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Abstract 

Nowadays, microprocessors use the deep pipeline to execute multiple instructions per cycle. The frequency and behavior 
of conditional instructions mainly affect the performance of instruction-level parallelism. However, recent processors still 
have problems with the correct prediction of conditional branches. Firstly, the perceptron neural network and global-based 
perceptron prediction has been exploited and implemented. Further, a new approach, linear vector quantization (LVQ) 
neural network, is explored and implemented to see its possibility and potentiality as a branch predictor in terms of 
accuracy rate. Simulation is performed by varying the parameter of hardware budget and the length of history register 
using different trace files for identification of the best branch predictor technique. The proposed LVQ perceptron branch 
predictor achieves an 85.56% accuracy rate using a hardware budget and an 86.36% accuracy rate in terms of history 
length by comparing the simulation results. 
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1. Introduction

In a microprocessor design, the pipeline is a prime high-
performance technology as it enables high clock rates and 
instruction-level parallelism (ILP). The recent generation 
of processors like Pentium has been towards deeper 
pipelines to allow the increased clock speeds. As the 
pipeline becomes more in-depth, the controlling hazard 
due to conditional branches incurs the instruction's 
execution flow. In this case, the pipeline would have to 
wait for the branch output before fetching the next 
instructions. Precise prediction of branches with high 
predictive accuracy is required to resolve the problem in 
the pipeline. The conditional branch to be identified in the 
pipeline during the real-time prediction process. During 
the fetch step in the pipeline, the branch result and the 
target address must be predicted when the branch is 

found. However, the accuracy of the correct prediction of 
conditional instructions can lead to better performance of 
the processor.  

The branch prediction methods fall into two categories. 
• Static Branch Prediction

This prediction is the simplest of all methods as it has a 
predetermined branch action during the entire process. In 
this, the prediction is fixed during the compile time.  

• Dynamic Branch Prediction
In this prediction, the processor uses hardware to store

information about recently executed branches and their 
outcomes.  Mostly, dynamic branch prediction techniques 
are based on pattern history tables (PHT) of saturating 
counters. Saturating counter prediction is limited with the 
branch history register and local information of the 
recently executed branch.  

However, there are many algorithms like bimodal 
prediction, index sharing prediction, global and local 
based prediction, and a hybrid-based prediction that is 
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extensively implemented to predict conditional branches. 
These algorithms are straightforward and achieve a 
normal prediction accuracy range.  

It is recently possible to use machine learning 
techniques to improve the performance of the processor 
by replacing the saturating counter with the number of the 
perceptron since neural networks are known to provide 
better prediction accuracy using artificial neurons. The 
use of artificial neurons in perceptron is relatively better 
as their training process is speedy. 

The rest of the paper is as follows: Section 2 gives a 
literature survey of the different techniques used to 
predict branches. The machine learning-based branch 
predictors are proposed in section 3. Section 4 describes 
the simulation framework for the branch predictors. The 
simulation results of each branch predictors are presented 
in section 5. Finally, in section 6, the research paper 
concludes with future scope. 

Contributions 
In this paper, the concept of machine learning is explored 
and tested to predict conditional branches.  

• Firstly, the perceptron based neural network and
the global-based perceptron prediction has been
exploited and implemented.

• Secondly, a novel approach linear vector
quantization (LVQ) neural network is proposed
and implemented to see their possibility and
potentiality as a branch predictor in terms of
accuracy rate.

• Simulation is performed by varying the
parameter of hardware budget and the length of
history register using different trace files for
identification of the best branch predictor
technique.

The rest of the paper is as follows: Section 2 gives a 
literature survey of the different techniques used to 
predict branches. The machine learning-based branch 
predictors are proposed in section 3. Section 4 describes 
the simulation framework for the branch predictors. The 
simulation results of each branch predictors are presented 
in section 5. Finally, in section 6, the research paper 
concludes with future scope. 

2. Related Work

Many researchers have tried to compare various branch 
predictors to highlight the efficiency of their approaches. 
So, this section presents the state-of-the-art of different 
branch prediction strategies for the prediction of branches. 

Calder [1] provided the prediction of conditional 
branches using static and compiler-time branch 
prediction. This prediction is based on the preliminary 
information about the program that the compiler can 
readily determine. The significant drawbacks of Calder 
prediction are unable to use the dynamical prediction of 
branches. However, his static compiler optimization 

scheme providing extra information to dynamic branch 
predictors. 

