
Research Article

Context analysis approach for context aware
applications deployed on pervasive environments

Nesrine Khabou1,∗, Ismael Bouassida Rodriguez1,2, Mohamed Jmaiel1,3

1ReDCAD laboratory, University of Sfax, National School of Engineers of Sfax, Tunisia
2Univ de Toulouse, LAAS, Toulouse, France
3Research Center for Computer Science, Multimedia and Digital Data Processing of Sfax, Sfax, Tunisia

Abstract

The increase of mobile and interconnected devices leads to the growth of demands for context aware
applications. These applications deployed on top of pervasive environments must adapt themselves to context
changes. Context aware applications have to continuously sense their physical environment, and adapt their
behavior accordingly. These applications must perform four phases starting by collecting and monitoring
context, then analyzing context, deciding adaptation actions and finally executing the planned adaptation
actions to deal with the context changes. In this paper, we focus on the second phase.We propose a context
analysis approach that relies on different thresholds defined according to the user needs to detect context
changes and raise notifications when changes occur. The analysis approach is performed according to three
different steps. A context storage step, a context classification step, and a threshold calculation step.

Received on 12 December 2014; accepted on 05 March 2015; published on 04 August 2015
Keywords: Pervasive computing, context awareness, adaptation, analysis techniques, threshold calculation, mathemati-
cal models.

Copyright © 2015 Nesrine Khabou et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.4-8-2015.150041

1. Introduction

Recently, we have been witnessing how various
applications are being integrated more deeply into daily
users [6]. These technological advances are providing
the hardware infrastructure necessary to achieve
the pervasive computing paradigm [14]. Pervasive
computing is defined by Mark Weiser [16] as: "The
most profound technologies are those that disappear.
They weave themselves into the fabric of everyday
life until they are indistinguishable from it”. One of
the important properties of pervasive computing is
context awareness. Moreover, pervasive computing and
ubiquitous applications need to be aware of their
environment in order to adapt to changing contexts and
provide correct services [1]. Context awareness refers to

∗Corresponding author. Email: nesrine.khabou@gmail.com

the ability of an application to acquire and reason about
context and adapt its behavior accordingly.

Therefore, applications on top of pervasive environ-
ments need to be context aware so that they can adapt
themselves to the changing context and the execution
environments. The applications that feature this prop-
erty should perform four phases illustrated in Fig-
ure. 1 starting by collecting and monitoring context
from different sources like sensors for example. These
monitored information are exploited and analyzed dur-
ing the second phase (Analyze). The analysis phase is
responsible for detecting context changes and raising
notifications when changes are detected. These notifi-
cations are used in the third phase (Decide) to decide
the adaptation actions related to the changes. In the
last phase (Act), the adaptation actions are executed to
react to the changes and adapt the application behav-
ior accordingly. Our interest is focused on the second
phase (Analyze). In fact, detecting context changes in a
timely manner is crucial to avoid undesirable situations
such as device crashes, etc. In this paper, we propose

1

EAI Endorsed Transactions
on Context-aware Systems and Applications

EAI Endorsed Transactions on
Context-aware Systems and Applications

03-08 2015 | Volume 2 | Issue 4 | e2

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<nesrine.khabou@gmail.com>

N. Khabou et al.

and we detail a context analysis approach in pervasive
environments. Our proposed approach is performed
according to three steps. First, context parameters are
stored in context databases for example for further
use. The context storage step is out of the scope of
this paper. Second, the stored context parameters are
retrieved from the databases then classified to facilitate
the context use. Finally, the context parameters are
analyzed and changes are detected by comparing the
context parameter values and the computed threshold
values. The threshold values are computed and updated
via different mathematical models. Notifications are
triggered whenever the context values cross the thresh-
old value.

