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Abstract 

Attackers continually foster new endeavours and attack strategies meant to keep away from safeguards. Many attacks have 

an effect on other malware or social engineering to collect consumer credentials that grant them get access to network and 

data. A network intrusion detection system (NIDS) is essential for network safety because it empowers to understand and 

react to malicious traffic. In this paper, we propose a feature selection and majority voting based solutions for detecting 

intrusions. A multi-model intrusion detection system is designed using Majority Voting approach. Our proposed approach 

was tested on a NSL-KDD benchmark dataset. The experimental results show that models based on Majority Voting and 

Chi-square features selection method achieved the best accuracy of 99.50% with error-rate of 0.501%, FPR of 0.005 and 

FNR of 0.005 using only 14 features. 
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1. Introduction

The development of malware is a significant problem for 

network intrusion detection system designers. Malicious 

attempts have gotten more complicated, and the most difficult 

task is identifying unknown and obfuscated malware, because 

malware authors use a variety of information obfuscation 

escape strategies to avoid detection by an NIDS. 

Furthermore, security threats have proliferated, such as zero-

day attacks on Internet users; as a result, computer security 

has become more crucial as information consumption has 

become a part of our daily lives [1-4]. 

   Between network NIDS and HIDS, there is a considerable 

difference. An intrusion detection system (IDS) is a piece of 

software or hardware that detects malicious traffic, takes 

corrective action automatically, and responds automatically 

to stop intrusions. Despite their use, intrusion detection 

approaches are constrained by a number of factors, including 

*Corresponding author. Email: dharmaraj.patil@rcpit.ac.in

real-time analysis and detection, generated sensors, and high-

quality data, all of which can reduce detection rate and 

accuracy. As a result, intrusion detection is still a viable and 

effective research topic [5-12]. 

     In this work, we have presented a multi-model strategy 

based on feature selection and majority voting to train and 

create a binary classifier model and make reliable decisions. 

Feature selection approaches were employed to increase data 

quality. The results of our experiments on the NSL-KDD 

dataset reveal that our suggested method works well in terms 

of accuracy and false alarm rate. The following are the 

manuscript's major contributions: 

• We have suggested a multi-model intrusion

detection system based on Majority voting

classification and obtained satisfactory intrusion

detection utilizing XGBoost, Decision Tree,

Random Forest, AdaBoost, and RepTree.

• We have employed feature selection methodologies

such as Correlation-based Feature Subset Selection

(CFS), Chi-Squared Attribute Evaluation (CHI),
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Gain-Ratio Attribute Evaluation, and Info-Gain 

Attribute Evaluation to increase data quality. We 

discovered that by employing feature selection 

strategies, we were able to gain considerable 

acceptable attack detection accuracy while incurring 

minimal system overhead. Using only 14 features 

and the Majority Voting and CHI features selection 

methods, the accuracy was 99.50 % with an error 

rate of 0.501 %, FPR of 0.005, and FNR of 0.005. 

• We have conducted a performance comparison of

our proposed work with other comparable

techniques and discovered that our approach

outperforms other approaches in attack detection

accuracy.

    The remainder of this paper is organized as follows. 

Section 2 discusses related work on intrusion detection. 

Section 3 describes the proposed methodology in detail. 

Section 4 discusses the experimental results, the performance 

of the proposed model, and its comparison to existing models. 

In Section 5, the discussion is given. Finally, in Section 6, the 

conclusion is presented. 

2. Related Work

Previously, we reported some research on machine learning 

approaches in network intrusion detection systems. The 

issues that each study is concerned with differ, such as feature 

selection, data reduction, and classification model 

optimization. 

Leevy, J. L., et al. discovered that when available, the top 

performance ratings for each study were exceptionally high 

overall, probably due to overfitting. They also noticed that the 

majority of the studies did not address class inequality, which 

might bias the findings of a large data research. They 

discovered that the CSE-CIC-IDS2018 data cleaning 

information was repeatedly insufficient, raising concerns 

about experiment repeatability. According to them, their 

survey found considerable research gaps [1]. 

Khraisat A. et al. provided a taxonomy of current IDS, as well 

as a full review of noteworthy recent work and an overview 

of datasets commonly used for evaluation purposes. They 

also highlighted future research challenges to fight such 

approaches and improve the security of computer systems [2]. 

Laghrissi F. et al. used deep learning approaches to identify 

dangers in Long Short-Term Memory (LSTM). They 

employed PCA and mutual information (MI) as techniques 

for dimension reduction and feature selection. They tested 

their technique on a standard dataset, KDD99, and the 

findings show that PCA-based versions attain the highest 

accuracy for teaching and testing in both binary and 

multiclass classification [3]. 

Megantara, A. A. et al. proposed a crossbreed machine 

learning strategy that blends the specific feature selection 

methodology indicating supervised understanding with the 

information reduction method representing unsupervised 

learning to build an appropriate model. It works by picking 

acceptable and significant functions using a feature 

importance decision tree centered recursive feature reduction 

approach and finding anomaly/outlier data using the Local 

Outlier Factor technique, according to them. Their 

experimental results demonstrate that the suggested approach 

achieves the highest accuracy in identifying R2L (i.e.99. 89 

%) and outperforms most previous research in the NSL-KDD 

dataset for other attack types [4]. 