Franklin et al.[2] used the local and global history for 
the identification of branches. This concept tracks the run 
time behavior of an instruction in the front-end of the 
pipeline. This mechanism has been established for each 
dynamic branch predictor that regulates the computation 
that affects the expected branch outcome. 

Vinten and Florea [3] implemented the conditional 
branch uses a back-propagation algorithm as a multilayer 
perceptron. Based on the same prediction information, 
this approach predicts the target address for indirect 
jumps. Moreover, the author suggests this approach to be 
more efficient for the prediction of branches but increases 
the hardware cost and complexity. 

Tarjan and Skadron [4] introduced the hashed concept 
using the combination of gshare and perceptron branch 
predictor. This proposed predictor reduces aliasing, 
having a low hardware budget, and increase the accuracy 
in correlating predictors. 

Peram and Sudhakar [5] presented a piecewise neural 
branch predictor for improving the perceptron branch 
predictor's accuracy. In this predictor scheme, a 
hyperplane is utilized to choose the conditional branch 
prediction. The main feature of this predictor scheme is to 
remove the complexity and give rise to more accurate 
results for improving the processors' performance. 

Smith [6] proposed a feed-forward network based on 
the concept of a machine learning method. Further, a 
combined predictor using a saturating counter is also 
analyzed to compare accuracy and mis-prediction rate. 
Unfortunately, this scheme enhances accuracy, but 
tradeoff occurs between the number of hidden units.  

Mao et al. [7] proposed a deep learning-based 
algorithm for branch prediction. The author considers 
branch prediction in this paper as a classification problem 
and contrasts deep learning efficiency with current branch 
predictors. 

Su et al. [8] proposed a correlation-based hybrid 
branch prediction for the conditional branch. This 
approach combines the concept of static as well as 
dynamic branch prediction. To significantly boost the 
branch prediction accuracy, the dynamic branch predictor 
uses the branch correlation data. At the same time, the 
static profile based correlation is used to identify the 
branches.  

Shah and Prabhu [9] implemented a hybrid branch 
predictor with higher predictive capabilities than global 
branch predictors. In neighboring branches and local 
branches, the branch prediction accuracy is enhanced by 
basing prediction. 

Jimenez [10] described two versions of perceptron 
predictors by taking the parameter of long history lengths. 
To explore the feasibility of predictors, a circuit-level 
design of the perceptron predictor is designed. Further, it 
shows that in modern CPUs, the complex perceptron 
predictor can be used by providing a simple CPU., 
quicker and more feasible than the hybrid predictor. 
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In literature, the branch predictors lack performance 
because of the utilization of smaller history length, lack of 
hardware budget, and counter-based system. For this, 
there is a lack of fast fetching and executing the process 
of instructions. The proposed method is intelligent, 
contributing to producing beneficial and accurate results 
by including mathematical based calculation and using the 
training module. 

Table 1. Different branch prediction schemes used 
for branch prediction with features 

Different 
branch 
predictors 

Features and challenges Reference 

Smith 
Algorithm 

Improve the performance by a 
small increment, but it does not 
use the store history tables of an 
instructions 

[11], [12] 

Two-level 
predictor 

Uses two separate levels of 
branch history tables. However, 
the trade-off between sizes of 
two-tables occur 

[13], [14] 

Index sharing 
predictor 

The size of the history table is 
large as compared to the two-
level predictor's. Hashing 
together branch history register 
and PC leads to better accuracy 
in processor performance 

[15], [16] 

The agree 
Predictor 

Reduce destructive aliasing 
interference by reinterpreting the 
pattern history table counter 

[17], [18] 

Hybrid branch 
predictor 

Combine two or more predictor's 
to make one final prediction but 
sometimes partially 
misunderstand the hybrid path at 
the time of prediction 

 [31][21] 

The piece-
wise linear 
neural branch 
predictor 

It provides much greater 
precision but dramatically 
increases the overhead of 
control pointing and recovery 
and the number of adders. 

[22]–[24] 

3. Machine Learning Branch Predictors

Recently, machine learning becomes a new research focus 
and significantly improves the performance of processors. 
In this section, the description of the machine learning-
based branch predictors is explored with their algorithm 
of how they can be used to predict conditional branch 
instructions. 