Figure 1. Context aware application cycle

The rest of the paper is organized as follows. In
section 2, we present some studies related to context
change detection (Context analysis). In section 3, we
present a case study named “Smart Campus System”.
Its purpose is to provide suitable services to users
according to context. The analysis approach is detailed
in section 4. First, we define a context parameter
classification step which takes into account the context
parameter evolution. Second, we detail the threshold
calculation step that allows to analyze context and
detect changes. In section 5, we illustrate the usefulness
of our approach through an illustrative scenario related
to the Smart Campus case study. The last section
concludes the paper and gives some directions for
future work.

2. Related work

In the context changes detection (context analysis)
research direction, different techniques are proposed to
detect the context changes.

Cioara et al. [4] propose to use the context entropy
concept to detect the context changes and determining
the degree of fulfilling a predefined set of policies.
Furthermore, context situation entropy measures the
level of the system’s self and execution environment
disorder. So, if the system context situation entropy
value exceeds a fixed threshold value, then the system is
in a critical state and it must execute adaptation actions
to control itself and to keep the system entropy below
the threshold.
Although this approach allows for a self adaptation

in context aware systems, it is restricted to external
context parameters such as temperature, humidity
and light etc. Besides, using fixed threshold values is
inappropriate in dynamic environments and can cause
false alarms.
In other studies, context changes are detected by

comparing a context value saved in a repository with
a new context value. In fact, Zheng et al. [18] have
addressed the issue of context change detection by
proposing a context-aware middleware which conforms
to the CORBA component model. The proposed
middleware is composed of context aware services such
as a context collector, a context interpreter, a context
repository and a context analyzer. The latter is in
charge of filtering and analyzing context parameters
to determine relevant context changes and notify the
application afterwards. Context filtering is based on a
comparison of the context values stored in the context
repository with the new context value in order to detect
context changes.
The proposed middleware enables to save the scare

resources. In fact, the component deployment is
performed “just-in-time”. However, this middleware
does not specify context parameters to take into
account.
Another approach for dynamic context management

is proposed by Taconet et al. in [15]. They present
CA3M, a context aware middleware, which enables
applications to adapt their behavior by dynamically
taking into account context changes. The authors model
the application by “entities”, which represent a physical
or a logical phenomenon (person, concept, etc.) and
“observable”, which defines something to observe. For
instance, a mobile device state is an example of an
observable which may take a finite number of values
(e.g low battery, almost low battery or normal battery).
They consider that the change of an “observable” state
leads to a different application behavior.
Other approaches are used to analyze context. In

fact, Bouassida et al. [3] proposed a model driven
approach for collaborative pervasive systems. The
authors have identified different levels for such systems.
Then, models for each level have been proposed. They
have implemented a refinement procedure, that allows
the transition between levels and they have detailed

2
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

Context analysis approach for context aware applications deployed on pervasive environments

a selection procedure, that allows the adaptation
to context changes according to given policies. The
selection procedure is based essentially on fixed
thresholds. Then, once a node state (identified by
battery level, memory consumption, CPU usage, etc.)
remain below/under the threshold values, a notification
is raised. Although this approach enables to detect
context changes, it may cause false detections by using
fixed thresholds.
In the work of Hussein et al., [7], the authors pro-

posed an architecture based approach for developing
context aware adaptive systems. The proposed archi-
tecture has three layers that partition the system in
a way that allows the context aware adaptive system
requirements to be handled using the different lay-
ers. The context is first modelled at layer two (The
system and its context representation), processed and
managed at layer three (The change management). This
layer is responsible for adapting the system to cope
with context. It is based on adaptation rules that rely
on fixed thresholds to trigger adaptation actions. The
above layered approach allows for context aware system
development. The used technique for context change
detection is based on fixed threshold which can lead to
false detections or missing alarms.
Birje et al. [2] propose a multiagent model to monitor

the resource availability and control the device state in
wireless grid. The mobile agent models aim to provide
not only a resource monitoring scheme to keep track
of all devices and their resource utilization at any
instant but also a device state control such that avoiding
an overloaded state. For that reason, the authors
consider three resource states: an overload/poor state,
an underload/excellent state and a normal state. To
evaluate the resource state, the authors define two
thresholds. A minimum threshold thresholdmin and
a maximum threshold thresholdmax. The proposed
multi agent model monitors and controls the resource
utilization, the resource availability, the device mobility
and the device state by using the defined thresholds.
Although the proposed approach takes into account
various parameters, the use of fixed thresholds can lead
to false or missing detections.
In [10], the authors provide an experimental study

