
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Majority Voting and Feature Selection Based Network

Intrusion Detection System

Dharmaraj R. Patil1,* and Tareek M. Pattewar2

1Department of Computer Engineering, R.C. Patel Institute of Technology, Shirpur, Maharashtra, India
2Department of Computer Engineering, Vishwakarma University, Pune, Maharashtra, India

dharmaraj.patil@rcpit.ac.in, tareek.pattewar@vupune.ac.in

Abstract

Attackers continually foster new endeavours and attack strategies meant to keep away from safeguards. Many attacks have

an effect on other malware or social engineering to collect consumer credentials that grant them get access to network and

data. A network intrusion detection system (NIDS) is essential for network safety because it empowers to understand and

react to malicious traffic. In this paper, we propose a feature selection and majority voting based solutions for detecting

intrusions. A multi-model intrusion detection system is designed using Majority Voting approach. Our proposed approach

was tested on a NSL-KDD benchmark dataset. The experimental results show that models based on Majority Voting and

Chi-square features selection method achieved the best accuracy of 99.50% with error-rate of 0.501%, FPR of 0.005 and

FNR of 0.005 using only 14 features.

Keywords: Network Intrusion detection system, Feature selection, Majority voting, Machine learning, NSL_KDD, Network security.

Received on 06 February 2022, accepted on 31 March 2022, published on 04 April 2022

Copyright © 2022 Dharmaraj R. Patil et al., licensed to EAI. This is an open access article distributed under the terms of the Creative

Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work

is properly cited.

doi: 10.4108/eai.4-4-2022.173780

1. Introduction

The development of malware is a significant problem for

network intrusion detection system designers. Malicious

attempts have gotten more complicated, and the most difficult

task is identifying unknown and obfuscated malware, because

malware authors use a variety of information obfuscation

escape strategies to avoid detection by an NIDS.

Furthermore, security threats have proliferated, such as zero-

day attacks on Internet users; as a result, computer security

has become more crucial as information consumption has

become a part of our daily lives [1-4].

 Between network NIDS and HIDS, there is a considerable

difference. An intrusion detection system (IDS) is a piece of

software or hardware that detects malicious traffic, takes

corrective action automatically, and responds automatically

to stop intrusions. Despite their use, intrusion detection

approaches are constrained by a number of factors, including

*Corresponding author. Email: dharmaraj.patil@rcpit.ac.in

real-time analysis and detection, generated sensors, and high-

quality data, all of which can reduce detection rate and

accuracy. As a result, intrusion detection is still a viable and

effective research topic [5-12].

 In this work, we have presented a multi-model strategy

based on feature selection and majority voting to train and

create a binary classifier model and make reliable decisions.

Feature selection approaches were employed to increase data

quality. The results of our experiments on the NSL-KDD

dataset reveal that our suggested method works well in terms

of accuracy and false alarm rate. The following are the

manuscript's major contributions:

• We have suggested a multi-model intrusion

detection system based on Majority voting

classification and obtained satisfactory intrusion

detection utilizing XGBoost, Decision Tree,

Random Forest, AdaBoost, and RepTree.

• We have employed feature selection methodologies

such as Correlation-based Feature Subset Selection

(CFS), Chi-Squared Attribute Evaluation (CHI),

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Dharmaraj R. Patil and Tareek M. Pattewar

2

Gain-Ratio Attribute Evaluation, and Info-Gain

Attribute Evaluation to increase data quality. We

discovered that by employing feature selection

strategies, we were able to gain considerable

acceptable attack detection accuracy while incurring

minimal system overhead. Using only 14 features

and the Majority Voting and CHI features selection

methods, the accuracy was 99.50 % with an error

rate of 0.501 %, FPR of 0.005, and FNR of 0.005.

• We have conducted a performance comparison of

our proposed work with other comparable

techniques and discovered that our approach

outperforms other approaches in attack detection

accuracy.

 The remainder of this paper is organized as follows.

Section 2 discusses related work on intrusion detection.

Section 3 describes the proposed methodology in detail.

Section 4 discusses the experimental results, the performance

of the proposed model, and its comparison to existing models.

In Section 5, the discussion is given. Finally, in Section 6, the

conclusion is presented.

2. Related Work

Previously, we reported some research on machine learning

approaches in network intrusion detection systems. The

issues that each study is concerned with differ, such as feature

selection, data reduction, and classification model

optimization.

Leevy, J. L., et al. discovered that when available, the top

performance ratings for each study were exceptionally high

overall, probably due to overfitting. They also noticed that the

majority of the studies did not address class inequality, which

might bias the findings of a large data research. They

discovered that the CSE-CIC-IDS2018 data cleaning

information was repeatedly insufficient, raising concerns

about experiment repeatability. According to them, their

survey found considerable research gaps [1].

Khraisat A. et al. provided a taxonomy of current IDS, as well

as a full review of noteworthy recent work and an overview

of datasets commonly used for evaluation purposes. They

also highlighted future research challenges to fight such

approaches and improve the security of computer systems [2].

Laghrissi F. et al. used deep learning approaches to identify

dangers in Long Short-Term Memory (LSTM). They

employed PCA and mutual information (MI) as techniques

for dimension reduction and feature selection. They tested

their technique on a standard dataset, KDD99, and the

findings show that PCA-based versions attain the highest

accuracy for teaching and testing in both binary and

multiclass classification [3].

Megantara, A. A. et al. proposed a crossbreed machine

learning strategy that blends the specific feature selection

methodology indicating supervised understanding with the

information reduction method representing unsupervised

learning to build an appropriate model. It works by picking

acceptable and significant functions using a feature

importance decision tree centered recursive feature reduction

approach and finding anomaly/outlier data using the Local

Outlier Factor technique, according to them. Their

experimental results demonstrate that the suggested approach

achieves the highest accuracy in identifying R2L (i.e.99. 89

%) and outperforms most previous research in the NSL-KDD

dataset for other attack types [4].

Jadhav, A. D., et al. created the Two-Phase Invasion

Recognition System (TP-IDS) in two steps to improve

accuracy. They employed SVM and kNN in stage of the

particular TP-IDS. In order to improve accuracy, Decision

Tree and Nave Bayes are used during Phase II of the TP-IDS

system validation stage. According them, each phase makes

use of the Hadoop distributed system as the primary data

storage space and processing structures, which generally

permits parallel processing in order to improve system overall

performance and so achieve efficiency within TP-IDS [5].