Jadhav, A. D., et al. created the Two-Phase Invasion 

Recognition System (TP-IDS) in two steps to improve 

accuracy. They employed SVM and kNN in stage of the 

particular TP-IDS. In order to improve accuracy, Decision 

Tree and Nave Bayes are used during Phase II of the TP-IDS 

system validation stage. According them, each phase makes 

use of the Hadoop distributed system as the primary data 

storage space and processing structures, which generally 

permits parallel processing in order to improve system overall 

performance and so achieve efficiency within TP-IDS [5]. 

Divyasree T. H.  et al. proposed an efficient intrusion 

detection system based on Ensemble Core Vector Machine 

(CVM). They employed CVM algorithms based on the notion 

of the smallest enclosing ball. It detects U2R and R2L attacks, 

as well as Probe and DoS attacks. They used the KDD Cup99 

dataset to train and test the classifiers. They also used the chi-

square test to determine the most significant attributes for 

each attack, and then applied a weighted function to these 

features to minimize dimensionality. As a consequence, the 

test results reveal that the model outperformed earlier 

strategies in all four attacks while needing less processing 

time [6]. 

To identify and categorize network threats, Ashiku, L. et al. 

proposed leveraging heavy learning architectures to construct 

an adaptive plus robust network incursion detection system. 

Their emphasis will be on how deep learning, or DNNs, may 

enable adaptable IDSs with learning capabilities to identify 

known and unique or even zero-day network behaviour 

patterns, shut down the system intruder, and limit the chance 

of penetration. They used the UNSW-NB15 dataset to 

demonstrate the utility of the model representing real-time 

network communication behaviour with synthetic attack 

operations [7]. 

To safeguard the cloud from potential attacks, Elmasry, W. et 

al. recommended the creation of a one-of-a-kind integrated 

cloud-based intrusion detection system (CIDS). The 

suggested CIDS, according to them, includes of five primary 

modules that execute the following tasks: monitoring the 

network, capturing traffic flows, extracting features, 

analyzing the flows, identifying intruders, responding to and 

documenting all actions. They employed an upgraded 

bagging ensemble system with three deep learning models to 

accurately anticipate intrusions. They demonstrated that the 

suggested technique resolves all of the issues raised in the 

cloud threat literature [13]. 

Sistla, V. P. K., et al. created deep learning algorithms in 

NIDS prediction models to identify abnormalities and threats 

automatically. They evaluated the proposed model's 

performance on the NSL-KDD dataset using metrics such as 

accuracy, recall, precision, and F1 score. They claim that the 

experimental findings suggest that the proposed deep learning 

model outperforms earlier shallow models [14]. 

RNNIDS was created by Sohi, S. M. et al., who used 

Persistent Neural Networks (RNNs) to detect detailed 
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patterns in issues and produce identical patterns. They 

verified that RNNs work incredibly well to develop new, 

previously undiscovered variants of attacks, as well as 

synthetic signatures from the most complicated viruses, to 

boost intrusion detection performance even more. They have 

enhanced the appearance of a new NIDS, RNNs function 

incredibly well to produce malicious datasets including 

previously concealed virus variants, for example. To evaluate 

the practicality of their methodologies, they conducted 

extensive tests using publicly accessible data sets, which 

revealed a significant increase in the detection rate of 

commercially available NIDS (up to 16.67 %) [15]. 

Zhou, Y., et al. created an intrusion detection system that is 

mostly based on feature extraction and even ensemble 

techniques. During the first time, they demonstrated the CFS-

BA heuristic dimensionality reduction strategy, which picks 

the ideal subset constructed after feature relationship. They 

demonstrated an ensemble technique that works with the C4, 

5, Random Forest (RF), and Forest by Simply Penalizing 

Capabilities (Forest PA) methods in this scenario. Finally, for 

intrusion detection, they used a voting approach to include the 

majority of the basic learner probability distributions. 

According on the experimentation findings employing the 

NSL-KDD, AWID, and CIC-IDS2017 datasets, the suggested 

CFS-BA collecting approach outperforms other relevant and 

decreasing edge techniques [16]. 

Mane, S. et al. employed deep neural networks to detect 

network intrusions and suggested an explainable AI 

framework to promote transparency at all stages of the 

machine learning process. They accomplished this by 

employing Explainable AI algorithms, which will make ML 

designs less of a new black box by explaining why a new 

prediction is made. This information might be generated 

using column creation from SHAP, LIME, Contrastive 

Explanations Technique, ProtoDash, and Boolean Decision 

Guidelines (BRCG). They provide the final results of 

applying these algorithms to the NSL-KDD information set 

for Intrusion Detection System [17]. 

Guezzaz, A., et al. suggested a selection tree-based technique 

for finding incursions with higher data quality. They used 

network pre-processing and entropy selection feature 

collection to increase data quality and suitable training, and 

they created a selection tree classifier to have dependable 

intruder individuality. As a result, a learning from mistakes 

analysis on a handful of data sets reveals that the 

recommended model provides reliable insights. With the 

majority of the NSL-KDD and CICIDS2017 data sets, their 

technique obtained 99.42 % and 98.80 % accuracy, 

respectively [18]. 

Li, L., et al. have suggested a unique hybrid approach for 

efficiently detecting community intruders. In the suggested 

model, the Gini index is used to choose the best subset of 

features, the gradient boosted decision tree (GBDT) approach 

is used to detect network intrusions, and the particle swarm 

optimization (PSO) methodology is used to fine-tune the 

GBDT parameters. They used the NSL-KDD dataset to put 

the suggested models through their tests in terms of accuracy, 

detection rate, precision, F1 score, and false alarm rate. 

