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Abstract: In post-quantum encryption, lattice-based cryptography has become the most 

powerful and adaptable subfield. Traditional cryptographic systems, including RSA and 

DSA, are based on the notion that discrete and prime number logarithms are intractable. 

However, quantum computing threatens to undermine these assumptions. Cryptography 

based on lattices has grown in popularity as a reliable solution to overcome this obstacle. 

There are several mathematical problems used in cryptography, including the well-

known Shortest Vector Problem (SVP) of lattices. So far, this work focuses on 

approaches to lattice issues, particularly in two-dimensional and four-dimensional 

spaces. Unsupervised ML technique K-Means Clustering splits the unlabeled dataset into 

various clusters. In order to ensure that the data points within each group are more 

comparable to one another than the data points within the other groups, clustering aims to 

divide the population into a number of groups. In a nutshell, it’s a collection of items 

with both similarities and differences .K-means to reduce the size of Lattice. K-means 

machine learning (ML) is used to accomplish this. On datasets that we prepared 

ourselves, our findings and analyses show a 60% accuracy rate for the strategy we 

discussed in this paper. A contribution of this study is to enhance lattice-based 

cryptography's security against emerging threats, particularly in the context of quantum 

computing. 

Keywords: Lattice, Shortest Vector Problem (SVP), Rivest-Shamir-Adleman (RSA), 

Digital Signature Algorithm (DSA), K-Means Algorithm, Post-Quantum Cryptography 

(PQC). 

1. Introduction 

 

Lattices, a mathematical concept utilized in computer science, play a crucial role in 

developing novel encryption techniques by addressing problems such as the shortest vector 

problem (SVP) and closest vector problem (CVP). In Euclidean space, a lattice is a regular 

arrangement of points [1], [2]. Lattices can be applied to various mathematical and 

computational tasks, including solving integer programming problems, Diophantine 

approximation, cryptanalysis, creating integer-based programming problems, and designing 

error-correcting codes for multiple antenna systems [5]. Recently, the interest in lattice 

structures has increased significantly. 
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The concept of concept decomposition (CD) facilitates the application of cluster analysis as a 

data reduction technique. Fuzzy K-means (FKM) clustering has been demonstrated as an 

effective alternative to singular value decomposition (SVD) for reducing the size of term-

document matrices in information retrieval (IR) applications, owing to its lower computational 

complexity [3]. Inspired by the studies in [4], [1], and this paper proposes using K-Means to 

reduce the size of the lattice. 

This paper is organized as follows: Section 2 provides a detailed definition of lattices and 

concept lattices. Section 3 explores the Shortest Vector Problem (SVP) and its complexity. 

Section 4 discusses the K-means algorithm's operational mechanics. The proposed 

methodology is presented in Section 5. Section 6 analyzes the results. Finally, Section 7 

concludes the paper and suggests future research directions [23]. 

 

2. Lattice 

 

A Lattice ℒ is a discrete additive subgroup of ℝ𝑛, A basis 𝐵 ∈ ℝ𝑛×𝑛, define a; lattice ℒ(𝐵) in 

the following way. 

 

An n-dimensional full rank lattice is the set of all integer combinations. 

 

ℒ(𝐵)={∑ 𝑥𝑖𝑏𝑖  : 𝑥𝑖 ∈  ℤ.𝑛
𝑖=1  𝑓𝑜𝑟 1 ≤  𝑖 ≤ 𝑛} 

 

of n linearly independent vector 𝑏1, . . . 𝑏𝑛 𝑖𝑛 ℝ𝑛. 

 

 

𝑖𝑡ℎsuccessive minima (𝐵): 

 

The smallest radius 𝑟 such that there are 𝑖 linearly independent vectors {𝜐1 … , 𝜐𝑖} of length at 

most 𝑟. (Fig. 1) 
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Fig.1: Two Dimensional Lattices 

 
 

3. Shortest Vector Problem (SVP) 
The SVP is focused on locating the shortest non-zero   vector in lattice ℒ [7], as shown in     

Fig. 2. In order to preserve generality, we restrict the exact form of SVP to integer lattices 

(and thus integral bases) [8], [21].  