about the detection capabilities provided by different
monitoring techniques used in web based applications.
They study four monitoring techniques. The system
level monitoring that consists in gathering different sys-
tem parameters like CPU usage, memory consumption,
etc.These parameter values are forwarded to a central
system that compares the collected parameter values
against threshold values that are set so that when the
thresholds are reached, alert messages are triggered. In
the container level monitoring, application containers
that include monitoring services gather details related
to the application server parameters for example the

JVM memory, the instanced objects, etc. The gathered
data is used by the information technology staff to
reason about the application server thumbprint and
to react when necessary in order to adjust the appli-
cation and improve its performance. The end-to-end
monitoring aims to identify if users are facing problems
while accessing the application. End-to-end monitoring
tools are based on monitoring agents that are geograph-
ically dispersed that gather details such as availabil-
ity, response time, etc. These data are used to detect
anomalies and identify their origin. Finally, log anal-
ysis which consists in log files that record data about
the system and application usage to detect anomalies.
The authors propose their own monitoring technique.
They present a framework used to detect and isolate
performance anomalies in web based applications. The
proposed framework is composed of different building
blocks: A monitoring module, a performance analyzer,
an anomaly detector, a root cause failure analysis, a
recovery module, a workload variation module and a
system dimensioning module. The monitoring module
is responsible for collecting, online, a set of system,
application and application server parameters. These
parameters are transmitted to the performance analyzer
to detect the performance anomalies. When anomalies
are detected, the recovery module is responsible for
executing the reconfiguration action. For the workload
variation and the system dimensioning modules, they
are in charge of controlling the workload demands
and the resource consumption. The authors use AOP
(Aspect Oriented Programming) to monitor the system,
the application and the application server parameters.
In order to detect anomalies, the authors measure the
correlation degree between the response time and the
number of user transactions processed. Alert messages
are triggered when the correlation degree suddenly
decays. An additional analysis based on the Dynamic-
TimeWrapping algorithm is performed to detect perfor-
mance anomalies. The proposed approach is designated
to web based applications, so that it is restricted to few
parameters.

Exposito et al. [5], have presented a context aware
framework for alert generation. The framework is
responsible for identifying alarm events identifying
the monitoring entities being able to manage the
alarm events when it is generated and forwarding
data to the monitoring entity when requested. The
authors divided the alarm events into three categories:
instantaneous, interval based and multiparametric. For
the instantaneous alarms, they are triggered when
the parameter value exceeds a pre-established range
as well as when they have an excessive deviation
from a certain value. For the interval based alarms,
they are associated to situations lasting for a span
of time, they are based on the knowledge of the
dynamics of parameters and the reasoning over their

3 EAI Endorsed Transactions on
Context-aware Systems and Applications

03-08 2015 | Volume 2 | Issue 4 | e2

N. Khabou et al.

temporal evolution. Finally, for the multiparametric
alarms, they are build by considering simultaneously
several heterogeneous parameters. Summarizing, the
diverse alarm categories are characterized by thresholds
in order to detect the event. However, specifying pre-
established thresholds is not appropriate in dynamic
environments. Furthermore, only data related to
patients are considered, as the proposed framework is
evaluated through a health care domain.