3.1. Perceptron based branch predictor 

A perceptron is one of many processing elements within 
the artificial neural networks. A perceptron is a learning 
device that takes input values and combines them with 
weights to produce an output.  Figure 1 presents the 
conceptual view of a perceptron model. Given a vector of 
inputs ......i nx x  and a vector of weights ......i nw w  the 
output of the perceptron is a dot product of data and 

weight. ix  is always set to 1 represent bias input. This 
allows the perceptron to learn its activation threshold. 
The output y is expressed in mathematical:  

0
1
( )i i

i
y w xw

∞

=

= +∑      (1) 

Here, 
y  = Output of perceptron, 0w  = Bias weight, iw = 

Perceptron weight, ix  Perceptron input 
The output of the perceptron is a dot product of data and 
weight. The perceptron's output is y ; if the 0y ≥ branch 
is predicted to be taken,  else branch is expected to be not- 
taken. 

Figure 1. A simplest perceptron structure 

The basic block diagram in figure 2 represents the role of 
perceptron for the prediction of branch instructions. For 
the prediction of conditional branch instructions, a 
perceptron uses a table in which n number of a perceptron 
is stored. A training algorithm is used to train the module 
when the outcome is not equal to the actual result. 

Figure 2. The conceptual model of the perceptron 
branch predictor 

For the prediction of the branch using perceptron branch 
predictor, the following steps are to be taken: 

(i) The branch address is hashed to the table of the perceptron.
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(ii) Select the perceptron for computing the output.
(iii) Compute the branch prediction y

if y ≥ 0, prediction result to be saved
if y ≤ 0, prediction to be updated using train function

(iv) Train the selected perceptron using branch outcome.
(v) Update the trained perceptron back to the table.

Algorithm: Perceptron Based Branch Predictor 

Step 1: Use the program counter to select the input 
branch; 
Step 2: Get the weight vector of each input branch ;  
Step 3: Compute output using weight vector and input 
branch; 
Step 4: Make prediction based on output; 
Step 4.1 If (prediction = incorrect or below threshold); 

   then (adjust weight vector using train function); 
Step 5: If (prediction = correct or above threshold); 

  then { 
   increment weight and return 1, if taken 
   else 
  decrement weight and return 0, if not-taken 
  }    

When the actual performance of the branch is known, a 
training algorithm is used to update the predictor. The 
training algorithm uses a threshold parameter to control 
the magnitude of the weight value. The threshold value is 
optimal to be [1.93 14]hθ = + , where h represents the 
duration of the history bit. The following algorithm is 
used to train the value of the perceptron. 

Algorithm: Train Perceptron function 

if (y) ≠ t  or  ( |y| ≤  θ ) then 
for j = 0....h 
do 
{ 
wi  = wi + 1, if ( t = xi ) 
or 
wi  = wi  - 1,  if (t ≠ xi) 
} 
end 

With this algorithm, the perceptron trains its weight table, 
achieving more accuracy while predicting the branches. 
One of the limitations of using perceptron is they are only 
capable of learning linear separable function. The global 
perceptron branch predictor overcomes this limitation by 
using the linear inseparable function. 

3.2. Global perceptron branch predictor 

The global branch predictor is one of the best prediction 
schemes among the correlating branch prediction 
schemes.  The prediction of this scheme is based on the 
history table of recently executed predicted branches. To 
index the bits in the history table, XOR to be used of the 
least significant bit of the currently executing branch 

address and the history of the recently completed branch 
instruction.   

Figure 3. The global perceptron branch predictor 
fetches weights by indexing XOR of address 

In this predictor, the perceptron table is indexed by the 
correlation of bits assigned by the XOR of branch address 
and the speculative global history register. The branch 
address holds the address of currently executing 
conditional instructions, whereas the global history 
register holds the instruction's prior information. The 
perceptron is trained according to their cumulative 
prediction. The great advantage of using this predictor for 
the branch prediction is that each weight is fetched with a 
different mapping to get a more accurate prediction. 

Algorithm: Global Perceptron Branch Predictor 

Step 1: Use the program counter to select the input 
branch; 
Step 2: Get the weight vector of each input branch ;  
Step 3: fetch the address in table of perceptron using  xor 
function 
Step 4: Make prediction based on output; 
Step 4.1 If (prediction = incorrect or below threshold);  

   then (adjust weight vector using train function); 
Step 5: If (prediction = correct or above threshold); 

  then { 
   increment weight and return 1, if taken 
   else 
  decrement weight and return 0, if not-taken 
  }        

Table 2 depicts the example of XOR used in the global 
perceptron predictor. Using this indexing, they can predict 
some linearly inseparable branches and overcome the 
perceptron branch predictor problem. 