According to the results, the suggested model outperforms the 

compared techniques [19]. 

Using the UNSW-NB15 dataset as a benchmark, Moualla, S. 

et al. proposed a unique neighbourhood IDS that plays an 

important role in network security measures and prevents 

current cyber-attacks on sites. According to them, their 

suggested system is a learning-based, multi-class system. The 

method is based on the Synthetic Group Oversampling 

Technique (SMOTE) approach to deal with imbalanced 

patterns in the dataset, and then uses a Randomized Trees 

Classifier (Extra Trees Classifier) to extract the specific key 

features in the dataset using the Gini select contamination 

qualifying criterion. Following that, they employed a 

pretrained extreme learning machine (ELM) model for each 

attack separately, using "One-Versus-All" as the specific 

binary classifier associated with them. The specific 

experimental data show that the proposed approach 

outperforms similar activities [20]. 

Xu, W., et al. proposed the Interpretable Intrusion Detection 

System, a revolutionary intrusion detection system based on 

model-based interpretability. They coupled Normal and 

Attack samples rebuilt with AutoEncoder (AE) with training 

examples to emphasise the Normal and Attack attributes, 

resulting in an astonishing effect for the classifier. They then 

employed Additive Tree (AddTree) as a binary classifier, 

which offered good predictive performance in the particular 

combined dataset while preserving adequate model-based 

interpretability. They investigated the suggested approach 

using the UNSW-NB15 dataset. According to them, I2DS 

obtained a recognition accuracy of 99.95 %, which is greater 

than the bulk of current intrusion detection systems [21]. 

Kabir, E. et al. have suggested a unique intrusion detection 

system based on Least Square Support Vector Machine 

sampling. They've split the detecting procedure into two 

halves. The whole dataset is separated into specified arbitrary 

subgroups in the first stage. To detect intrusions, the extracted 

samples are subjected to the least square support vector 

machine in the second step. They were able to achieve a 

reasonable level of accuracy and efficiency [22]. 

Learning-based classifiers have been proven to be vulnerable 

to adversarial instances, according to Zhang, F. et al. They 

illustrate how adversarial inputs adjusted solely based on the 

model decision outputs may readily evade a discrete-valued 

random forest classifier. They presented a gradient-free 

evasion method. Random forests have been shown to be much 

more vulnerable than SVMs [23]. 

CyberPulse++, a machine learning-based security system 

described by Rasool, R. U., et al., uses a pre-trained machine-

learning repository to evaluate collected network statistics in 

real-time to detect abnormal route performance on network 

links. It efficiently addresses various issues faced by network 

security solutions, according to them, including the feasibility 

of large-scale network-level monitoring and data collecting. 

They have shown that the system can proactively identify and 

fight against link flooding attacks in real time with little 

bandwidth and computational overhead [24]. 

Rasool, R. U., et al. have illustrated the susceptibility of the 

software-defined networking control layer to link flooding 

attacks, as well as how the attack technique varies from that 
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used to attack traditional networks, which mostly entails 

attacking the connections directly. They introduced 

CyberPulse, a novel effective countermeasure based on a 

machine learning-based classifier for preventing link 

flooding attacks in software-defined networks. They 

compared CyberPulse to competing techniques for accuracy, 

false positive rate, and efficacy on actual networks 

constructed with Mininet. According to them, the results 

suggest that CyberPulse is capable of accurately classifying 

harmful traffic and successfully mitigating them [25]. 

3. Methodology 
 
3.1. Framework of our Proposed Network 
Intrusion Detection System (NIDS) 
 
Figure 1 show the framework of our proposed network 

intrusion detection system. It consists of three phases like, 

feature selection phase, training phase and testing phase. The 

NSLKDD dataset is given as input to the four feature 

selection methods like, correlation based feature selection 

(CFS), information gain ratio (Gain Ratio), chi square (CHI) 

and information gain (Info gain) [26-28]. 

 

3.2. Feature Selection Techniques 
 

(i) Correlation-based feature selection (CFS) 

 

CFS assesses the value of a subset of attributes by taking into 

account each feature's unique predictive value as well as the 

degree of redundancy between them. Subsets of features with 

high correlation with the class but minimal intercorrelation 

are selected as given in equation (1) [26,29], 

 

Figure 1. Framework of our proposed NIDS System 

( 1)
s

krcf
Merit

k k k rff
=

+ −
                                     (1) 

where, 

 Merits = the heuristic ``merit" of feature subset S 

containing k features, 

 rcf  = the mean feature-class correlation and 

 rff  = the average feature-feature intercorrelation 

    We evaluated CFS with genetic search technique on NSL-

KDD training dataset and selected 8 top ranked features as 

shown in Table 1 out of 41 total features to evaluate the 

performance of the machine learning classifiers. 

 

Table 1. Top 8 ranked features using Correlation-
based feature selection (CFS) 

 
Sr. 
No. 

Attribute 
No. 