Miao et al. [11], have proposed an online light
weight failure detection approach that aims at detecting
nodes failure in a wireless sensor network. The authors
design a correlation graph that characterizes internal
correlations inside a node. Then, failures are detected
by identifying the changes and anomalies of the
correlation graph. The proposed approach aims at
analyzing node metrics. The authors classified node
metrics into four categories such as timing metrics,
traffic metrics, task metrics and other metrics. Then,
the correlation graph nodes represent the node metrics
and the edges represent the pairwise correlations of
the metrics. Each edge has a weight which denotes the
correlation score between the corresponding metrics.
The correlation graph is maintained periodically for
each node in the wireless sensor network. Then, a node
is assumed to be faulty if there is a missing correlation
between two metrics. The proposed approach allows
to detect node failure in wireless sensor network by
constructing a correlation graph of a node. Although
the proposed approach relies on minimal a-priori
knowledge and can be generalized to a wide variety of
wireless sensor network applications, it is restricted to
some context parameters related to nodes. Furthermore,
the proposed approach does not treat for example link
failure.

Mohamed et al. [12], have proposed an approach
based on the modeling of physical phenomena,
allowing to use available resources to predict the
values that are supposed to be read by sensors.
Then, a comparison of the predicted values and the
real readings allows to detect failures. Predicting
is performed through a prediction engine that is
responsible for deducing the values expected to be
read by sensors based on the law sets defined in the
environment model. If the predicted values are outside
the sensor’s tolerance margin, then, a failure is detected.
The proposed approach allows to detect failures using
a comparison between predicted values and values
actually read from sensors. However, the technique
used to detect failures can cause false alarms since the
predicted engine could produce inaccurate values.

3. Case study: Smart campus system

To motivate the use of our approach, we introduce in
the following an example of a smart campus system

illustrated in Figure. 2. Smart campuses, with the
ability to collect and analyze data, are built in order
to benefit the institutions, the actors -the students and
the teachers- by providing services which facilitate
interaction between them. For instance, in the smart
campus, every actor is equipped with a personal
device such as a Personal Digital Assistant (PDA),
a smart phone, a tablet, etc. and the smart campus
system provides different services to actors based on
their current situations. To maintain the collaboration
between students and teachers, these devices need to
be aware of their environment and their execution
context, etc. Consequently, smart campuses contain an
infrastructure that allows devices and systems to be
monitored and adapted autonomously according to the
changing context.

In this paper, our work deals with several context
parameters such as temperature, pressure, position
and light which need to be monitored. Furthermore,
a number of context resources such as the memory
consumption, the energy, the CPU load and the
available bandwidth should be monitored to assess both
the devices and the communication state especially
in pervasive environments. The campus architecture
depicted in the Figure. 2 involves different kinds of
participants. On the one side, two controlling servers
called Smart Campus Servers (SCS) namely SCS1 and
SCS2 which are Ethernet-connected and equipped with
important storage and high computational capabilities.
On the other side, fixed (Presence sensors, cameras,
lamps, air conditioners) and mobile (laptop, PDA,
phones) devices are placed inside of the campus. The
mobile devices are usually resource constrained in
terms of memory, bandwidth and energy for example.
Hence, a periodic monitoring by the controlling
servers is needed in order to check their state
which changes according to context. Furthermore, two
gateways called Smart Campus Gateways (SCG), SCG1

and SCG2 implementing software interfaces are used
to connect devices to the corresponding controlling
servers to transmit information between them. The
campus space is composed of separate rooms (Research
laboratories, Meeting rooms, classrooms (Classroom1
and Classroom2)). Each room is equipped with fixed
devices as well as mobile devices that are carried by the
different actors.

Because of the complexity of the interaction between
the different entities, we propose to focus our study on
a part of the Smart Campus. It consists in the gateway
SCG2 connected to both the SCS2 and the devices
located in the Classroom2.

After presenting the case study, we detail in the
following the proposed approach.

4
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

Context analysis approach for context aware applications deployed on pervasive environments

Figure 2. Case study: Smart campus

4. The proposed approach

Our context analysis approach is performed according
to three steps: A context storage step, a context
processing and classification step and a threshold
calculation step. The context storage step is out of the
scope of this paper.

In the following we present respectively the context
classification step and the threshold calculation step.