3.1 Definition of SVP: 

 

Given a basis B, find a non-zero vector 𝒗 ∈ ℒ (𝐵) whose length is at most 𝛾 ⋅ 𝜆1 (ℒ (𝐵)). 

The exact form of SVP has three frequent variants [17], [19]:   

• Determine if the instances 𝜆1(ℒ(𝐵)) ≤ 𝑑 and 𝜆1(ℒ(𝐵)) >𝑑 exist given a lattice basis 𝐵 

and a real 𝑑 > 0.  

 

• Calculation: Locate 𝜆1(ℒ(𝐵))  given a lattice basis 𝐵.  

 

• Look over a (nonzero) 𝑣 ∈ ℒ(𝐵) such that ∨ 𝑣 ∨= 𝜆1(ℒ(𝐵))   given a lattice basis 𝐵 

[20]. 
 

 

Fig. 2: Shortest Vector 𝑣1 in ℒ 



 

 

 

 

 

 

3.2 Hardness of  SVP and CVP 

Lattice problems, such as the shortest vector problem (SVP) and the closest vector problem 

(CVP), hold significant importance in number theory and cryptology. Continued fractions are 

used in number theory to achieve Diophantine approximations, while in cryptography, these 

problems have recently been employed to develop cryptosystems. The additive and 

parallelizable nature of lattices makes lattice-based cryptography a promising area of research. 

Both SVP and CVP are NP-hard to solve exactly and are also NP-hard to approximate within 

constant factors. Algorithms that find exact solutions to these problems have at least 

exponential time complexities relative to the lattice dimension. These algorithms also serve as 

subroutines in strong polynomial-time approximation algorithms, aiding in parameter 

selection [1], [22], [24], [29]. 

The shortest vector can be determined using methods such as enumeration [6], sieving [9], 

[20], or the Voronoi-cell algorithm. Enumeration uses minimal memory, with a running time 

dependent on the amount and quality of pre-processing. Probabilistic sieving algorithms and 

the deterministic Voronoi-cell algorithm have exponential time complexities. While 

enumeration and the Voronoi-cell algorithm can solve CVP, no sieve algorithm has been 

proven to solve CVP instances effectively. Further research into sieve algorithms that work for 

CVP would be valuable [24]. Table 1 presents the complexities of currently known SVP and 

CVP algorithms [16], [18]. 

 

 

Table 1: Complexity of CVP and SVP solutions 

 

Algorithm 
Time Memory CVP SVP Property 

Voronoi-cell 
22𝑛 2𝑛 Yes Yes Proven 

ListSieve-

Birthday 

22.465𝑛+𝑂(𝑛) 21.23𝑛+𝑂(𝑛) No Yes Proven 

GaussSieve 2

20.415𝑛
+𝑜(𝑛)

?  

20.2075𝑛+𝑜(𝑛)? ? Yes Proven 

In the above table question mark(?) is represent the complexity still not clear. 

4. K-Means Algorithm 

 

K-Means Clustering is an unsupervised machine learning technique that partitions unlabeled 

datasets into various clusters. The aim of clustering is to ensure that data points within each 

group are more similar to each other than to those in other groups, essentially forming groups 

of items based on similarities and differences [9], [10]. 

K-Means is a popular and scalable algorithm known for its complexity. It is a centroid-based 

clustering method, where each data point is assigned to a cluster based on its distance from the 

centroid. A crucial step involves determining the appropriate number of clusters, K, within the 



 

 

 

 

dataset [11]. Data points are iteratively assigned to the nearest cluster, progressively 

organizing them according to their characteristics. The objective is to minimize the total 

distance between data points and their respective cluster centroids, ensuring each data point is 

assigned to the most suitable cluster [12]. This process involves dividing the dataset into K 

clusters and assigning a mean value to each cluster [26]. 

Clusters with data points closest to their centroid are selected, and various distance metrics can 

be used to calculate these distances. Figure 3 illustrates the dataset before and after applying 

the K-Means algorithm. 

 

 

 
 

Fig. 3. Clustering of Data 
 

 

4.1 Flow-chart of K-means Algorithm 

 

The flowchart shown in Fig. 4 represents the k-means clustering process, an unsupervised 

machine learning algorithm used to group similar data points. The algorithm operates by 

iteratively assigning data points to the nearest centroid (mean) and updating the centroids after 

each iteration to reflect the new cluster assignments. The process continues until the cluster 

assignments stabilize and no longer change [10], [1]. 