Divyasree T. H. et al. proposed an efficient intrusion

detection system based on Ensemble Core Vector Machine

(CVM). They employed CVM algorithms based on the notion

of the smallest enclosing ball. It detects U2R and R2L attacks,

as well as Probe and DoS attacks. They used the KDD Cup99

dataset to train and test the classifiers. They also used the chi-

square test to determine the most significant attributes for

each attack, and then applied a weighted function to these

features to minimize dimensionality. As a consequence, the

test results reveal that the model outperformed earlier

strategies in all four attacks while needing less processing

time [6].

To identify and categorize network threats, Ashiku, L. et al.

proposed leveraging heavy learning architectures to construct

an adaptive plus robust network incursion detection system.

Their emphasis will be on how deep learning, or DNNs, may

enable adaptable IDSs with learning capabilities to identify

known and unique or even zero-day network behaviour

patterns, shut down the system intruder, and limit the chance

of penetration. They used the UNSW-NB15 dataset to

demonstrate the utility of the model representing real-time

network communication behaviour with synthetic attack

operations [7].

To safeguard the cloud from potential attacks, Elmasry, W. et

al. recommended the creation of a one-of-a-kind integrated

cloud-based intrusion detection system (CIDS). The

suggested CIDS, according to them, includes of five primary

modules that execute the following tasks: monitoring the

network, capturing traffic flows, extracting features,

analyzing the flows, identifying intruders, responding to and

documenting all actions. They employed an upgraded

bagging ensemble system with three deep learning models to

accurately anticipate intrusions. They demonstrated that the

suggested technique resolves all of the issues raised in the

cloud threat literature [13].

Sistla, V. P. K., et al. created deep learning algorithms in

NIDS prediction models to identify abnormalities and threats

automatically. They evaluated the proposed model's

performance on the NSL-KDD dataset using metrics such as

accuracy, recall, precision, and F1 score. They claim that the

experimental findings suggest that the proposed deep learning

model outperforms earlier shallow models [14].

RNNIDS was created by Sohi, S. M. et al., who used

Persistent Neural Networks (RNNs) to detect detailed

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

 Majority Voting and Feature Selection Based Network Intrusion Detection System

3

patterns in issues and produce identical patterns. They

verified that RNNs work incredibly well to develop new,

previously undiscovered variants of attacks, as well as

synthetic signatures from the most complicated viruses, to

boost intrusion detection performance even more. They have

enhanced the appearance of a new NIDS, RNNs function

incredibly well to produce malicious datasets including

previously concealed virus variants, for example. To evaluate

the practicality of their methodologies, they conducted

extensive tests using publicly accessible data sets, which

revealed a significant increase in the detection rate of

commercially available NIDS (up to 16.67 %) [15].

Zhou, Y., et al. created an intrusion detection system that is

mostly based on feature extraction and even ensemble

techniques. During the first time, they demonstrated the CFS-

BA heuristic dimensionality reduction strategy, which picks

the ideal subset constructed after feature relationship. They

demonstrated an ensemble technique that works with the C4,

5, Random Forest (RF), and Forest by Simply Penalizing

Capabilities (Forest PA) methods in this scenario. Finally, for

intrusion detection, they used a voting approach to include the

majority of the basic learner probability distributions.

According on the experimentation findings employing the

NSL-KDD, AWID, and CIC-IDS2017 datasets, the suggested

CFS-BA collecting approach outperforms other relevant and

decreasing edge techniques [16].

Mane, S. et al. employed deep neural networks to detect

network intrusions and suggested an explainable AI

framework to promote transparency at all stages of the

machine learning process. They accomplished this by

employing Explainable AI algorithms, which will make ML

designs less of a new black box by explaining why a new

prediction is made. This information might be generated

using column creation from SHAP, LIME, Contrastive

Explanations Technique, ProtoDash, and Boolean Decision

Guidelines (BRCG). They provide the final results of

applying these algorithms to the NSL-KDD information set

for Intrusion Detection System [17].

Guezzaz, A., et al. suggested a selection tree-based technique

for finding incursions with higher data quality. They used

network pre-processing and entropy selection feature

collection to increase data quality and suitable training, and

they created a selection tree classifier to have dependable

intruder individuality. As a result, a learning from mistakes

analysis on a handful of data sets reveals that the

recommended model provides reliable insights. With the

majority of the NSL-KDD and CICIDS2017 data sets, their

technique obtained 99.42 % and 98.80 % accuracy,

respectively [18].

Li, L., et al. have suggested a unique hybrid approach for

efficiently detecting community intruders. In the suggested

model, the Gini index is used to choose the best subset of

features, the gradient boosted decision tree (GBDT) approach

is used to detect network intrusions, and the particle swarm

optimization (PSO) methodology is used to fine-tune the

GBDT parameters. They used the NSL-KDD dataset to put

the suggested models through their tests in terms of accuracy,

detection rate, precision, F1 score, and false alarm rate.

According to the results, the suggested model outperforms the

compared techniques [19].

Using the UNSW-NB15 dataset as a benchmark, Moualla, S.

et al. proposed a unique neighbourhood IDS that plays an

important role in network security measures and prevents

current cyber-attacks on sites. According to them, their

suggested system is a learning-based, multi-class system. The

method is based on the Synthetic Group Oversampling

Technique (SMOTE) approach to deal with imbalanced

patterns in the dataset, and then uses a Randomized Trees

Classifier (Extra Trees Classifier) to extract the specific key

features in the dataset using the Gini select contamination

qualifying criterion. Following that, they employed a

pretrained extreme learning machine (ELM) model for each

attack separately, using "One-Versus-All" as the specific

binary classifier associated with them. The specific

experimental data show that the proposed approach

outperforms similar activities [20].

Xu, W., et al. proposed the Interpretable Intrusion Detection

System, a revolutionary intrusion detection system based on

model-based interpretability. They coupled Normal and

Attack samples rebuilt with AutoEncoder (AE) with training

examples to emphasise the Normal and Attack attributes,

resulting in an astonishing effect for the classifier. They then

employed Additive Tree (AddTree) as a binary classifier,

which offered good predictive performance in the particular

combined dataset while preserving adequate model-based

interpretability. They investigated the suggested approach

using the UNSW-NB15 dataset. According to them, I2DS

obtained a recognition accuracy of 99.95 %, which is greater

than the bulk of current intrusion detection systems [21].

