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Abstract. Software development is time-consuming and frequently monotonous. 

The risk of code getting copied and pasted increases as the number of developers 

working on a project rises. When a program contains numerous duplicates, the 

quality of the code can be raised by giving developers instructions on how to 

rework the clone and what needs to be refactored. Code that needs to be 

refactored can be found by looking at clones with an automatic refactoring 

advisor. The advisors may be incorporated into current IDEs. Here, we describe a 

cutting-edge learning technique that automatically extracts properties from 

discovered code clones and trains models to give developers advice on how to 

eliminate code duplication. We demonstrate that our method outperforms earlier 

methods in terms of both the accuracy of the provided refactoring 

recommendations and the ability to automatically extract the proper parameters 

for performing refactoring on code clones. In contrast to prior approaches’ Class-

based approach, we created a model to distinguish between refactored and 

anonymous copies. We demonstrate how the learned model can be used to rate 

each cloned piece of code in a codebase and evaluate whether it needs to be 

refactored. We describe a novel method for turning anomalous refactoring clone 

types into unknown clone set participants, 1 which is a more reliable solution 

than prior work that employed thresholds of similarity to identify refactoring 

clones and offers a thorough analysis. 

Keywords: Clone, machine learning, outlier detection, categorization, abstract 
syntax tree (AST) 

 

1 Introduction 

A significant portion of software development is dedicated to code refactoring, a process that 
involves restructuring existing code to enhance its comprehensibility or correctness, often 
adhering to the principle of least astonishment. 

When two programs are functionally identical or nearly so, they are referred to as 
”cloned.” In scenarios where program clones are prevalent, such as large code bases shared by 
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multiple developers, refactoring becomes a laborious task. Code clones can impede system 
analysis, complicate maintenance, and force programmers into a less intuitive and forgiving 
environment compared to non-clone code. The software development process can be 
expedited by creating ”clones” of existing code through copying and pasting relevant sections. 

Addressing the complex issue of code cloning in software engineering involves the use of 
various clone detection techniques to identify sections of source code that are almost identical. 
Refactoring clone tools have emerged, making subtle changes to copied code structure without 
affecting functionality, thus eliminating redundant code and preserving shared information 
between programs. While these tools can significantly reduce cloned code, achieving 100 
percent elimination remains challenging. 

A more effective approach to minimizing cloned code involves detection and elimination 
at the source-code level. This is accomplished by deleting unnecessary code and improving 
software readability and maintainability. However, there is a potential risk as refactoring may 
fail when a branching condition is near a block, and fusing two clones of the same kind 
produces a hybrid clone that is challenging to eliminate or restructure. 

Code cloning often occurs in large application codebases over an extended period with 
multiple developers, and merging code may compromise quality by introducing 

unexpected errors. A clean and well-documented codebase facilitates resolution of such issues, 
supporting a broader range of use cases. 

Our approach aims to preserve the benefits of code duplication by offering programmers 
various rewriting options and refining the results by removing outliers from the training set. 
This results in an optimal mapping between the original block and its derived variant. 

Implemented on a large scale within software development organizations, our method has 
the potential to reduce software defects. Many software companies already use automated 
tools to analyze and detect instances of code cloning in their systems. Eliminating unnecessary 
steps can boost system performance, facilitate future modifications, and minimize the 
introduction of new issues, thus reducing clone upkeep expenses. 

Our findings are anticipated to be useful in various settings, including anti- plagiarism 
software, virus detection code analysis. The most significant results of this study include the 
presentation of a novel machine-learning framework for automatically collecting features from 
detected code clones. We train models to guide developers in differentiating between 
refactored and un-refactored clone code. 

Furthermore, our novel approach enhances classification outcomes by reclassifying clone-

type outliers into a collection of Unknown clones chosen from the training sets. This improves 
the robustness of the classifier by eliminating poor matches and reducing the impact of noise 
in the training data. We also address the issue of class imbalance caused by duplicate code in 
existing systems, employing techniques to alleviate the problem and state-of-the-art 
categorization techniques. 