K-means clustering is known for its simplicity and effectiveness. It is easy to implement and 

applicable to data of any dimensionality. However, the algorithm's sensitivity to the 

initialization of centroids must be noted, as improper initialization can lead to convergence at 

a local optimum rather than the global optimum [15]. The detailed explanation of the 

flowchart is as follows: 

 

1. Start: The algorithm starts by initializing the centroids of the clusters. This can be done 

randomly or using a heuristic method. 

 

2. Selection of Centroids: The algorithm then assigns each data point to the cluster with 

the nearest centroid. 

3. Calculation of distance: The algorithm then calculates the distance between each data 

point and the centroid of its assigned cluster. 

4. Minimization of Distance: The algorithm then checks if the distance between the data 

point and the centroid of its assigned cluster is the minimum distance between the data 

point and all centroids. If so, the algorithm moves to the next data point. Otherwise, the 

algorithm moves the data point to the cluster with the nearest centroid. 



 

 

 

 

Move to the next cluster 

YES NO 

Start 

Number of Clusters  

Selection of Centroids &  

Calculation of Distance 

Is the Distance 

Is Minimum? 

Move to the same Cluster 

Repeat the Process       

from Step 2 

Stop 

5. Move to the same cluster: If the algorithm has moved a data point to a new cluster, it 

updates the centroid of the new cluster to reflect the new cluster assignment. 

6. Repeat the process from step 2: The algorithm then repeats steps 2-5 until the cluster 

assignments no longer change. 

7. Stop: The algorithm terminates when the cluster assignments no longer change [25], 

[26]. 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

  

 

 

Fig. 4. Flowchart of K-Means Algorithm 

 

4.2 Algorithm and Working of K-means 



 

 

 

 

 

This sub-section describes the functional process of the suggested method for using 

machine learning as well as K-means to target SVMs. We present a clustering approach for 

datasets. The dataset is self-generated with 350 points to evaluate the efficacy of the 

proposed algorithm [1]. 

 

 

4.2.1 Deciding how many clusters to use: 

  

Choosing 𝐾, the total number of clusters in which the data is going to be arranged, is the 

initial step. 𝐾 = 3 will be used in this case. 

 

 

4.2.2 Setting up centroid 

The centroid stands for a cluster’s focal point. However, since the exact centre of the data 

points is initially unknown, we choose certain data points at random to serve as the very 

first centroid for each of the clusters. Fig. 5 (a) initialize three centroid for our dataset. 

 

 
Fig. 5(a). Clustering dataset with 𝐾=3                       

 

 
Fig. 5(b). Closest Clustering dataset with 𝐾=3 

 



 

 

 

 

4.2.3 Align the closest cluster with the data points 

 

After initializing the centroid, the next step is to connect data points 𝑋𝑛  with the nearest 

cluster centroid 𝐶𝑘 as illustrated by Fig. 5 (b). The first objective in this phase is to use the 

Euclidean distance metrics to calculate the distance between data point 𝑋 and the centroid. 

 

𝑑(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

Choose the data point cluster in which the distance between the data point and the centroid 

is the shortest. 

 

4.2.4 Re- Initialize centroid 

 

By averaging all the data points in that cluster, the centroid will then be reset. 

𝐶𝑖 =
1

|𝑁𝑖|
∑ 𝑋𝑖 

4.2.5. Repeat steps three and four 

 

Phases 3 and 4 will continue to be performed until we obtain the best centroid and reliable 

data point assignments to the appropriate clusters as represented in Fig. 6. 

 

 
Fig. 6 Clustering dataset with 𝐾=3 

 

 

5.  Proposed Methodology 
 

This section introduces a K-Mean-based attack on the Shortest Vector Problem (SVP). SVP is 

characterized by a large, multi-dimensional lattice that can extend across numerous 

dimensions. Identifying clusters within a large lattice is crucial. Currently, no algorithm exists 

that can solve SVP in polynomial time. To the best of my knowledge, this is the first attempt 



 

 

 

 

at applying this approach. The attack was executed on self-generated datasets using lattice 

attributes. 