Kabir, E. et al. have suggested a unique intrusion detection

system based on Least Square Support Vector Machine

sampling. They've split the detecting procedure into two

halves. The whole dataset is separated into specified arbitrary

subgroups in the first stage. To detect intrusions, the extracted

samples are subjected to the least square support vector

machine in the second step. They were able to achieve a

reasonable level of accuracy and efficiency [22].

Learning-based classifiers have been proven to be vulnerable

to adversarial instances, according to Zhang, F. et al. They

illustrate how adversarial inputs adjusted solely based on the

model decision outputs may readily evade a discrete-valued

random forest classifier. They presented a gradient-free

evasion method. Random forests have been shown to be much

more vulnerable than SVMs [23].

CyberPulse++, a machine learning-based security system

described by Rasool, R. U., et al., uses a pre-trained machine-

learning repository to evaluate collected network statistics in

real-time to detect abnormal route performance on network

links. It efficiently addresses various issues faced by network

security solutions, according to them, including the feasibility

of large-scale network-level monitoring and data collecting.

They have shown that the system can proactively identify and

fight against link flooding attacks in real time with little

bandwidth and computational overhead [24].

Rasool, R. U., et al. have illustrated the susceptibility of the

software-defined networking control layer to link flooding

attacks, as well as how the attack technique varies from that

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

Dharmaraj R. Patil and Tareek M. Pattewar

 4

used to attack traditional networks, which mostly entails

attacking the connections directly. They introduced

CyberPulse, a novel effective countermeasure based on a

machine learning-based classifier for preventing link

flooding attacks in software-defined networks. They

compared CyberPulse to competing techniques for accuracy,

false positive rate, and efficacy on actual networks

constructed with Mininet. According to them, the results

suggest that CyberPulse is capable of accurately classifying

harmful traffic and successfully mitigating them [25].

3. Methodology

3.1. Framework of our Proposed Network
Intrusion Detection System (NIDS)

Figure 1 show the framework of our proposed network

intrusion detection system. It consists of three phases like,

feature selection phase, training phase and testing phase. The

NSLKDD dataset is given as input to the four feature

selection methods like, correlation based feature selection

(CFS), information gain ratio (Gain Ratio), chi square (CHI)

and information gain (Info gain) [26-28].

3.2. Feature Selection Techniques

(i) Correlation-based feature selection (CFS)

CFS assesses the value of a subset of attributes by taking into

account each feature's unique predictive value as well as the

degree of redundancy between them. Subsets of features with

high correlation with the class but minimal intercorrelation

are selected as given in equation (1) [26,29],

Figure 1. Framework of our proposed NIDS System

(1)
s

krcf
Merit

k k k rff
=

+ −
 (1)

where,

 Merits = the heuristic ``merit" of feature subset S

containing k features,

 rcf = the mean feature-class correlation and

 rff = the average feature-feature intercorrelation

 We evaluated CFS with genetic search technique on NSL-

KDD training dataset and selected 8 top ranked features as

shown in Table 1 out of 41 total features to evaluate the

performance of the machine learning classifiers.

Table 1. Top 8 ranked features using Correlation-
based feature selection (CFS)

Sr.
No.

Attribute
No.

Selected Attribute

1 4 flag

2 5 src_bytes

3 6 dst_bytes

4 12 logged_in

5 26 srv_serror_rate

6 29 same_srv_rate

7 30 diff_srv_rate

8 37 dst_host_srv_diff_host_rate

(ii) Chi-squared attribute evaluation (CHI)

To determine the worth of an attribute, CHI computes the

value of the chi-squared statistic in relation to the class. The

CHI score is typically calculated using an equation (2)

[26,30],

*()
(,)

()*()*()*()

N XZ YW
CHI a c

X W Y Z X Y W Z

−
=

+ + + +

 (2)

where,

X = the no. of times feature a and class c occur together,

Y = the no. of times feature a occurs without class c,

W = the no. of times class c occurs without feature a,

Z = the no. of times neither a or c occurs and

N = the total size of the training set.

We evaluated chi-squared attribute selection with ranker

search technique on NSL KDD training dataset and selected

subset 14 top ranked features as shown in Table 2 out of 41

total features to evaluate the performance of the machine

learning classifiers.

Table 2. Top 14 ranked features using Chi-squared
attribute evaluation (CHI)

Sr.
No.

Attribute
No.

Selected Attribute

1 5 src_bytes

2 6 dst_bytes

3 3 service

4 4 flag

5 30 diff_srv_rate

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

 Majority Voting and Feature Selection Based Network Intrusion Detection System

5

6 29 same_srv_rate

7 33 dst_host_srv_count

8 34 dst_host_same_srv_rate

9 35 dst_host_diff_srv_rate

10 12 logged_in

11 23 count

12 25 serror_rate

13 38 dst_host_serror_rate

14 39 dst_host_srv_serror_rate

(iii) Gain Ratio Feature Evaluation

Gain Ratio Feature Evaluation measures the gain ratio in

relation to the class to determine the value of an attribute. The

solution is provided by the equation (3) [26,29].

()
()

()

Gain A
GainRatio A

SplitInfo A
= (3)

Gain is a criteria for attribute selection in the ID3 approach.

It is also referred to as information gain. The property with

the largest information gain is chosen as the splitting attribute

for the node N in information gain. This function reduces the

amount of data required to classify dataset D in a partition and

returns the partitions with the lowest impurity. Information

gain is defined as the difference in entropy between before

and after splitting the dataset D on attribute A. Entropy is used

in equation (4) to compute the uncertainty in the dataset D.

() ()2() log
x X

Entropy D p x p x

= − (4)

where,

X = the set of classes in dataset D,

p(x) = the proportion of number of elements in class x to the

number of elements in dataset D.

SplitInfo describes how equally the attribute splits the dataset

and is calculated by equation (5),

2

1

| | | |
() *log

| | | |

n

j

Dj Dj
SplitInfo A

D D=

= −

 (5)

where,

| |

| |

Dj

D
 represents the weight of jth partition.