Selected Attribute 

1 4 flag 

2 5 src_bytes 

3 6 dst_bytes 

4 12 logged_in 

5 26 srv_serror_rate 

6 29 same_srv_rate 

7 30 diff_srv_rate 

8 37 dst_host_srv_diff_host_rate 

(ii) Chi-squared attribute evaluation (CHI) 

 
To determine the worth of an attribute, CHI computes the 

value of the chi-squared statistic in relation to the class. The 

CHI score is typically calculated using an equation (2) 

[26,30], 

*( )
( , )

( )*( )*( )*( )

N XZ YW
CHI a c

X W Y Z X Y W Z

−
=

+ + + +
                            

                                                                                          (2) 

where, 

X = the no. of times feature a and class c occur together, 

Y = the no. of times feature a occurs without class c, 

W = the no. of times class c occurs without feature a, 

Z = the no. of times neither a or c occurs and 

N = the total size of the training set. 

We evaluated chi-squared attribute selection with ranker 

search technique on NSL KDD training dataset and selected 

subset 14 top ranked features as shown in Table 2 out of 41 

total features to evaluate the performance of the machine 

learning classifiers. 

 

Table 2. Top 14 ranked features using Chi-squared 
attribute evaluation (CHI) 

Sr. 
No. 

Attribute 
No. 

Selected Attribute 

1 5 src_bytes 

2 6 dst_bytes 

3 3 service 

4 4 flag 

5 30 diff_srv_rate 
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5 

6 29 same_srv_rate 

7 33 dst_host_srv_count 

8 34 dst_host_same_srv_rate 

9 35 dst_host_diff_srv_rate 

10 12 logged_in 

11 23 count 

12 25 serror_rate 

13 38 dst_host_serror_rate 

14 39 dst_host_srv_serror_rate 

(iii) Gain Ratio Feature Evaluation 

Gain Ratio Feature Evaluation measures the gain ratio in 

relation to the class to determine the value of an attribute. The 

solution is provided by the equation (3) [26,29]. 

 

( )
( )

( )

Gain A
GainRatio A

SplitInfo A
=                                (3) 

Gain is a criteria for attribute selection in the ID3 approach. 

It is also referred to as information gain. The property with 

the largest information gain is chosen as the splitting attribute 

for the node N in information gain. This function reduces the 

amount of data required to classify dataset D in a partition and 

returns the partitions with the lowest impurity. Information 

gain is defined as the difference in entropy between before 

and after splitting the dataset D on attribute A. Entropy is used 

in equation (4) to compute the uncertainty in the dataset D. 

 

( ) ( )2( )  log  
x X

Entropy D p x p x


= −                       (4) 

where, 

X = the set of classes in dataset D, 

p(x) = the proportion of number of elements in class x to the 

number of elements in dataset D.  

SplitInfo describes how equally the attribute splits the dataset 

and is calculated by equation (5), 

 

2

1

| | | |
( ) *log

| | | |

n

j

Dj Dj
SplitInfo A

D D=

 
= −  

 
                    (5) 

where, 

| |

| |

Dj

D
 represents the weight of jth partition. 

We evaluated gain ratio feature selection with ranker search 

technique on NSL KDD training dataset and selected a subset 

of 14 top ranked features as shown in Table 3 out of 41 total 

features to evaluate the performance of the machine learning 

classifiers. 

 

Table 3. Top 14 ranked features using Gain Ratio 
Feature Evaluation 

Sr. 
No. 

Attribute 
No. 

Selected Attribute 

1 12 logged_in 

2 26 srv_serror_rate 

3 4 flag 

4 25 serror_rate 

5 39 dst_host_srv_serror_rate 

6 30 diff_srv_rate 

7 38 dst_host_serror_rate 

8 6 dst_bytes 

9 29 same_srv_rate 

10 5 src_bytes 

11 3 service 

12 37 dst_host_srv_diff_host_rate 

13 33 dst_host_srv_count 

14 34 dst_host_same_srv_rate 

(iv) InfoGain Feature Evaluation 

 
InfoGain Feature Evaluation Measures the information 

obtained with regard to the class to determine the value of an 

attribute. The InfoGain score is derived using an equation (6) 

[26,29], 

( ) ( ) ( ),    | –   InfoGain Class Attribute H Class H Class Attribute=      

                                                                                       (6) 

where, 

H is the information entropy. 

We evaluated InfoGain feature selection with ranker search 

technique on NSL KDD training dataset and selected a subset 

of 14 top ranked features as shown in Table 4 out of 41 total 

features to evaluate the performance of the machine learning 

classifiers. 

 

 

Table 4. Top 14 ranked features using InfoGain 
Feature Evaluation 

Sr. 
No. 

Attribute 
No. 

Selected Attribute 

1 5 src_bytes 

2 6 dst_bytes 

3 3 service 

4 4 flag 

5 30 diff_srv_rate 

6 29 same_srv_rate 

7 33 dst_host_srv_count 

8 34 dst_host_same_srv_rate 

9 35 dst_host_diff_srv_rate 

10 12 logged_in 

11 23 count 

12 38 dst_host_serror_rate 

13 25 serror_rate 

14 39 dst_host_srv_serror_rate 
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3.3. Classification Methods 

Six machine learning methods were used for training and 

testing. We tested the suggested technique using XGBoost, 

J48 Decision Tree, AdaBoost, Random Forest, REPTree, and 

Majority Voting. Similarly, we used the Majority Voting 

method to create a multi-model classification system. These 

are the most extensively used and efficient classification 

methods. To perform the experiments, we employed the 

WEKA API implementation for these learning approaches. 

The specifics of each algorithm are as follows [31]. 