Table 2. The bits XOR used in global perceptron 
predictor 

Branch 
Address 

Global History Register XOR  
Indexing 

0000 1010 0000 0001 0000 1011 
0000 1110 1000 1010 1000 0100 
1111 1001 0000 0001 1111 1000 
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1111 1110 1000 1111 0111 0001 

The table utilization is significantly improved, which 
makes global predictors achieve higher prediction 
accuracy with the same hardware storage as compared to 
the perceptron branch predictor. 

3.3. Proposed Linear Vector Quantization 
Neural Predictor 

A proposed linear vector quantization (LVQ) predictor is 
based on the supervised competitive artificial neural 
network. This technique is associated with the neural 
network class of learning algorithms. LVQ consist of 
codebooks class of different parameter to refine the 
statistical analysis of any complex problem. In conditional 
branch instructions, the first codebook vector vt represents 
the branch taken outcomes, and the second codebook 
vector vnt represents the branch not-taken outcomes. For 
the correct predictions, the vector value is to be increased 
when the prediction to be accurate else the vector value is 
to be decreased.  
For computing the output outcomes, the results are based 
on the hamming distance between the input vectors and 
the codebook vectors associated with that particular input. 
The hamming distance is calculated as : 

2

1
( ) ( )

n

i i
i

HD y x v
=

= −∑     (2) 

       
Here, y = Prediction Outcome , ix = Input Vector , iv  = 
Codebook Vectors 
To train the codebook vectors, the particular vector value 
is adjusted as :  

• If the target value is equal to the prediction then
update the codebook vector by
 ( 1) ( ) ( ( ))j j jw t w t a x w t+ = − −  ..... (3) 

        
(3) 

• If the target value is not equal to the prediction
then update the codebook vector by

 ( 1) ( ) ( ( ))j j jw t w t a x w t+ ≠ − − .....(4)   (4) 

Here,  ( 1)jw t + = New Weight Value , ( )jw t = Current 
Weight Value , a = Learning Rate, the range lies between 
0 1a< < . 

Algorithm: Linear Vector Quantization Branch 
Predictor 

Function perceptron prediction lvq (pc,add: integer): 
boolen: 
index = pc mod num 
outcome  y =  bias [index] (initialize index and output 
value) 
if (outcome == True): 

vt = 1 
for i in range(h) 
if((self. ext & vt) == 0):  
x = -1 
else 
x = 1 
outcome   y+= np.dot(.percept weight[index][i], x) (dot 
product calculation) 
if( self.y >= 0 ): (making a prediction) 
self.prediction = True 
else 
self.prediction = False 
end if 
end 

The LVQ neural model has continuously trained the 
weights and provide faster processing than other neural 
models. This model's main advantage is to reduce the 
more massive data sets into a smaller number of codebook 
vector for the easy classification. 

4. Simulation Framework

In this section, we describe the details of the simulator, 
trace-files, and parameters used to predict branches.  

4.1. Simulator and trace file 

Each branch predictor scheme's simulation is 
implemented on python numpy and pycharm simulator for 
visualization and computing the input trace files. The 
trace file is the text files with space-separated branch 
addresses and their actual outcomes. The trace files are 
trace1k, trace2k, trace5k, trace10k, trace20k, trace40k and 
trace files, including different instructions.  

4.2. Influences of parameters 

To evaluate each predictor scheme's performance, the 
varying range of hardware budget and history length is 
taken. The hardware budget is related to the memory size 
of the processor in terms of kilobytes. The hardware 
budget range is 4kb, 8kb, 16kb, 32kb, 64kb, and 80kb. At 
the same time, the history length relates to storing 
information on instructions in terms of bits. The range of 
history length is 4bit, 8bit, 16bit, 24bit, 28bit, and 32bit. 
The different size of trace files is used as input contains 
the branch address and the outcomes of the instructions. 
To identify the accuracy rate, each branch predictor is 
analyzed by varying the hardware budget and history 
length parameter using each trace file. The hardware 
budget-related to the memory size of the processor in 
terms of kilobytes. At the same time, the history length 
relates to storing information on instructions in terms of 
bits.  
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5. Experimental Results