We evaluated gain ratio feature selection with ranker search

technique on NSL KDD training dataset and selected a subset

of 14 top ranked features as shown in Table 3 out of 41 total

features to evaluate the performance of the machine learning

classifiers.

Table 3. Top 14 ranked features using Gain Ratio
Feature Evaluation

Sr.
No.

Attribute
No.

Selected Attribute

1 12 logged_in

2 26 srv_serror_rate

3 4 flag

4 25 serror_rate

5 39 dst_host_srv_serror_rate

6 30 diff_srv_rate

7 38 dst_host_serror_rate

8 6 dst_bytes

9 29 same_srv_rate

10 5 src_bytes

11 3 service

12 37 dst_host_srv_diff_host_rate

13 33 dst_host_srv_count

14 34 dst_host_same_srv_rate

(iv) InfoGain Feature Evaluation

InfoGain Feature Evaluation Measures the information

obtained with regard to the class to determine the value of an

attribute. The InfoGain score is derived using an equation (6)

[26,29],

() () (), | – InfoGain Class Attribute H Class H Class Attribute=

 (6)

where,

H is the information entropy.

We evaluated InfoGain feature selection with ranker search

technique on NSL KDD training dataset and selected a subset

of 14 top ranked features as shown in Table 4 out of 41 total

features to evaluate the performance of the machine learning

classifiers.

Table 4. Top 14 ranked features using InfoGain
Feature Evaluation

Sr.
No.

Attribute
No.

Selected Attribute

1 5 src_bytes

2 6 dst_bytes

3 3 service

4 4 flag

5 30 diff_srv_rate

6 29 same_srv_rate

7 33 dst_host_srv_count

8 34 dst_host_same_srv_rate

9 35 dst_host_diff_srv_rate

10 12 logged_in

11 23 count

12 38 dst_host_serror_rate

13 25 serror_rate

14 39 dst_host_srv_serror_rate

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

Dharmaraj R. Patil and Tareek M. Pattewar

 6

3.3. Classification Methods

Six machine learning methods were used for training and

testing. We tested the suggested technique using XGBoost,

J48 Decision Tree, AdaBoost, Random Forest, REPTree, and

Majority Voting. Similarly, we used the Majority Voting

method to create a multi-model classification system. These

are the most extensively used and efficient classification

methods. To perform the experiments, we employed the

WEKA API implementation for these learning approaches.

The specifics of each algorithm are as follows [31].

 These are the commonly used machine learning algorithms

to solve the task of classification. These are widely used and

researched algorithms, with applications in a broad variety of

fields such as text classification, image classification,

intrusion detection, malware detections etc. These algorithms

have provided significant and promising classification results

in different domains.

(i) XGBoost

XGBoost (eXtreme Gradient Boosting) is a well-known and

effective method. Gradient boosting is a supervised learning

strategy that integrates an ensemble of estimates from a

number of simpler and weaker models in order to anticipate a

target variable accurately. The XGBoost approach performs

well in machine learning challenges due to its robust handling

of a wide range of data types, relationships, and distributions,

as well as the vast range of hyperparameters that can be fine-

tuned. XGBoost [32] can address regression, classification

(binary and multiclass), and ranking problems.

(ii) J48 Decision Tree

One of the most popular classification approaches is J48

decision tree learning. It is highly efficient and has

classification accuracy comparable to other learning methods.

A decision tree is a tree that reflects the classification model

that has been learned. It's an easy-to-understand decision tree

classification paradigm. At WEKA, J48 is a modified C4.5.

By recursively partitioning data, the C4.5 technique generates

a categorization decision tree for a given data set. The depth-

first strategy is used to broaden the selection. The method

evaluates all feasible data split tests and chooses the one with

the highest information gain [33].

(iii) AdaBoost

AdaBoost is the most widely used and researched algorithm,

with applications in a broad variety of fields. Freund and

Schapire developed the AdaBoost algorithm in 1995.

Abstract Boosting is a machine learning approach that

combines a large number of weak and wrong classifiers to

create a highly accurate classifier. It's easy to use, fast, and

simple to understand. It does not need any prior information

from the weak learner, therefore it may be used in conjunction

with any weak hypothesis identification approach [34].

(iv) Random Forest

As the name indicates, a random forest is made up of a large

number of individual decision trees that work together as an

ensemble. For each tree, the random forest creates a class

prediction, and the class with the most votes becomes our

model's forecast. The core concept of The Random Forest is

the knowledge of the community, and it is a simple yet

powerful one. The random forest model is particularly

effective because it consists of a large number of generally

uncorrelated models (trees) that work together to outperform

each of the individual constituent models [35].

(v) REPTree

The REPTree classifier is a rapid decision tree learner that

builds classification and regression trees using the C4.5

method. It constructs a regression/decision tree using

information gain/variance and truncates it using error-

reduced pruning [36].

(vi) Majority Voting

Voting is the most fundamental ensemble approach, and it is

typically pretty effective. It may be used to solve

classification and regression problems. It breaks down a

model into two or more sub-models, in this case five. The

majority voting process is used to integrate predictions from

each sub-model. The majority voting method is depicted in

Figure 2. It is a meta-classifier that uses a majority vote to

identify machine learning classifiers that are conceptually

similar or dissimilar. We use majority voting to forecast the

final class label, which is the class label that classification

models most usually predict. We predict the class label y

using equation (7) and the majority vote of each classifier Cj.

[26, 37-38],

Figure 2. Majority Voting Algorithm

{ 1(), 2(),..., ()}y mode C x C x Cm x= (7)

where,

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

 Majority Voting and Feature Selection Based Network Intrusion Detection System

7

y = predicted class label and

C1(x), C2(x),..., Cm(x)=classification models

3.4. Motivations for using the multi-model
strategy

Following are the motivations to use multi-model strategy for

the detection of network intrusions,

• It's a strategy for improving model performance,

with the goal of outperforming any single model in

the ensemble.

• Majority Voting is based on the performance of

many models, therefore huge mistakes or

misclassifications from one model will not be a

hindrance.

• A model's poor performance can be compensated for

by the good performance of other models.

• When you combine models to produce a forecast,

you reduce the chances of one model making an

incorrect prediction by having several models that

can make the correct prediction.

• Majority Voting makes the estimator more robust

and less prone to overfitting.