In conclusion, our results demonstrate that the proposed approach can pro- duce accurate 
and robust classifications across a range of datasets without requiring domain-specific 
knowledge or human annotations. We have shown that constructing an accurate Clone 
classification model from a set of machine learning algorithms provides complementary 
insights into the inner workings of clone systems. 

2 Related Work 

”Expertise in detecting code clones at Microsoft”: The practice of reusing portions of source 
code from completed projects is widespread in the software development industry. This 
practice allows teams to rapidly build systems and facilitates knowledge sharing within the 



organization. However, it also introduces challenges for software maintenance. 

A larger code base increases the likelihood of creating more copies, making it challenging 
to maintain clone consistency and eliminate unnecessary clones when developing commercial 
software at scale. For example, developers may overlook whether different copies of the same 
class are functioning correctly or may be unaware of the duplication. This white paper will 
address some common reasons Microsoft programmers have given for locating code 
duplicates. Additionally, we include feedback from Microsoft developers who have deployed 
the XIAO code clone detection tool, witnessing substantial efficiency gains. 

While clone detection has traditionally been a tool for technical debt remediation and 
maintenance tasks, previous research has primarily focused on a manual approach to 
reviewing clones. 

”Refactoring suggestions that use historical data and existing code clones automatically”: 
There’s a significant likelihood that developers would pay equal attention to each copy if they 
appeared simultaneously. To assist developers in removing clones based on past and present 
data, such as the co-evolution of clones or the cohesiveness of individual clones, we developed 
tools. Our clone-refactoring tools were evaluated through an extensive user study, where 
programmers could take actions based on automated analyses of the evolution of clone groups. 

This process enhances software quality through refactoring, and we utilized the data to 
create a procedure for selecting clones that considers various factors. Introducing CREC, a 
machine-learning technique that recommends software replication by mining features from 
new and historical data, considering the existing code base. CREC is a cross-project technique 
that can recommend existing clone groups, supporting a comprehensive approach to 
refactoring. 

To assemble the training set, CREC automatically extracts historically refactored clone 
groups (R-clones) and those that have not been refactored from a specified set of software 
repositories. CREC extracts 34 attributes characterizing the content and evolution behaviors of 
individual clones, along with spatial, syntactical, and co-change relations of clone peers. This 
information is used by CREC to train a classifier for recommending which copies should be 
refactored next. Our cutting-edge clone suggestion toolset achieved an 83 percentage F-score 
for a single project and 76 percentage for multiple projects. Compared to the state-of-the-art 
similar approach, CREC showed higher effectiveness, providing valuable insights for future 
developments. 

”The use of refactoring strategies for clone maintenance in the context of method- level 
code clones”: The researchers primarily focused on issues like clone maintenance to assist 
coders. Refactoring reduces time spent on software maintenance, enhancing readability, 
structure, performance, abstraction, and maintainability. This research contributes to a 
streamlined strategy for clone maintenance by focusing on clone modification. A copy-and-
paste refactoring strategy was tweaked using the program ”Clone Manager” to track and plan 
for future modifications. 

The enhanced tool, tested on open-source projects, was compared with three other 
applications for evaluation purposes. Through these efforts, a more efficient strategy for the 
processes involved in clone maintenance was developed, addressing persistent issues in 
software development. 

3 Methodology 

The methodology for creating a categorization and outlier detection model for code clones 



involves several key steps. Initially, the test cases are organized into groups with known and 
unknown sizes. To assess the classifier model, a meticulously specified dataset is employed, 
contributing significantly to the model’s favorable results. The subsequent sections provide a 
comprehensive explanation of the proposed strategy. 

3.1 Test Case Organization and Dataset Specification: 

The initial phase involves grouping test cases into known and unknown sizes. A critical aspect 

of the methodology is the testing and validation of the classifier model, accomplished using a 

meticulously specified dataset. The subsequent sections provide a detailed explanation of the 

proposed strategy. 

3.2 Outlier Detection Techniques: 

A pivotal step in the methodology is the identification of outliers in the data. Following this, a 

model is trained for closed-set classification, and its performance is assessed on the open-set. 