   These are the commonly used machine learning algorithms 

to solve the task of classification. These are widely used and 

researched algorithms, with applications in a broad variety of 

fields such as text classification, image classification, 

intrusion detection, malware detections etc. These algorithms 

have provided significant and promising classification results 

in different domains. 

(i) XGBoost 

XGBoost (eXtreme Gradient Boosting) is a well-known and 

effective method. Gradient boosting is a supervised learning 

strategy that integrates an ensemble of estimates from a 

number of simpler and weaker models in order to anticipate a 

target variable accurately. The XGBoost approach performs 

well in machine learning challenges due to its robust handling 

of a wide range of data types, relationships, and distributions, 

as well as the vast range of hyperparameters that can be fine-

tuned. XGBoost [32] can address regression, classification 

(binary and multiclass), and ranking problems. 

(ii) J48 Decision Tree 

One of the most popular classification approaches is J48 

decision tree learning. It is highly efficient and has 

classification accuracy comparable to other learning methods. 

A decision tree is a tree that reflects the classification model 

that has been learned. It's an easy-to-understand decision tree 

classification paradigm. At WEKA, J48 is a modified C4.5. 

By recursively partitioning data, the C4.5 technique generates 

a categorization decision tree for a given data set. The depth-

first strategy is used to broaden the selection. The method 

evaluates all feasible data split tests and chooses the one with 

the highest information gain [33]. 

(iii) AdaBoost 

AdaBoost is the most widely used and researched algorithm, 

with applications in a broad variety of fields. Freund and 

Schapire developed the AdaBoost algorithm in 1995. 

Abstract Boosting is a machine learning approach that 

combines a large number of weak and wrong classifiers to 

create a highly accurate classifier. It's easy to use, fast, and 

simple to understand. It does not need any prior information 

from the weak learner, therefore it may be used in conjunction 

with any weak hypothesis identification approach [34]. 

(iv) Random Forest 

As the name indicates, a random forest is made up of a large 

number of individual decision trees that work together as an 

ensemble. For each tree, the random forest creates a class 

prediction, and the class with the most votes becomes our 

model's forecast. The core concept of The Random Forest is 

the knowledge of the community, and it is a simple yet 

powerful one. The random forest model is particularly 

effective because it consists of a large number of generally 

uncorrelated models (trees) that work together to outperform 

each of the individual constituent models [35]. 

(v) REPTree 

The REPTree classifier is a rapid decision tree learner that 

builds classification and regression trees using the C4.5 

method. It constructs a regression/decision tree using 

information gain/variance and truncates it using error-

reduced pruning [36]. 

(vi) Majority Voting 

Voting is the most fundamental ensemble approach, and it is 

typically pretty effective. It may be used to solve 

classification and regression problems. It breaks down a 

model into two or more sub-models, in this case five. The 

majority voting process is used to integrate predictions from 

each sub-model. The majority voting method is depicted in 

Figure 2. It is a meta-classifier that uses a majority vote to 

identify machine learning classifiers that are conceptually 

similar or dissimilar. We use majority voting to forecast the 

final class label, which is the class label that classification 

models most usually predict. We predict the class label y 

using equation (7) and the majority vote of each classifier Cj. 

[26, 37-38], 

 

 
Figure 2. Majority Voting Algorithm 

 

{ 1( ), 2( ),..., ( )}y mode C x C x Cm x=                       (7) 

where, 
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y = predicted class label and 

C1(x), C2(x),..., Cm(x)=classification models 

3.4. Motivations for using the multi-model 
strategy 

Following are the motivations to use multi-model strategy for 

the detection of network intrusions, 

• It's a strategy for improving model performance, 

with the goal of outperforming any single model in 

the ensemble. 

• Majority Voting is based on the performance of 

many models, therefore huge mistakes or 

misclassifications from one model will not be a 

hindrance. 

• A model's poor performance can be compensated for 

by the good performance of other models. 

• When you combine models to produce a forecast, 

you reduce the chances of one model making an 

incorrect prediction by having several models that 

can make the correct prediction. 

• Majority Voting makes the estimator more robust 

and less prone to overfitting. 

4. Experimental Setup and Evaluation 
 
4.1. Dataset 

The NSL-KDD dataset was created to address some of the 

drawbacks of the KDD99 dataset. Despite the fact that this 

revised version of the KDD dataset has significant flaws and 

may not be a perfect representation of real-world networks, it 

can still be used as a benchmark dataset to help academics 

evaluate different intrusion detection systems and address the 

lack of public records for network-based IDS. The NSL-KDD 

train and test sets also include a large corpus of data. This 

advantage allows tests to be run on the complete collection 

rather than a random sample. As a result, the findings of 

multiple research studies are consistent and similar. 

In this work, the NSL-KDD dataset is used, which contains 

the datasets KDDTrain+ and KDDTest+. There are a total of 

125,973 instances in the KDDTrain+ dataset with 58,630 

attack traffic and 67,343 normal traffic. The KDDTest+ set 

has a total of 22,544 instances. A detailed overview of the 

instances is shown in Table 5 [39-40]. 

 

Table 5. The breakdown of the three sets of the NSL-
KDD dataset. 