 

• Vector Lattice Property: Addressing the vector lattice challenge involves a focus on the 

lattice’s inherent vector nature. Lattice vectors can be expressed through coordinate 

representations, providing a comprehensive understanding of their structural properties. 

Multidimensional lattice [14] is depicted in Fig. 7, provides a thorough description of the 

2- D honeycomb lattice constructed from the vertices of the regular triangles spanning 

the plane. 

 
Fig. 7: Multi-dimensional Lattice where 𝑒1, 𝑒2, 𝑒3 are vectors [13]  

 

• Cryptographic Lattice Size: As detailed in the ‘Basis’ section, the finite memory 

capacity of computers underscores the impracticality of employing an infinitely large 

lattice. Therefore, the dimensions of the lattice are tailored to the specific capacity 

constraints of the system in use. 

 

• K-Mean Algorithm Approach for SVP: The K-Mean algorithm operates on a 2𝐷 or 

4𝐷 dataset. By inputting the dataset values, the algorithm calculates the silhouette 

score, enabling the determination of the optimal number of clusters. Subsequently, 

the algorithm generates clusters based on this determined count, facilitating the 

creation of a heat-map that visually represents the dataset values. 

 

The following is a full summary of the suggested methodology’s steps: As seen in Fig. 8, the 

procedure begins by providing the entrance points (X and Y) and the number of groups (K). 

The K-group centers will be chosen in the first step. After that, the procedure moves into an 

iterative phase that entails processing (such as matching each data point to the closest 

centroid) and updating (recalculating cluster centroid). A check is done to see how much the 

cluster’s mean has changed after each iteration. The program then goes back to the allocation 

phase in this situation. If not, the algorithm moves on to the last output stage. Each data 

point’s cluster function and the coordinates of the cluster center are provided in the output’s 

final form. 

  



 

 

 

 

 
Fig. 8. Working Process of Proposed Methodology 

 

6.  Results and Analysis 
 

The K-Means algorithm operates by defining the number of clusters, K. Initially, the centroids 

are set by shuffling the dataset and then randomly selecting K data points as the centroids. The 

process continues iteratively until the centroids no longer change. The experimental evaluation 

of attacks and comparisons among datasets with 2 and 4 clusters, respectively, is as follows: 

 

6.1 Resize 2𝐷 Lattice using K-Mean 

 

The following is an outline of the analysis of the suggested approach across a 2 𝐷 lattice 

datasets: 

 

    6.1.1 Datasets of 2 dimensional Lattice 

 

We have generated more than 350 pairs of coordinates to evaluate the efficacy of our 

proposed scheme. In this we implement K-Mean clustering as the no of clusters are given 

by us and it implements the clusters graph which is given below and according to the 

dataset values it calculate the silhouette score and the number of clusters we  draw it 

generates its heat-map as per the dataset value. 



 

 

 

 

6.1.2 Graph Representation of Clusters Drawn in 2𝐷 Dataset 

 

In Fig. 9, there are four graph show that clusters drawn in 2𝐷 lattice dataset first one is for 

𝑋1 highest values is 695.4875 in 𝑋 and lowest values vary between 250.48-279.97, same in 𝑌  

shows that highest value is 695.48 and lowest value is vary between 250.48-279.97. The graph 

is for outcome it shows the value distribution after the execution of proposed methodology.  

 

 
(a) 

 

 

 
(b) 

 



 

 

 

 

 
(c) 

 

 
(d) 

 
Fig. 9. Number of clusters drawn in 2D dataset 

 

The result shows that cluster sizes are 2𝐷, 4𝐷, 6𝐷, and 8𝐷 respectively. The accuracy of 8𝐷 is 

more, however, at 2𝐷 accuracy is less. 

 

6.1.3 Heat Map representation of 2 𝐷 Lattice  

 

This subsection presents data classification results using a heat map and evaluates 

performance based on machine learning parameters. Inefficient correlations or interactions 

between variables in a dataset are illustrated in Fig. 10, with color classes 0 and 1 shown in 

orange and blue, respectively. The K-Means algorithm is employed to identify clusters among 

relevant characteristics, distributing the distinctive feature vectors into different classes. 