The use of dataset vectors in both training and testing phases, generated by running multiple 

instances of the code under analysis, adds a layer of robustness. The Local Outlier Factor 

(LOF) approach is introduced to evaluate the likelihood of a data point being an outlier. 

3.3 Code Tokenization and Analysis: 

To address code analysis challenges, the methodology employs machine learning methods 

after dividing each piece of code into distinct tokens. Utilizing modern lexical and syntactic 

analysis tools, including abstract syntax trees, reveals only the structures found in the source 

code. 

3.4 Feature Extraction and Vector Creation: 

Crucial to the methodology is the analysis of code functionality using the Java Development 

Kit (JDT). Pairs of instances are created from feature vectors, and the local outlier factor 

approach is applied to detect anomalies in the feature vector dataset. 

 

3.5 Machine Learning Models and Refactored Type 
Recognition: 

The methodology explores machine learning models, defining the concept and its various 

applications. It involves the development of a system for detecting refactored types using 

machine learning, recognizing refactored types constructed through these techniques. 

3.6 Training and Evaluation Phases: 

Following a two-phase approach, the system is trained on a predetermined code corpus and 

then tested on a separate dataset. Evaluation is conducted with well-known classification 

models such as Bagging, K-nearest neighbors (KNN), Forest PA, and Random Forest models. 

The effectiveness of supervised learning classifiers is assessed through cross-validation. 



3.7 Automated Refactoring Clone Prediction: 

This phase includes the creation of the automated refactoring clone prediction model. The 

model is applied to software projects, and outcomes are experimentally assessed. The 

effectiveness of supervised learning classifiers is further examined using a 10-fold cross-

validation approach. 

3.8 Comparison and Decision-Making: 

The methodology concludes with a comparison of findings with a prior study employing 
similar techniques. This leads to decisions regarding restructuring options for different clone 
types (Refactoring and Unknown). 

The decision to employ a neural network model as the top performance and the 
visualization techniques support our goal of developing a user-friendly application that 
reliably predicts calories burned and advances the field of calorie tracking by utilizing a 
variety of methods. 

4 Algorithms 

b e g i n 

f o r i := 1 to 10 s 
t e p 1 do e x p t 
( 2, i ) ; 

n e w l i n e ( ) od 

where 

proc e x p t ( x, n ) ≡ 

z := 1 ; 

do i f n = 0 then  e x i t  f i ; 

do i f odd ( n ) then  e x 

i t  f i ; 

n := n/2 ; x := x ∗ x od ; 

{ n > 0  }; 
n := n − 1 ; z 

:= z ∗ x od ; p r i n t 
( z ) . 

end 

 

 
Algorithm 1  
Calculate y = x 
  
Require: n ≥ 0 ∨ x ̸= 
0 Ensure: y = x 

1: y ⇐ 1 
2: if n < 0 then 

3: X ⇐ 1/x 

4: N ⇐ −n 
5: else 

6: X ⇐ x 

7: N ⇐ n 



8: end if 

9: while N ̸= 0 do 

10: if N is even then 

11: X ⇐ X × X 

12: N ⇐ N/2 
13: else[N is odd] 

14: y ⇐ y × X 

15: N ⇐ N − 1 

16: end if 

17: end while 



 

Fig. 1 Flowchart illustrating the Proposed Methodology for Automated Code Clone 
Detection and Refactoring, showcasing the step-by-step process of feature extraction, 

hybrid machine learning algorithms, outlier reclassification, and comprehensive 
performance evaluation.” 



5 Results 

Based on our study, utilizing machine learning as an automatic refactoring advisor proves 
effective in reducing defects in cloned software. Our results demonstrate its capability to 
automatically identify clones in legacy systems, including the detection of clones that were 
previously overlooked. 