Class KDDTrain+ KDDTest+ 

Normal 67343 9711 

DoS 45927 7458 

PRB 11656 2421 

R2L 995 2754 

U2R 52 200 

Attacks 58630 12833 

Total 125973 22544 

4.2. Evaluation Measures 

To evaluate the performance of classifiers, we used the 

following metrics. A binary classifier assigns a positive or 

negative label to all data items in a test dataset. This 

classification (or prediction) produces four outcomes true 

positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) [41]. 

TP TN
Accuracy

TP TN FN FP

+
=

+ + +
                            (8) 

FP FN
Error Rate

TP TN FN FP

+
− =

+ + +
                      (9) 

FP
FPR

TN FP
=

+
                                                        (10) 

FN
FNR

TP FN
=

+
                                                        (11) 

4.3. Performance Evaluation of XGBoost 
classifier using feature selection techniques 
on NSL-KDD dataset 

Table 6 shows the performance evaluation of XGBoost 

classifier using feature selection techniques on NSL-KDD 

dataset. Without using feature selection (using all 41 features) 

XGBoost achieved accuracy of 99.36%, error-rate of 

0.6377%, FPR of 0.007 and FNR of 0.006. It takes 8.82 

seconds to train the model and 24.1 seconds to test the model. 

On the other hand, by using feature selection techniques like 

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the 

classifier achieved acceptable results with minimum system 

overhead. To train the model, by using CFS takes 2.71 

seconds, GainRatio takes 5.21 seconds, Chi-squared takes 

5.43 seconds and InfoGain takes 4.3 seconds. To test the 

model, by using CFS takes 1.37 seconds, GainRatio takes 

1.78 seconds, Chi-squared takes 1.52 seconds and InfoGain 

takes 2.96 seconds. It shows that by using feature selection 

techniques the classifier achieved acceptable results with 

minimum system overhead. 

4.4. Performance Evaluation of Random 
Forest classifier using feature selection 
techniques on NSL-KDD dataset 

Table 7 shows the performance evaluation of Random Forest 

classifier using feature selection techniques on NSL-KDD 

dataset. Without using feature selection (using all 41 features) 

Random Forest achieved accuracy of 99.6%, error-rate of 

0.4%, FPR of 0.004 and FNR of 0.004. It takes 165.98 

seconds to train the model and 2.67 seconds to test the model. 

On the other hand, by using feature selection techniques like 
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CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the 

classifier achieved acceptable results with minimum system 

overhead. To train the model, by using CFS takes 95.99 

seconds, GainRatio takes 83.22 seconds, Chi-squared takes 

83.05 seconds and InfoGain takes 88.75 seconds. To test the 

model, by using CFS takes 2.67 seconds, GainRatio takes 

2.47 seconds, Chi-squared takes 2.03 seconds and InfoGain 

takes 1.86 seconds. It shows that by using feature selection 

techniques the classifier achieved acceptable results with 

minimum system overhead. 

4.5. Performance Evaluation of REPTree 
classifier using feature selection techniques 
on NSL-KDD dataset 

Table 8 shows the performance evaluation of REPTree 

classifier using feature selection techniques on NSL-KDD 

dataset. Without using feature selection (using all 41 features) 

REPTree achieved accuracy of 99.49%, error-rate of 

0.5109%, FPR of 0.005 and FNR of 0.005. It takes 9.73 

seconds to train the model and 0.25 seconds to test the model. 

On the other hand, by using feature selection techniques like 

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the 

classifier achieved acceptable results with minimum system 

overhead. To train the model, by using CFS takes 2.9 seconds, 

GainRatio takes 3.24 seconds, Chi-squared takes 3.42 

seconds and InfoGain takes 3.16 seconds. To test the model, 

by using CFS takes 0.08 seconds, GainRatio takes 0.06 

seconds, Chi-squared takes 0.06 seconds and InfoGain takes 

0.06 seconds. It shows that by using feature selection 

techniques the classifier achieved acceptable results with 

minimum system overhead. 

4.6. Performance Evaluation of J48 classifier 
using feature selection techniques on NSL-
KDD dataset 

Table 9 shows the performance evaluation of J48 classifier 

using feature selection techniques on NSL-KDD dataset. 

Without using feature selection (using all 41 features) J48 

achieved accuracy of 99.37%, error-rate of 0.6298%, FPR of 

0.005 and FNR of 0.007. It takes 57.27 seconds to train the 

model and 0.09 seconds to test the model. On the other hand, 

by using feature selection techniques like CFS using 8 

features, GainRatio using 14 features, Chi-squared using 14 

features and InfoGain using 14 features the classifier 

achieved acceptable results with minimum system overhead. 

To train the model, by using CFS takes 7.92 seconds, 

GainRatio takes 12.96 seconds, Chi-squared takes 16.28 

seconds and InfoGain takes 16.14 seconds. To test the model, 

by using CFS takes 0.05 seconds, GainRatio takes 0.07 

seconds, Chi-squared takes 0.07 seconds and InfoGain takes 

0.07 seconds. It shows that by using feature selection 

techniques the classifier achieved acceptable results with 

minimum system overhead. 

4.7. Performance Evaluation of AdaBoost 
classifier using feature selection techniques 
on NSL-KDD dataset 

Table 10 shows the performance evaluation of AdaBoost 

classifier using feature selection techniques on NSL-KDD 

dataset. Without using feature selection (using all 41 features) 

AdaBoost achieved accuracy of 94.41%, error-rate of 

5.5945%, FPR of 0.084 and FNR of 0.003. It takes 39.05 

seconds to train the model and 0.09 seconds to test the model. 