This section quantifies the performance of branch 
predictors and compares the results in terms of their 
accuracy rate. For performance assessment, a set of trace 
files was used. To test the branch predictor's performance, 
we evaluated the impact of changing branch hardware 
budget and changing history length value with different 
track files. The statics results of accuracy rate is termed as 
: 

(%) TotalNumberofAddressHitAccuracyrate
TotalNumberofInstructionExecuted

≡

Here, 
Total number of address hit = Prediction on conditional 
branch instruction is equal to their actual address path. 
Total number of instruction executed = Number of 
conditional instruction taken as an input.  

5.1. Prediction based on hardware budget 
in term of accuracy rate  

To evaluate the performance of branch predictors, 
different trace files are tested with varying budgets of 
hardware. The hardware budget related to the memory 
size of the processor in terms of kilobytes. The range of 
hardware budget is 4kb, 8kb, 16kb, 32kb, 64kb, and 80kb. 
Each predictor's accuracy is based on the actual prediction 
of the branch instruction accurately match with the 
predictor outcomes. The results of each branch predictor 
in term of accuracy rate is presented in table 4 to table 6. 
The comparison results show that the proposed LVQ 
branch predictor is more accurate and provides a higher 
accuracy rate when the hardware budget is varying.  

Table 4. Accuracy Rate of Different Trace Files With 
Varying Hardware Budget of Perceptron Based 

Branch Predictor 

Hardware Budget (kilo-bytes) 

Trace 
File 

4kb 8kb 16kb 32kb 64kb 80kb 

1k 76.30% 76.00% 76.40% 76.50% 76.20% 76.10% 
2k 83.70% 83.30% 83.35% 83.45% 83.35% 83.60% 
5k 82.64% 82.06% 82.14% 82.36% 82.44% 82.49% 
10k 76.12% 77.47% 82.33% 77.91% 80.75% 82.45% 
20k 81.29% 82.08% 82.90% 82.60% 82.63% 82.56% 
40k 77.78% 83.98% 85.05% 83.27% 85.18% 84.38% 

Table 5. Accuracy Rate of Different Trace Files With 
Varying Hardware Budget of  Global Perceptron 

Branch Predictor 

Hardware Budget (kilo-bytes) 

Trace 
File 

4kb 8kb 16kb 32kb 64kb 80kb 

1k 76.55% 71.50% 72.54% 71.40% 77.20% 74.30% 
2k 80.60% 89.75% 78.10% 88.40% 77.30% 87.05% 
5k 83.92% 72.72% 89.72% 71.34% 79.64% 89.78% 
10k 87.23% 86.60% 86.48% 78.11% 86.10% 86.11% 
20k 86.40% 77.24% 76.15% 77.33% 85.01% 74.98% 
40k 86.12% 88.61% 88.06% 87.11% 77.83% 77.75% 

Table 6. Accuracy Rate of Different Trace Files With 
Varying Hardware Budget of  Proposed Linear 

Vector Quantization Branch Predictor 

Hardware Budget (kilo-bytes) 

Trace 
File 

4kb 8kb 16kb 32kb 64kb 80kb 

1k 79.25% 75.50% 77.54% 73.40% 79.20% 74.30% 
2k 83.50% 91.35% 79.12% 89.30% 78.30% 85.05% 
5k 86.88% 75.00% 90.62% 78.20% 80.56% 91.08% 
10k 88.23% 89.60% 87.48% 79.10% 87.12% 88.10% 
20k 87.42% 78.23% 76.25% 79.33% 86.10% 76.98% 
40k 88.12% 90.01% 89.06% 89.10% 79.84% 79.75% 

Table 7. Average Accuracy rate of each branch 
predictor by varying hardware budget  

Hardware 
Budget 

Perceptron 
Based 
Branch 
Predictor 

Global 
Perceptron 
Branch 
Predictor 

Proposed LVQ 
Neural Branch 
Predictor 

4kb 79.63% 81.47% 85.12% 
8kb 80.81% 82.07% 84.65% 
16kb 82.02% 84.84% 86.57% 
32kb 81.33% 85.94% 86.24% 
64kb 81.75% 85.51% 85.57% 
80kb 81.93% 81.66% 85.26% 

Figure 4 shows how the accuracy rate is changed by 
increasing the hardware budget's size for the branch 
predictors. Prediction accuracy is the number of branches 
correctly predicted over the total number of branches. The 
size of the hardware budget increases with the amount of 
pattern history tables in which the information is 
processed. 