Correlated feature points are represented as orange and blue dots, based on the best possible 

separation bounds determined by K-Means. 



 

 

 

 

 
(a) 

 

 



 

 

 

 

 
(b) 

 



 

 

 

 

 
(c) 

 

The heat map shows the number of clusters that are drawn, and the different graph represents 

that different numbers of clusters are drawn, and each cluster has its own accuracy. According 

to this, the heat map changes its parameters, and its figure changes at different numbers of 

clusters. The heat map cannot be the same, and the result can’t be the same as compared to the 

result before we get it. 

 



 

 

 

 

 
(d) 

 
Fig.10. Number of clusters drawn in 2𝐷 dataset       

 

Fig. 11 shows that for different values of k, we get different values according to the dataset, 

and this is the result for 2 𝐷 dataset values. It is observed that the accuracy of clustering or 



 

 

 

 

 attack over SVP at K = 6 is high and at K = 2 is low. It is observed that the possibility of 

attack due to reducing lattice size and increasing the accuracy of clustering over 6 𝐷 is high up 

to 60.7%. 
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Fig. 11: Performance of proposed K-Mean scheme over 2𝐷 Lattice Dataset 

 

 

6.2 Resize 4-𝐷 Lattice using KNN 

The following is an outline of the analysis of the suggested approach across a 4 𝐷 lattice: 

 

6.2.1 Dataset of 4 dimensional Lattice 

 

We have generated more than 350 pairs of coordinates to evaluate the efficacy of our proposed 

scheme. In this, we implement K-Mean clustering as the number of clusters is given by us, and 

it implements the cluster graph, which is given below, and according to the dataset values, it 

calculates the silhouette score, and the number of clusters we draw generates its heat map as 

per the dataset value [27]. 

 

 
(a) 



 

 

 

 

 
(b) 

 

 
(c) 

 



 

 

 

 

 
(d) 

 
Fig. 12. Presentation of number of clusters drawn in 2𝐷 dataset 

 

In Fig. 12, nine graphs illustrate the variations in values within a 4-lattice dataset. The first 

graph shows the highest values, which range between 695.48 and the lowest values, which 

range between 220.49 and 290.79. Additionally, this graph indicates that the highest value is 

between 675.48, and the lowest value is between 280.97 and 600.76. The highest value 

exceeds 695.4875, while the lowest value fluctuates between 250.67 and 275.94. Moreover, 

the highest value surpasses 695.48, and the lowest value varies between 280.87 and 340.24. 

 

6.2.2 Results of 4-𝐷 Lattice 

 

This section presents results through data classification, heat maps, and performance 

metrics based on machine learning parameters. It highlights the relationships or correlations 

between variables in a dataset. In Fig. 13, the colors orange and blue represent classes 0 and 

1, respectively. The results display the distribution of distinct feature vectors across different 

classes using the K-Means algorithm, which determines the distance metrics among relevant 

features. Correlated feature points are depicted as various orange and blue dots with optimal 

separation boundaries determined by K-Means. 
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Fig. 13. Heat Map representation of 4𝐷 Lattice Dataset 

 

Fig. 14 shows that over 4 𝐷, reducing the size of lattice accuracy is high; however, at 2 

𝐷, it is high when cluster size is 6. It is also observed that reducing the size of the lattice at 

cluster size 4 is the same over a 2- 𝐷 and 4-𝐷 dimensional lattice. In addition, attack over 

four dimensions is hard and exponentially decreases accuracy at values of K up to 5 to 10. 

Moreover, over two-dimensional accuracy is ups and downs at values of K from 2 to 10 [27], 

[28].  
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Fig.14. Comparative Analysis of proposed K-Mean scheme over 2 𝐷 and 4𝐷 Lattice Dataset  

7. Conclusion and Future Work 
 

In this work, reducing the size of the lattice using K-means clustering is presented. This 

method has demonstrated its effectiveness in simplifying complicated structures, enabling 

more effective calculations, and improving the understanding of big datasets. However, over a 

large dataset, reducing the size of the lattice is hard. The proposed mechanism achieves an 

accuracy of up to 60%. In the future, we will explore the attack instead of clustering, and 

KNN will also be applied to explore the possibilities of hybrid approaches over large dataset. 
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