After transferring your dataset, the next step involves generating feature vectors. To 
calculate the local outlier factor, select the rows and columns for elimination and click the 
corresponding button. Each feature vector column is assigned a value between 
-1 and 1, with the rows having the highest value marked as outliers. The remaining rows and 
columns are considered the norm, where 1 indicates the column is unnecessary and -1 
indicates it contains irrelevant information. To assess the model’s predictions, utilize the ”Run 
KNN Algorithm” and other algorithm buttons to build and train the model on the dataset. 
Local outlier factors help identify redundant columns containing essential data. The 
”Comparison Graph” button provides a visual representation of accuracy, precision, recall, and 
other measures. Running the algorithm again on the modified dataset yields updated results. 

The comparison graph illustrates the performance of each algorithm, with the random 

forest consistently leading in every category. Once machine learning models are completed, 
users can click the ”Refactor Software Advisor” button to access a list of applications 
requiring refactoring. Upon completion of the analysis, users receive a detailed report with 
suggestions for applications that may need refactoring. If an application has already undergone 
refactoring, no additional refactoring is necessary. 

In a previous section, we identified classes requiring refactoring; now, we can open the file 
AnnotationBinding.java to search for instances of duplicate code. 

Remarkably, the same software employs identical code for two separate procedures, each 
involving a distinct set of keys in the obtaining Keys process. 

6 Conclusion 

In this study, we propose a learning approach to automatically extract features from identified 
code clones and reduce the number of duplicated lines of code by introducing refactors into 
software systems. The suggested method utilizes a hybrid of machine- learning algorithms to 
identify code clones and automatically recommend suitable refactoring in the implemented 
project. This aims to predict code clone detection and facilitate the removal of clones. Based 
on experimental results, the proposed approach demonstrates promising outcomes, potentially 
aiding developers in mitigating code clone-related issues. Its implementation in a real project 
is anticipated to yield even better results. We also present a comprehensive framework 
proficient in identifying and removing software code clones using a machine-learning 
algorithm. 

To enhance classification precision, we introduce a novel approach to reclassify clone-type 
outliers as Unknown clones. The primary advantage is its ability to handle any type of 
exception without requiring additional effort from developers. This incorporation of inferred 
outlier information enhances classification accuracy and pro- vides valuable insights for 
detecting various types of code clones. The reliability of our proposed approach is affirmed by 
the quality of the results. 

We conduct a thorough comparative study to assess the performance of our proposed 
method against leading-edge classification tools. We evaluate accuracy, reliability, and 
robustness under varying datasets and different configurations. 

Utilizing our distinct tools, we underscore the importance of reducing and eliminating 



code clones in our developed software system. Beyond minimizing code duplication and 
improving overall system efficiency, eliminating code clones can contribute to reducing the 
costs associated with system maintenance. 

We introduce a novel machine learning framework that automatically extracts features 
from detected code clones and trains models to differentiate between refactored and non-
refactored clone code segments. The objective is to develop an auto- mated analysis tool that 
provides developers with clone-specific information, enabling better-informed decisions 
regarding refactoring efforts. Our results demonstrate the effectiveness of this approach in 
differentiating likely code clones from those less likely, relying on semantic and 
morphological features. By investigating all aspects of code structure relevant to identifying 
potential duplications, the proposed model proves highly effective in differentiating between 
different types of cloned source code. 

Experimental results showcase the superiority of our approach in detecting various code 

clones under different configurations and approaches. The approach’s generalizability to 
detect various instances in different programming languages with minimal need for 
modifications underscores its potential for automatic detection in large code bases. Our 
method significantly improves clone accuracy by removing a high percentage of false 
negatives, addressing concerns about code quality and the inadvertent introduction of bugs. 

In the future, we aim to expand the project’s scope, potentially incorporating set 
classification and deep learning techniques. The development of a multi-threaded classifier 
capable of simultaneously processing multiple cloned code instances in parallel is also 
considered. By advancing the techniques demonstrated in this project, we hope to find 
solutions that minimize the negative impacts of poor-quality software on product development 
programs. Additionally, we plan to investigate other factors affecting developer productivity, 
such as the impact of tools and human factors on software code quality. Ultimately, our goal is 
to develop methods that enhance overall software quality while reducing development costs. 
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