4. Experimental Setup and Evaluation

4.1. Dataset

The NSL-KDD dataset was created to address some of the

drawbacks of the KDD99 dataset. Despite the fact that this

revised version of the KDD dataset has significant flaws and

may not be a perfect representation of real-world networks, it

can still be used as a benchmark dataset to help academics

evaluate different intrusion detection systems and address the

lack of public records for network-based IDS. The NSL-KDD

train and test sets also include a large corpus of data. This

advantage allows tests to be run on the complete collection

rather than a random sample. As a result, the findings of

multiple research studies are consistent and similar.

In this work, the NSL-KDD dataset is used, which contains

the datasets KDDTrain+ and KDDTest+. There are a total of

125,973 instances in the KDDTrain+ dataset with 58,630

attack traffic and 67,343 normal traffic. The KDDTest+ set

has a total of 22,544 instances. A detailed overview of the

instances is shown in Table 5 [39-40].

Table 5. The breakdown of the three sets of the NSL-
KDD dataset.

Class KDDTrain+ KDDTest+

Normal 67343 9711

DoS 45927 7458

PRB 11656 2421

R2L 995 2754

U2R 52 200

Attacks 58630 12833

Total 125973 22544

4.2. Evaluation Measures

To evaluate the performance of classifiers, we used the

following metrics. A binary classifier assigns a positive or

negative label to all data items in a test dataset. This

classification (or prediction) produces four outcomes true

positive (TP), true negative (TN), false positive (FP) and false

negative (FN) [41].

TP TN
Accuracy

TP TN FN FP

+
=

+ + +
 (8)

FP FN
Error Rate

TP TN FN FP

+
− =

+ + +
 (9)

FP
FPR

TN FP
=

+
 (10)

FN
FNR

TP FN
=

+
 (11)

4.3. Performance Evaluation of XGBoost
classifier using feature selection techniques
on NSL-KDD dataset

Table 6 shows the performance evaluation of XGBoost

classifier using feature selection techniques on NSL-KDD

dataset. Without using feature selection (using all 41 features)

XGBoost achieved accuracy of 99.36%, error-rate of

0.6377%, FPR of 0.007 and FNR of 0.006. It takes 8.82

seconds to train the model and 24.1 seconds to test the model.

On the other hand, by using feature selection techniques like

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the

classifier achieved acceptable results with minimum system

overhead. To train the model, by using CFS takes 2.71

seconds, GainRatio takes 5.21 seconds, Chi-squared takes

5.43 seconds and InfoGain takes 4.3 seconds. To test the

model, by using CFS takes 1.37 seconds, GainRatio takes

1.78 seconds, Chi-squared takes 1.52 seconds and InfoGain

takes 2.96 seconds. It shows that by using feature selection

techniques the classifier achieved acceptable results with

minimum system overhead.

4.4. Performance Evaluation of Random
Forest classifier using feature selection
techniques on NSL-KDD dataset

Table 7 shows the performance evaluation of Random Forest

classifier using feature selection techniques on NSL-KDD

dataset. Without using feature selection (using all 41 features)

Random Forest achieved accuracy of 99.6%, error-rate of

0.4%, FPR of 0.004 and FNR of 0.004. It takes 165.98

seconds to train the model and 2.67 seconds to test the model.

On the other hand, by using feature selection techniques like

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

Dharmaraj R. Patil and Tareek M. Pattewar

 8

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the

classifier achieved acceptable results with minimum system

overhead. To train the model, by using CFS takes 95.99

seconds, GainRatio takes 83.22 seconds, Chi-squared takes

83.05 seconds and InfoGain takes 88.75 seconds. To test the

model, by using CFS takes 2.67 seconds, GainRatio takes

2.47 seconds, Chi-squared takes 2.03 seconds and InfoGain

takes 1.86 seconds. It shows that by using feature selection

techniques the classifier achieved acceptable results with

minimum system overhead.

4.5. Performance Evaluation of REPTree
classifier using feature selection techniques
on NSL-KDD dataset

Table 8 shows the performance evaluation of REPTree

classifier using feature selection techniques on NSL-KDD

dataset. Without using feature selection (using all 41 features)

REPTree achieved accuracy of 99.49%, error-rate of

0.5109%, FPR of 0.005 and FNR of 0.005. It takes 9.73

seconds to train the model and 0.25 seconds to test the model.

On the other hand, by using feature selection techniques like

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the

classifier achieved acceptable results with minimum system

overhead. To train the model, by using CFS takes 2.9 seconds,

GainRatio takes 3.24 seconds, Chi-squared takes 3.42

seconds and InfoGain takes 3.16 seconds. To test the model,

by using CFS takes 0.08 seconds, GainRatio takes 0.06

seconds, Chi-squared takes 0.06 seconds and InfoGain takes

0.06 seconds. It shows that by using feature selection

techniques the classifier achieved acceptable results with

minimum system overhead.

4.6. Performance Evaluation of J48 classifier
using feature selection techniques on NSL-
KDD dataset

Table 9 shows the performance evaluation of J48 classifier

using feature selection techniques on NSL-KDD dataset.

Without using feature selection (using all 41 features) J48

achieved accuracy of 99.37%, error-rate of 0.6298%, FPR of

0.005 and FNR of 0.007. It takes 57.27 seconds to train the

model and 0.09 seconds to test the model. On the other hand,

by using feature selection techniques like CFS using 8

features, GainRatio using 14 features, Chi-squared using 14

features and InfoGain using 14 features the classifier

achieved acceptable results with minimum system overhead.

To train the model, by using CFS takes 7.92 seconds,

GainRatio takes 12.96 seconds, Chi-squared takes 16.28

seconds and InfoGain takes 16.14 seconds. To test the model,

by using CFS takes 0.05 seconds, GainRatio takes 0.07

seconds, Chi-squared takes 0.07 seconds and InfoGain takes

0.07 seconds. It shows that by using feature selection

techniques the classifier achieved acceptable results with

minimum system overhead.

4.7. Performance Evaluation of AdaBoost
classifier using feature selection techniques
on NSL-KDD dataset

Table 10 shows the performance evaluation of AdaBoost

classifier using feature selection techniques on NSL-KDD

dataset. Without using feature selection (using all 41 features)

AdaBoost achieved accuracy of 94.41%, error-rate of

5.5945%, FPR of 0.084 and FNR of 0.003. It takes 39.05

seconds to train the model and 0.09 seconds to test the model.