4.1. Context parameter classification step

With a wide range of context parameters, context
parameters need to be classified into different categories
in order to use context easily. Since context parameters
evolution is dynamic especially in pervasive environ-
ments, we propose to divide the context parameters
into three categories according to the context parameter
evolution. We have identified three categories. Param-
eters whose evolution is characterized by a tendency,
parameters whose evolution is characterized by peaks
and parameters whose evolution is characterized by
bursts. Therefore, this classification covers almost all

context parameter types. Indeed, each context param-
eter evolves over time, so, it belongs inevitably to one of
the defined context categories.

The tendency category. A tendency is defined as a line
in a graph which shows the general direction that
a set of points seem to be heading as illustrated in
Figure. 3(a). For example, each mobile device such
as PDA, mobile phone, etc. mentioned in section 3
periodically monitors its resource state namely the
battery level, the memory consumption that belong to
the tendency category.

The peak category. Peaks are defined as high values with
sharp rise followed quickly by sharp fall implying a
narrow period width [13]. We define a peak “Peak” by
its amplitude “Ap” and its period “T” as depicted in
Figure. 3(b). In fact, the peak is a very narrow period
of high values- That is, its amplitude “Ap” exceeds for
n times the average amplitude “Aav” of the time series
formed by the context parameter evolution. We define a
peak by the following formulas:

{

Ap = n × Aav

T ≤ m × T imeUnit

5
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

N. Khabou et al.
B
a
tt
e
ry
 v
a
lu
e
s

Time

(a) Tendency category

T

Average AmplitudeApCPU Load values

C
P
U
 l
o
a
d
 v
a
lu
es

Time

(b) Peak category

Message number values

OFF-period

ON-period

M
es
sa
g
e
n
u
m
b
er

Time

(c) Burst category

Figure 3. The proposed context categories

Where Ap defines the peak’s amplitude, Aav defines the
average amplitude of the context parameter evolution, n
and m are constants fixed by the application designers.
The SCSs receive the monitored data from the mobile
devices in order to analyze them. For that reason, the
SCSs CPU load can rise suddenly reaching high values
after a high rate of requests. Hence, the CPU load
especially of the SCSs can be modeled by a peaked
function. The link load and the available bandwidth
belong also to this context category.

The burst category. A burst consists on a relatively
wide contiguous region of values. Otherwise, a burst
is defined as a large number of occurring events [8].
As depicted in the Figure. 3(c), we model the wide
region by an ON period and the other by an OFF
behavior [17]. The ON-period models a single flow such
as the transfer of a single web page, and the OFF-period
models the user’s thinking time. The ON-period and
the OFF-period are strictly alternating. The message
number received by the SCSs during an ON-period is
modeled as a burst.

4.2. Threshold calculation step

In the following, we detail some elements about
threshold calculation for each context category defined
previously.

Threshold calculation for the tendency category. For this
category, the context parameter evolution is described
by a tendency. In order to avoid false detections as well
as missing alarms, we need to define thresholds which
are uncorrelated with the context parameter evolution.
The notification raised when the context parameter
behavior crosses the threshold is illustrated in Figure. 4.
Uncorrelated thresholds can be fixed thresholds,

uncorrelated adaptive thresholds and step function
thresholds. For instance, these thresholds are defined
by the application designers according to their needs in
terms of Quality of Service (QoS).
For the adaptive threshold denoted in the Fig-

ure. 4(b), mathematical methods can be applied in

order to update threshold values at runtime. However,
for this kind of context parameter characterized by a
tendency, adaptive threshold must be uncorrelated with
the context parameter evolution in order to avoid false
detections and missing alarms.
For the step function threshold described in the Fig-

ure. 4(c), thresholds are defined per period according to
the application designers needs.

T

C
P
U
 l
o
a
d
 v
a
lu
e
s

Time

Figure 5. Threshold calculation for the peak category

Threshold calculation for the peak category. In this
context category, the idea consists in specifying
adaptive thresholds that are correlated with the
context parameter evolution. Adaptive thresholds are
calculated via different mathematical models such
as Exponential Weighted Moving Average (EWMA)
technique used by Lahyani et al. [9], Simple Moving
Average (SMA). Mathematical functions defined by the
application user are used to update thresholds.