On the other hand, by using feature selection techniques like 

CFS using 8 features, GainRatio using 14 features, Chi-

squared using 14 features and InfoGain using 14 features the 

classifier achieved acceptable results with minimum system 

overhead. To train the model, by using CFS takes 6.46 

seconds, GainRatio takes 11.85 seconds, Chi-squared takes 

12.33 seconds and InfoGain takes 12.07 seconds. To test the 

model, by using CFS takes 0.06 seconds, GainRatio takes 

0.07 seconds, Chi-squared takes 0.07 seconds and InfoGain 

takes 0.08 seconds. It shows that by using feature selection 

techniques the classifier achieved acceptable results with 

minimum system overhead. 

4.8. Performance Evaluation of Majority Voting 
classifier using feature selection techniques 
on NSL-KDD dataset 

Table 11 shows the performance evaluation of multi-model 

training using Majority Voting classifier using feature 

selection techniques on NSL-KDD dataset. Without using 

feature selection (using all 41 features) Majority Voting 

achieved accuracy of 99.55%, error-rate of 0.4515%, FPR of 

0.005 and FNR of 0.004. It takes 350.38 seconds to train the 

model and 201.46 seconds to test the model. On the other 

hand, by using feature selection techniques like CFS using 8 

features, GainRatio using 14 features, Chi-squared using 14 

features and InfoGain using 14 features the classifier 

achieved acceptable results with minimum system overhead. 

To train the model, by using CFS takes 157.92 seconds, 

GainRatio takes 143.58 seconds, Chi-squared takes 123.08 

seconds and InfoGain takes 126.16 seconds. To test the 

model, by using CFS takes 165.56 seconds, GainRatio takes 

159.04 seconds, Chi-squared takes 13.97 seconds and 

InfoGain takes 6.73 seconds. It shows that by using feature 

selection techniques the classifier achieved acceptable results 

with minimum system overhead. 
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Table 6. Performance evaluation of XGBoost classifier using and without using feature selection techniques on 
NSL-KDD dataset 

FS ST #Features Accuracy 
(%) 

Error-rate 
(%) 

FPR FNR Train time 
(sec.) 

Test time 
(sec.) 

Without feature selection 41 99.36 0.6377 0.007 0.006 8.82 24.1 

CFS GreedyStepwise 8 98.82 1.1843 0.011 0.013 2.71 1.37 

GainRatio Ranker 14 99.22 0.7822 0.009 0.007 5.21 1.78 

CHI Ranker 14 99.28 0.7208 0.008 0.007 5.43 1.52 

InfoGain Ranker 14 99.28 0.7208 0.008 0.007 4.3 2.96 

 
Table 7. Performance evaluation of Random Forest classifier using and without using feature selection techniques 

on NSL-KDD dataset 
FS ST #Features Accuracy 

(%) 
Error-rate 

(%) 
FPR FNR Train time 

(sec.) 
Test time 

(sec.) 

Without feature selection 41 99.6 0.4 0.004 0.004 165.98 2.67 

CFS GreedyStepwise 8 99.11 0.8912 0.008 0.01 95.99 2.67 

GainRatio Ranker 14 99.53 0.4654 0.004 0.005 83.22 2.47 

CHI Ranker 14 99.58 0.4238 0.005 0.004 83.05 2.03 

InfoGain Ranker 14 99.58 0.4238 0.005 0.004 88.75 1.86 

 
Table 8. Performance evaluation of REPTree classifier using and without using feature selection techniques on 

NSL-KDD dataset 
FS ST #Features Accuracy 

(%) 
Error-rate 

(%) 
FPR FNR Train time 

(sec.) 
Test time 

(sec.) 

Without feature selection 41 99.49 0.5109 0.005 0.005 9.73 0.25 

CFS GreedyStepwise 8 98.96 1.0357 0.01 0.011 2.9 0.08 

GainRatio Ranker 14 99.33 0.6654 0.007 0.007 3.24 0.06 

CHI Ranker 14 99.44 0.5565 0.006 0.005 3.42 0.06 

InfoGain Ranker 14 99.44 0.5565 0.006 0.005 3.16 0.06 

 
Table 9. Performance evaluation of J48 classifier using and without using feature selection techniques on NSL-

KDD dataset 
FS ST #Features Accuracy 

(%) 
Error-rate 

(%) 
FPR FNR Train time 

(sec.) 
Test time 

(sec.) 

Without feature selection 41 99.37 0.6298 0.005 0.007 57.27 0.09 

CFS GreedyStepwise 8 98.98 1.0179 0.009 0.011 7.92 0.05 

GainRatio Ranker 14 99.42 0.5822 0.006 0.006 12.46 0.07 

CHI Ranker 14 99.45 0.5525 0.005 0.006 16.28 0.07 

InfoGain Ranker 14 99.45 0.5525 0.005 0.006 16.14 0.07 

 
Table 10. Performance evaluation of AdaBoost classifier using and without using feature selection techniques on 

NSL-KDD dataset 
FS ST #Features Accuracy 

(%) 
Error-rate 

(%) 
FPR FNR Train time 

(sec.) 
Test time 

(sec.) 