On the other hand, by using feature selection techniques like

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the

classifier achieved acceptable results with minimum system

overhead. To train the model, by using CFS takes 6.46

seconds, GainRatio takes 11.85 seconds, Chi-squared takes

12.33 seconds and InfoGain takes 12.07 seconds. To test the

model, by using CFS takes 0.06 seconds, GainRatio takes

0.07 seconds, Chi-squared takes 0.07 seconds and InfoGain

takes 0.08 seconds. It shows that by using feature selection

techniques the classifier achieved acceptable results with

minimum system overhead.

4.8. Performance Evaluation of Majority Voting
classifier using feature selection techniques
on NSL-KDD dataset

Table 11 shows the performance evaluation of multi-model

training using Majority Voting classifier using feature

selection techniques on NSL-KDD dataset. Without using

feature selection (using all 41 features) Majority Voting

achieved accuracy of 99.55%, error-rate of 0.4515%, FPR of

0.005 and FNR of 0.004. It takes 350.38 seconds to train the

model and 201.46 seconds to test the model. On the other

hand, by using feature selection techniques like CFS using 8

features, GainRatio using 14 features, Chi-squared using 14

features and InfoGain using 14 features the classifier

achieved acceptable results with minimum system overhead.

To train the model, by using CFS takes 157.92 seconds,

GainRatio takes 143.58 seconds, Chi-squared takes 123.08

seconds and InfoGain takes 126.16 seconds. To test the

model, by using CFS takes 165.56 seconds, GainRatio takes

159.04 seconds, Chi-squared takes 13.97 seconds and

InfoGain takes 6.73 seconds. It shows that by using feature

selection techniques the classifier achieved acceptable results

with minimum system overhead.

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

 Majority Voting and Feature Selection Based Network Intrusion Detection System

9

Table 6. Performance evaluation of XGBoost classifier using and without using feature selection techniques on
NSL-KDD dataset

FS ST #Features Accuracy
(%)

Error-rate
(%)

FPR FNR Train time
(sec.)

Test time
(sec.)

Without feature selection 41 99.36 0.6377 0.007 0.006 8.82 24.1

CFS GreedyStepwise 8 98.82 1.1843 0.011 0.013 2.71 1.37

GainRatio Ranker 14 99.22 0.7822 0.009 0.007 5.21 1.78

CHI Ranker 14 99.28 0.7208 0.008 0.007 5.43 1.52

InfoGain Ranker 14 99.28 0.7208 0.008 0.007 4.3 2.96

Table 7. Performance evaluation of Random Forest classifier using and without using feature selection techniques

on NSL-KDD dataset
FS ST #Features Accuracy

(%)
Error-rate

(%)
FPR FNR Train time

(sec.)
Test time

(sec.)

Without feature selection 41 99.6 0.4 0.004 0.004 165.98 2.67

CFS GreedyStepwise 8 99.11 0.8912 0.008 0.01 95.99 2.67

GainRatio Ranker 14 99.53 0.4654 0.004 0.005 83.22 2.47

CHI Ranker 14 99.58 0.4238 0.005 0.004 83.05 2.03

InfoGain Ranker 14 99.58 0.4238 0.005 0.004 88.75 1.86

Table 8. Performance evaluation of REPTree classifier using and without using feature selection techniques on

NSL-KDD dataset
FS ST #Features Accuracy

(%)
Error-rate

(%)
FPR FNR Train time

(sec.)
Test time

(sec.)

Without feature selection 41 99.49 0.5109 0.005 0.005 9.73 0.25

CFS GreedyStepwise 8 98.96 1.0357 0.01 0.011 2.9 0.08

GainRatio Ranker 14 99.33 0.6654 0.007 0.007 3.24 0.06

CHI Ranker 14 99.44 0.5565 0.006 0.005 3.42 0.06

InfoGain Ranker 14 99.44 0.5565 0.006 0.005 3.16 0.06

Table 9. Performance evaluation of J48 classifier using and without using feature selection techniques on NSL-

KDD dataset
FS ST #Features Accuracy

(%)
Error-rate

(%)
FPR FNR Train time

(sec.)
Test time

(sec.)

Without feature selection 41 99.37 0.6298 0.005 0.007 57.27 0.09

CFS GreedyStepwise 8 98.98 1.0179 0.009 0.011 7.92 0.05

GainRatio Ranker 14 99.42 0.5822 0.006 0.006 12.46 0.07

CHI Ranker 14 99.45 0.5525 0.005 0.006 16.28 0.07

InfoGain Ranker 14 99.45 0.5525 0.005 0.006 16.14 0.07

Table 10. Performance evaluation of AdaBoost classifier using and without using feature selection techniques on

NSL-KDD dataset
FS ST #Features Accuracy

(%)
Error-rate

(%)
FPR FNR Train time

(sec.)
Test time

(sec.)

Without feature selection 41 94.41 5.5945 0.084 0.03 39.05 0.09

CFS GreedyStepwise 8 91.64 8.3571 0.089 0.078 6.46 0.06

GainRatio Ranker 14 93.41 6.5867 0.09 0.044 11.85 0.07

CHI Ranker 14 92.53 7.4739 0.083 0.067 12.33 0.07

InfoGain Ranker 14 92.53 7.4739 0.083 0.067 12.07 0.08

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

Dharmaraj R. Patil and Tareek M. Pattewar

 10

Table 11. Performance evaluation of Majority Voting classifier using and without using feature selection
techniques on NSL-KDD dataset

FS ST #Features Accuracy
(%)

Error-rate
(%)

FPR FNR Train time
(sec.)

Test time
(sec.)

Without feature selection 41 99.55 0.4515 0.005 0.004 350.38 201.46

CFS GreedyStepwise 8 99.03 0.9625 0.009 0.01 157.92 165.56

GainRatio Ranker 14 99.48 0.5208 0.006 0.005 143.58 159.04

CHI Ranker 14 99.5 0.501 0.005 0.005 123.08 13.97

InfoGain Ranker 14 99.5 0.501 0.005 0.005 126.16 6.73

4.8. Comparison of our proposed approach
using Majority Voting classifier with other
works on NSL-KDD dataset

Table 12 and Figure 3 shows the comparative performance

evaluation of our proposed approach using Majority Voting

classifier with other similar works on the NSL-KDD dataset.