Threshold calculation for the burst category. In this context
category, our idea consists on transforming a bursty
model into a tendency/peak model. So we propose to
apply an aggregate function G in each ON-period. The
obtained model coincides with a tendency function as
illustrated in Figure. 6(b). A notification is raised when
the context parameter crosses the threshold calculated
in an ON-period.
For the smart campus case study (section 3), the

gateway SCG2, analyzes the received data from the

6
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

Context analysis approach for context aware applications deployed on pervasive environments
B
a
tt
e
ry
 v
a
lu
e
s

Time

(a) Fixed Threshold

B
a
tt
e
ry
 v
a
lu
e
s

Time

(b) Adaptive Threshold

B
a
tt
e
ry
 v
a
lu
e
s

Time

(c) Step Function Threshold

Figure 4. Threshold calculation for the tendency category

devices. The maximum queue size for this device
is set by the application designer. So that, if the
traffic received by this gateway in a period Ti exceeds
a maximum, then a burst is identified in Ti . To
detect bursty periods, applying the aggregate function
G consists in calculating the slope of the scatter
diagram obtained in each ON-period. Second, in
each ON-period, we compute the intensity of each
slope formed in each ON-period. We obtain the
Figure. 4(b). Consequently, if the slope intensity exceeds
the threshold, then a burst is detected and appropriate
adaptation actions are triggered.

5. Illustrative scenario

To illustrate the usefulness of our approach, we
elaborate the following scenario which is conducted
in the smart campus system presented in Figure. 2.
It highlights the ability of an application to react
accordingly to the changing context. We focus on
the interaction of the actors of the Classroom2 and
SCS2 through SCG2. Classroom2 is used by the
researchers, the teachers and the students. Different
context parameters are considered in this scenario.

• The actors’ position: It belongs to the peak
category. Adaptive thresholds are applied to this
context parameter.

• The memory consumption: It belongs to the ten-
dency category. Fixed, adaptive or step function
thresholds are applied to this context parameter.

The scenario starts as follows: At the beginning of
each course session, the presence sensor captures
and localizes the mobile actors. Their positions are
then forwarded to SCS1. SCS1 runs the analysis
algorithm based on thresholds on the context parameter
(mobile actors’ position) and takes the appropriate
decision. Each student participating to a course uses
a tablet device to which the course will be dispatched
through bluetooth. The tablet device holds the analysis
algorithm in order to detect context changes. During

the course, the students’ tablet display appropriate
slides and they follow their courses. Furthermore, the
students can write annotations on their tablets and
publish their comments to share knowledge between
all the group members to enrich the course and
enhance the collaboration. A student holding a tablet is
participating to the course by exchanging information
and slides.
For each amount of data received, the tablet device

retrieves the memory consumption from the operat-
ing system using probes. Since the memory consump-
tion belongs to the tendency category, fixed thresh-
old(Threshold3), step function threshold (Threshold1)
and uncorrelated adaptive threshold (Threshold2) are
applied for this context parameter as illustrated in the
Figure. 7.

• Threshold3: A fixed threshold (value=90). This
threshold is specified by the application designer.
It corresponds to a critical memory. For instance,
if the memory values crosses this fixed threshold,
the analysis module detects a device crash.

• Threshold2: An adaptive threshold. This threshold
is updated using the mathematical formula
defined by the user. The mathematical formula is
described as follows:

Thresholdt = λ × t + β

Where λ and β are two constants defined by the
user. λ represents the slope and β represents the
intercept. This threshold level corresponds to a
normal memory state. As shown in Figure. 7, we
do not need to trigger adaptation actions when
memory values oscillate around the Threshold2.
However, we must react when the memory not
only goes past the Threshold2 but comes closer to
the critical threshold (Threshold3).

• Threshold1: A step function threshold. The step
values are defined by the user according to his
needs.