Without feature selection 41 94.41 5.5945 0.084 0.03 39.05 0.09 

CFS GreedyStepwise 8 91.64 8.3571 0.089 0.078 6.46 0.06 

GainRatio Ranker 14 93.41 6.5867 0.09 0.044 11.85 0.07 

CHI Ranker 14 92.53 7.4739 0.083 0.067 12.33 0.07 

InfoGain Ranker 14 92.53 7.4739 0.083 0.067 12.07 0.08 

 
 
 
 

EAI Endorsed Transactions on 
Scalable Information Systems 

08 2022 - 10 2022 | Volume 9 | Issue 6 | e6



 
Dharmaraj R. Patil and Tareek M. Pattewar 

  10      

Table 11. Performance evaluation of Majority Voting classifier using and without using feature selection 
techniques on NSL-KDD dataset 

FS ST #Features Accuracy 
(%) 

Error-rate 
(%) 

FPR FNR Train time 
(sec.) 

Test time 
(sec.) 

Without feature selection 41 99.55 0.4515 0.005 0.004 350.38 201.46 

CFS GreedyStepwise 8 99.03 0.9625 0.009 0.01 157.92 165.56 

GainRatio Ranker 14 99.48 0.5208 0.006 0.005 143.58 159.04 

CHI Ranker 14 99.5 0.501 0.005 0.005 123.08 13.97 

InfoGain Ranker 14 99.5 0.501 0.005 0.005 126.16 6.73 

4.8. Comparison of our proposed approach 
using Majority Voting classifier with other 
works on NSL-KDD dataset 

Table 12 and Figure 3 shows the comparative performance 

evaluation of our proposed approach using Majority Voting 

classifier with other similar works on the NSL-KDD dataset. 

It is found that our approach outperforms the other 

approaches in the attack detection accuracy of 99.50% using 

only 14 selected features out of 41 features. 

 

Table 12. Comparison of our approach using Majority 
Voting classifier with other works on NSL-KDD dataset 

Approach Method Accuracy (%) 

Azidine 
Guezzaz et 

al. [18] 

Decision Tree 
with Enhanced 
Data Quality 

(DTE) 

99.42 

Masdari and 
Khezri [12] 

Five classification 96.70 

Ahmim et al. 
[42] 

Tree algorithm 89.24 

Fang et al. 
[43] 

Random Forest 99.33 

Proposed 
approach 

Majority Voting 99.50 

 

Figure 3. Comparison of our approach using Majority 
Voting classifier with other works on NSL-KDD dataset 

5. Discussion 
 
5.1. Positive impacts of Network Intrusion 
Detection System 
 
Following are some of the positive impacts of network 

intrusion detection systems. 

• NIDS can be configured to display the specific 

information included within the packets. This 

feature can be used to detect intrusions such as 

exploitation attacks and botnet-infected packets.  

• NIDS looks at the number and types of attacks. This 

information can be utilised to improve security 

measures. It can also be examined for flaws with 

network settings.  

• To satisfy certain standards, NIDS logs can be used 

as documentation. 

• This increased efficiency can help a business to save 

money on employees while also covering the costs 

of installing the NIDS. 

 

5.2. Negative impacts of Network Intrusion 
Detection System 
 
Following are some of the negative impacts of network 

intrusion detection systems. 

• NIDS does not stop or prevent attacks; rather, it aids 

in their detection. 

• NIDS is extremely valuable for network monitoring, 

but the value of the information it provides is 

entirely dependent on what you do with it. 

• Intruders can employ encrypted packets to sneak 

into the network since an NIDS can't see them. 

• Although a NIDS reads the data from an IP packet, 

the network address may still be faked. 

• One major drawback of a NIDS is that it frequently 

alerts false positives. 

• Because an NIDS examines protocols as they are 

collected, they are vulnerable to the same protocol-

based attacks as network hosts. 

• An NIDS's signature library determines how 

effective it is. It won't register the latest attacks if it 

isn't updated often, and it won't be able to warn about 

them. 
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5.3. Benefits for the academic community and 
government 
 
Following are the benefits of NIDS for the academic 

community and government. 

• Academic community can use NIDS as a research 

platform for further study to solve open challenges 

in thus field. 

• They can provide more significant solutions to 

detect the new threats in an efficient way with 

minimum false positives. 

• Government agencies and organizations can 

effectively use NIDS to detect the threats before they 

can expose the systems. 

 
6. Conclusions 
 
We provided feature selection and majority voting-based 

classification for detecting attacks using the NSL-KDD 

dataset. Correlation-based feature selection (CFS) with 

GreedyStepwise, Chi-squared attribute evaluation (CHI) with 

Ranker, Gain Ratio Feature Evaluation with Ranker, and 

InfoGain Feature Evaluation with Ranker search strategies 

were used for feature selection. Using these feature selection 

strategies, we picked 8 features with CFS, 14 with CHI, 14 

with GainRatio, and 14 with InfoGain. To evaluate the 

performance of various feature selection techniques and 

selected features, we used six machine learning classifiers: 

XGBoost, Random Forest, AdaBoost, REPTree, J48 

Decision Tree, and Majority Voting. We built a multi-model 

classification model using the Majority voting classifier. 

According to the testing findings, our suggested solution, 

which employs a Majority Voting classifier and feature 

selection algorithms such as CHI and InfoGain, achieved a 

99.50 % attack detection accuracy with minimum system 

overhead. Furthermore, we compared our suggested 

technique to other comparable approaches and found that it 

outperforms in terms of attack detection accuracy. 
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