It is found that our approach outperforms the other

approaches in the attack detection accuracy of 99.50% using

only 14 selected features out of 41 features.

Table 12. Comparison of our approach using Majority
Voting classifier with other works on NSL-KDD dataset

Approach Method Accuracy (%)

Azidine
Guezzaz et

al. [18]

Decision Tree
with Enhanced
Data Quality

(DTE)

99.42

Masdari and
Khezri [12]

Five classification 96.70

Ahmim et al.
[42]

Tree algorithm 89.24

Fang et al.
[43]

Random Forest 99.33

Proposed
approach

Majority Voting 99.50

Figure 3. Comparison of our approach using Majority
Voting classifier with other works on NSL-KDD dataset

5. Discussion

5.1. Positive impacts of Network Intrusion
Detection System

Following are some of the positive impacts of network

intrusion detection systems.

• NIDS can be configured to display the specific

information included within the packets. This

feature can be used to detect intrusions such as

exploitation attacks and botnet-infected packets.

• NIDS looks at the number and types of attacks. This

information can be utilised to improve security

measures. It can also be examined for flaws with

network settings.

• To satisfy certain standards, NIDS logs can be used

as documentation.

• This increased efficiency can help a business to save

money on employees while also covering the costs

of installing the NIDS.

5.2. Negative impacts of Network Intrusion
Detection System

Following are some of the negative impacts of network

intrusion detection systems.

• NIDS does not stop or prevent attacks; rather, it aids

in their detection.

• NIDS is extremely valuable for network monitoring,

but the value of the information it provides is

entirely dependent on what you do with it.

• Intruders can employ encrypted packets to sneak

into the network since an NIDS can't see them.

• Although a NIDS reads the data from an IP packet,

the network address may still be faked.

• One major drawback of a NIDS is that it frequently

alerts false positives.

• Because an NIDS examines protocols as they are

collected, they are vulnerable to the same protocol-

based attacks as network hosts.

• An NIDS's signature library determines how

effective it is. It won't register the latest attacks if it

isn't updated often, and it won't be able to warn about

them.

80
85
90
95

100
99,42 96,7

89,24

99,33 99,5

A
cc

u
ra

cy
 (

%
)

Approaches

Comparison of our approach using Majority
Voting classifier with other works on NSL-

KDD dataset

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

 Majority Voting and Feature Selection Based Network Intrusion Detection System

11

5.3. Benefits for the academic community and
government

Following are the benefits of NIDS for the academic

community and government.

• Academic community can use NIDS as a research

platform for further study to solve open challenges

in thus field.

• They can provide more significant solutions to

detect the new threats in an efficient way with

minimum false positives.

• Government agencies and organizations can

effectively use NIDS to detect the threats before they

can expose the systems.

6. Conclusions

We provided feature selection and majority voting-based

classification for detecting attacks using the NSL-KDD

dataset. Correlation-based feature selection (CFS) with

GreedyStepwise, Chi-squared attribute evaluation (CHI) with

Ranker, Gain Ratio Feature Evaluation with Ranker, and

InfoGain Feature Evaluation with Ranker search strategies

were used for feature selection. Using these feature selection

strategies, we picked 8 features with CFS, 14 with CHI, 14

with GainRatio, and 14 with InfoGain. To evaluate the

performance of various feature selection techniques and

selected features, we used six machine learning classifiers:

XGBoost, Random Forest, AdaBoost, REPTree, J48

Decision Tree, and Majority Voting. We built a multi-model

classification model using the Majority voting classifier.

According to the testing findings, our suggested solution,

which employs a Majority Voting classifier and feature

selection algorithms such as CHI and InfoGain, achieved a

99.50 % attack detection accuracy with minimum system

overhead. Furthermore, we compared our suggested

technique to other comparable approaches and found that it

outperforms in terms of attack detection accuracy.

References

[1] Leevy, J. L., Khoshgoftaar, T. M. A survey and analysis of

intrusion detection models based on cse-cic-ids2018 big data.

Journal of Big Data, 2020, 7(1), 1-19.

[2] Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.

Survey of intrusion detection systems: techniques, datasets and

challenges. Cybersecurity, 2019, 2(1), 1-22.

[3] Laghrissi, F., Douzi, S., Douzi, K., Hssina, B. Intrusion

detection systems using long short-term memory (LSTM).

Journal of Big Data, 2021, 8(1), 1-16.

[4] Megantara, A. A., & Ahmad, T. A hybrid machine learning

method for increasing the performance of network intrusion

detection systems. Journal of Big Data, 2021, 8(1), 1-19.

[5] Jadhav, A. D., Pellakuri, V. Highly Accurate and Efficient

Two Phase-Intrusion Detection System (TP-IDS) using

Distributed Processing of HADOOP & Machine Learning

Techniques, 2021.

[6] Divyasree, T. H., Sherly, K. K. A network intrusion detection

system based on ensemble CVM using efficient feature

selection approach. Procedia computer science, 2018, 143,

442-449.

[7] Ashiku, L., Dagli, C. Network Intrusion Detection System

using Deep Learning. Procedia Computer Science, 2021, 185,

239-247.

[8] Di Mauro, M., Galatro, G., Fortino, G., Liotta, A. (2021).

Supervised feature selection techniques in network intrusion

detection: A critical review. Engineering Applications of

Artificial Intelligence, 2021, 101, 104216.

[9] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S.

H. T., Rashidi, S., Rahmani, A. M. Deep learning-based

intrusion detection systems: a systematic review. IEEE Access,

2021, 9, 101574-101599.

[10] Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J.,

Ahmad, F. Network intrusion detection system: A systematic

study of machine learning and deep learning approaches.

Transactions on Emerging Telecommunications Technologies,

2021, 32(1), e4150.

[11] Hamid, Y., Balasaraswathi, V. R., Journaux, L., Sugumaran,

M. Benchmark Datasets for Network Intrusion Detection: A

Review. Int. J. Netw. Secur., 2018, 20(4), 645-654.

[12] Masdari, M., Khezri, H. A survey and taxonomy of the fuzzy

signature-based intrusion detection systems. Applied Soft

Computing, 2020, 92, 106301.