7
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

N. Khabou et al.

T4T3T2T1

M
e
ss
a
g
e
 n
u
m
b
e
r

Time

(a) Burst model

G(T4)

G(T1)

M
e
ss
a
g
e
 n
u
m
b
e
r

Time

(b) Aggregation function application

Aggregate function G(Ti)

Threshold values

Notification

G(T4)

G(T1)

M
e
ss
a
g
e
 n
u
m
b
e
r

Time

(c) Threshold calculation

Figure 6. Threshold calculation for the burst category

– For the first step (threshold value=30), we
can consider that the course to which the
student is participating does not require
exchanging information.

– For the second step (threshold value=50.5),
we can consider that the student is partici-
pating to a course that requires interaction
with the teacher, displaying and exchanging
information.

– For the third and the fourth step (thresh-
old value=20, threshold value=20.5) respec-
tively, we can consider that the student is in
a pause time or he is not doing any activity.

– For the last step (threshold value=70.5), it
means that we must react once the memory
values cross this threshold and increase
rapidly.

6. Conclusion

The challenges for context aware applications design
and implementation are to perform four phases.
Collecting context from different sources such as
sensors, widgets, etc., analyzing context to detect
changes, deciding adaptation actions and executing
the planned action to react dynamically to context
changes. In this paper, we have considered context
analysis. we have proposed an analysis approach for
context change detection in pervasive environments.
The proposed analysis approach is divided into three
steps. A context storage step, a context classification
step and a threshold calculation step. The context
storage step is out of the scope of this paper. We
have proposed a context classification based on context
parameter evolution. This context classification takes
as input the collected context parameter and attributes
for each context parameter one or many categories.
Three categories have been identified. Second, we
have detailed the threshold calculation step that
aims at analyzing context and identifying context
changes. Threshold calculation allows to analyze

context parameters, identify context changes and notify
the context aware application. The thresholds can
be fixed, step function and adaptive ones. For the
adaptive thresholds, mathematical models are applied
in order to update the threshold used to detect context
changes. Further, when the context parameter crosses
the threshold, a notification is triggered to react to the
context changes. As future work, we plan first to stretch
the context parameter classification. Second, our aim
consists not only in detecting context changes but also
predicting context behavior using mathematical models
such as autoregression.

7. Acknowledgements

This research is supported by the Itea2’s A2NETS

(Autonomic Services in M2M Networks) project1.

References

[1] Alagar, V., Mohammad, M., Wan, K. and Hnaide,

S.A. (2014) A framework for developing context-aware
systems. EAI Endorsed Transactions on Context-aware
Systems and Applications 14(1). doi:10.4108/casa.1.1.e2.

[2] Birje, M. and Manvi, S. (2011) Multiagent
model for device state control in the wireless
grid. In Electronics Computer Technology (ICECT),
3rd International Conference on, 3: 456 –460.
doi:10.1109/ICECTECH.2011.5941834.

[3] Bouassida Rodriguez, I., Sancho, G., Villemur, T.,
Tazi, S. and Drira, K. (2009) A model-driven adaptive
approach for collaborative ubiquitous systems. In
Proceedings of the 3rd workshop on Agent-oriented
software engineering challenges for ubiquitous and pervasive
computing, AUPC 09 (New York, NY, USA: ACM): 15–20.

[4] Cioara, T., Anghel, I., Salomie, I., Dinsoreanu, M.,
Copil, G. and Moldovan, D. (2010) A self-adapting
algorithm for context aware systems. In Roedunet
International Conference (RoEduNet), 2010 9th: 374 –379.

[5] Esposito, A., Tarricone, L. and Zappatore, M. (2010)
A versatile context-aware pervasive monitoring system:

1https://a2nets.erve.vtt.fi/

8
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

http://dx.doi.org/10.4108/casa.1.1.e2
http://dx.doi.org/10.1109/ICECTECH.2011.5941834
https://a2nets.erve.vtt.fi/

Context analysis approach for context aware applications deployed on pervasive environments

Figure 7. Application of threshold on the memory context parameter

Validation and characterization in the health-care
domain. In Industrial Electronics (ISIE), 2010 IEEE
International Symposium on: 2791–2796.

