Community
Index. http://www.tiobe.com/index.php/conten
t/paperinfo/tpci/index.html, December 2014.

[29] Yves Younan. Effcient countermeasures for software
vulnerabilities due to memory management errors. PhD thesis,
Katholieke Universiteit Leuven, May 2008.

34EAI for Innovation
European Alliance

EAI Endorsed Transactions on

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e3