[13] Elmasry, W., Akbulut, A., Zaim, A. H. A Design of an

Integrated Cloud-based Intrusion Detection System with Third

Party Cloud Service. Open Computer Science, 2021, 11(1),

365-379.

[14] Sistla, V. P. K., Kolli, V. K. K., Voggu, L. K., Bhavanam, R.,

Vallabhasoyula, S. Predictive Model for Network Intrusion

Detection System Using Deep Learning. Rev. d'Intelligence

Artif., 2020, 34(3), 323-330.

[15] Sohi, S. M., Seifert, J. P., Ganji, F. RNNIDS: Enhancing

network intrusion detection systems through deep learning.

Computers & Security, 2021, 102, 102151.

[16] Zhou, Y., Cheng, G., Jiang, S., Dai, M. Building an efficient

intrusion detection system based on feature selection and

ensemble classifier. Computer networks, 2020, 174, 107247.

[17] Mane, S., Rao, D. Explaining Network Intrusion Detection

System Using Explainable AI Framework. arXiv preprint

arXiv:2103.07110. 2021.

[18] Guezzaz, A., Benkirane, S., Azrour, M., Khurram, S. A

Reliable Network Intrusion Detection Approach Using

Decision Tree with Enhanced Data Quality. Security and

Communication Networks, 2021.

[19] Li, L., Yu, Y., Bai, S., Cheng, J., Chen, X. Towards effective

network intrusion detection: A hybrid model integrating gini

index and GBDT with PSO. Journal of Sensors, 2018.

[20] Moualla, S., Khorzom, K., Jafar, A. Improving the

Performance of Machine Learning-Based Network Intrusion

Detection Systems on the UNSW-NB15 Dataset.

Computational Intelligence and Neuroscience, 2021.

[21] Xu, W., Fan, Y., Li, C. I2DS: Interpretable Intrusion Detection

System Using Autoencoder and Additive Tree. Security and

Communication Networks, 2021.

[22] Kabir, E., Hu, J., Wang, H., Zhuo, G. A novel statistical

technique for intrusion detection systems. Future Generation

Computer Systems, 79, 303-318, 2018.

[23] Zhang, F., Wang, Y., Liu, S., Wang, H. Decision-based

evasion attacks on tree ensemble classifiers. World Wide Web,

23(5), 2957-2977, 2020.

[24] Rasool, R. U., Ahmed, K., Anwar, Z., Wang, H., Ashraf, U.,

Rafique, W. CyberPulse++: A machine learning‐based

security framework for detecting link flooding attacks in

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

Dharmaraj R. Patil and Tareek M. Pattewar

12

software defined networks. International Journal of Intelligent

Systems, 36(8), 3852-3879, 2021.

[25] Rasool, R. U., Ashraf, U., Ahmed, K., Wang, H., Rafique, W.,

& Anwar, Z. Cyberpulse: a machine learning based link

flooding attack mitigation system for software defined

networks. IEEE Access, 7, 34885-34899, 2019.

[26] Patil, D. R., Patil, J. B. Malicious web pages’ detection using

feature selection techniques and machine learning.

International Journal of High Performance Computing and

Networking, 2019, 14(4), 473-488.

[27] Patil, D. R., Pattewar, T. M. A comparative performance

evaluation of machine learning-based NIDS on benchmark

datasets. International Journal of Research in Advent

Technology, 2014, 2(2), 101-106.

[28] Kshirsagar, V. P., Patil, D. R. An overview of adaboost-based

NIDS and performance evaluation on NSL-KDD dataset.

International Journal of Computer Engineering and Computer

Application, 2010, 1.

[29] Basnet, R. B., Sung, A. H., Liu, Q. Feature selection for

improved phishing detection. In: International Conference on

Industrial, Engineering and Other Applications of Applied

Intelligent Systems, Springer, Berlin, Heidelberg, 2012, pp.

252-261

[30] Rajab, K. D. New hybrid features selection method: A case

study on websites phishing. Security and Communication

Networks, 2017.

[31] Weka 3.9: Data Mining Software in Java [online]

http://www.cs.waikato.ac.nz/ml/weka/ (accessed 15

November 2021).

[32] A Brief Introduction to XGBoost,

https://towardsdatascience.com/a-brief-introduction-to-

xgboost-3eaee2e3e5d6 / (accessed 15

November 2021).

[33] Quinlan, J. R. Induction of decision trees. Machine learning,

1986, 1(1), 81-106.

[34] Schapire, R. E. Explaining adaboost. In: Empirical inference.

Springer, Berlin, Heidelberg, 2013, pp. 37-52.

[35] Houtao Deng, An Introduction to Random Forest,

https://towardsdatascience.com/random-forest-3a55c3aca46d

(accessed 15 November 2021).

[36] REPTree:http://weka.sourceforge.net/doc.dev/weka/classifier

s/trees/REPTree.html (accessed 15 November 2021).

[37] EnsembleVoteClassifier:https://rasbt.github.io/mlxtend/user_

guide/classifier/EnsembleVoteClassifier/, (accessed 15

November 2021).

[38] EnsembleWeka: How to Use Ensemble Machine Learning

Algorithms in Weka, http://machinelearningmastery.com/use-

ensemble-machine-learning-algorithms-weka/

(accessed 15 November 2021).

[39] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A. A detailed

analysis of the KDD CUP 99 data set. In: 2009 IEEE

symposium on computational intelligence for security and

defense applications, IEEE, 2009, pp. 1-6.

[40] NSL-KDD dataset, https://www.unb.ca/cic/datasets/nsl.html,

(accessed 15 November 2021).

[41] Saito, T. and Rehmsmeier, M. Basic Evaluation Measures

from the Confusion Matrix.

https://classeval.wordpress.com/%20introduction/basic-

evaluation-measures/, (accessed 15 November 2021).

[42] Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., Janicke,

H. A novel hierarchical intrusion detection system based on

decision tree and rules-based models. In: 2019 15th

International Conference on Distributed Computing in Sensor

Systems (DCOSS), IEEE, 2019, pp. 228-233.

[43] Fang, W., Tan, X., Wilbur, D. Application of intrusion

detection technology in network safety based on machine

learning. Safety Science, 2020, 124, 104604.

EAI Endorsed Transactions on
Scalable Information Systems

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6