[6] Gilman, E., Davidyuk, O., Su, X. and Riekki, J. (2013)
Towards interactive smart spaces. JAISE 5(1): 5–22.

[7] Hussein, M., Han, J., Colman, A. and Yu, J. (2012)
An architecture-based approach to developing
context-aware adaptive systems. In Engineering of
Computer Based Systems (ECBS), 2012 IEEE 19th
International Conference and Workshops on: 154–163.
doi:10.1109/ECBS.2012.13.

[8] Klan, D., Karnstedt, M., Politz, C. and Sattler,

K. (2008) Towards burst detection for non-stationary
stream data. In KDML: 57–60.

[9] Lahyani, I., Khabou, N. and Jmaiel, M. (2012) Qos
monitoring and analysis approach for publish/subscribe
systems deployed on manet. In Parallel, Distributed, and
Network-Based Processing, Euromicro Conference on (Los
Alamitos, CA, USA: IEEE Computer Society): 120–124.

[10] Magalhaes, J. and Silva, L. (2012) Anomaly detection
techniques for web-based applications: An experimental
study. In Network Computing and Applications (NCA),
2012 11th IEEE International Symposium on: 181–190.
doi:10.1109/NCA.2012.27.

[11] Miao, X., Liu, K., He, Y., Liu, Y. and Papadias, D.

(2011) Agnostic diagnosis: Discovering silent failures
in wireless sensor networks. In INFOCOM, 2011
Proceedings IEEE: 1548–1556.

[12] Mohamed, A., Jacquet, C. and Bellik, Y. (2012) A
fault detection and diagnosis framework for ambient

intelligent systems. In Ubiquitous Intelligence Computing
and 9th International Conference on Autonomic Trusted
Computing (UIC/ATC), 2012 9th International Conference
on: 394–401.

[13] Palshikar, G.K. (2009) Simple Algorithms for Peak
Detection in Time-Series. In Proc. 1st Int. Conf. Advanced
Data Analysis, Business Analytics and Intelligence.

[14] San Martín, L.A., Peláez, V.M., González, R., Campos,
A. and Lobato, V. (2010) Environmental user-preference
learning for smart homes: An autonomous approach. J.
Ambient Intell. Smart Environ. 2(3): 327–342.

[15] Taconet, C., Kazi-Aoul, Z., Zaier, M. and Conan,

D. (2009) Ca3m: A runtime model and a middleware
for dynamic context management. In Proceedings of the
Confederated International Conferences, CoopIS, DOA, IS,
and ODBASE 2009 on On the Move to Meaningful Internet
Systems: Part I, OTM ’09 (Berlin, Heidelberg: Springer-
Verlag): 513–530.

[16] Weiser, M. (1995) Human-computer interaction (San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.),
chap. The Computer for the 21st Century, 933–940.

[17] Yang, X. (2002) Designing traffic profiles for bursty
internet traffic. In In Proceedings of IEEE Global Internet.

[18] Zheng, D., Wang, J., Han, W., Jia, Y. and Zou, P. (2006)
Towards a context-aware middleware for deploying
component-based applications in pervasive computing.
In Proceedings of the Fifth International Conference on Grid
and Cooperative Computing, GCC ’06 (Washington, DC,
USA: IEEE Computer Society): 454–457.

9
EAI Endorsed Transactions on

Context-aware Systems and Applications
03-08 2015 | Volume 2 | Issue 4 | e2

http://dx.doi.org/10.1109/ECBS.2012.13
http://dx.doi.org/10.1109/NCA.2012.27

	1 Introduction
	2 Related work
	3 Case study: Smart campus system
	4 The proposed approach
	4.1 Context parameter classification step
	The tendency category
	The peak category
	The burst category

	4.2 Threshold calculation step
	Threshold calculation for the tendency category
	Threshold calculation for the peak category
	Threshold calculation for the burst category

	5 Illustrative scenario
	6 Conclusion
	7 Acknowledgements