The prediction accuracy is varied between 79.63% and 
81.93% in perceptron based branch predictor. In the 
global perceptron branch predictor, the accuracy range 
varies between 81.47% to 85.94%. In the proposed LVQ 
branch predictor, the accuracy range varies between 
85.12% to 86.57% and provides a better accuracy rate 
than the other two predictor schemes.  
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Figure 4. Average accuracy rate of different branch 
predictors by varying hardware budget 

5.2. Prediction based on history length in 
term of accuracy rate 

The impact of history length on the prediction accuracy 
has been studied for a while. So, to evaluate branch 
predictors' performance, different trace files are tested 
with varying history length. The range of history length is 
4bits, 8bits, 16bits, 24bits, 28bits, and 32bits. Each 
predictor's accuracy is based on the actual prediction of 
the branch instruction accurately match with the predictor 
outcomes. The results of each branch predictor in term of 
accuracy rate is presented in table 8 to table 10.  

Table 8. Accuracy Rate of Different Trace Files With 
Varying History Length of Perceptron Based Branch 

Predictor 

History Length (bits) 

Trace 
File 

4bits 8bits 16bits 24bits 28bits 32bits 

1k 76.80% 77.70% 77.50% 76.90% 75.60% 75.70% 
2k 81.80% 82.75% 84.00% 83.80% 83.45% 83.80% 
5k 84.42% 83.26% 83.52% 82.48% 82.36% 82.18% 
10k 87.73% 87.28% 84.40% 80.70% 79.91% 80.31% 
20k 83.52% 83.65% 82.91% 81.39% 82.60% 82.20% 
40k 75.50% 82.75% 82.12% 77.90% 78.49% 81.00% 

Table 9. Accuracy Rate of Different Trace Files With 
Varying History Length of  Global Perceptron Branch 

Predictor 

History Length (bits) 

Trace 
File 

4bits 8bits 16bits 24bits 28bits 32bits 

1k 78.50% 78.90% 78.60% 79.50% 78.40% 79.50% 
2k 83,75% 81.55% 79.20% 81.40% 78.42% 80.25% 
5k 79.60% 83.84% 80.14% 82.84% 79.34% 81.50% 
10k 83.50% 84.00% 82.90% 83.01% 82.75% 82.00% 
20k 84.40% 84.45% 83.35% 84.40% 80.12% 81.36% 
40k 76.60% 82.20% 82.80% 83.30% 81.20% 83.30% 

Table 10. Accuracy Rate of Different Trace Files 
With Varying History Length of  Proposed Linear 

Vector Quantization Branch Predictor 

History Length (bits) 

Trace 
File 

4bits 8bits 16bits 24bits 28bits 32bits 

1k 79.15% 78.10% 78.90% 80.01% 78.50% 79.60% 
2k 8.60% 82.35% 80.10% 82.20% 79.51% 81.10% 
5k 79.65% 83.35% 81.10% 83.29% 80.10% 82.20% 
10k 84.41% 84.45% 83.91% 83.03% 83.35% 82.10% 
20k 85.51% 85.56% 84.40% 84.42% 81.10% 82.20% 
40k 78.90% 83.31% 83.31% 84.41% 82.21% 84.45% 

Table 11. Average accuracy rate of each branch 
predictor by varying history length  

History 
Length 

Perceptron 
Based Branch 
Predictor 

Global 
Perceptron 
Branch 
Predictor 

Proposed LVQ 
Neural Branch 
Predictor 

4 bits 82.85% 83.92% 84.04% 
8 bits 82.92% 83.63% 83.90% 
16 bits 82.46% 85.97% 87.04% 
24 bits 81.05% 85.94% 86.14% 
28 bits 80.96% 85.49% 88.57% 
32 bits 80.83% 85.79% 88.51% 

Figure 5 shows how the accuracy rate is changed by 
increasing the branch predictors' number of history 
lengths. The overall prediction accuracy is improved as 
the number of entries in the history length increase.  

The prediction accuracy is varied between 80.83% to 
82.92% in perceptron based branch predictor. In the 
global perceptron branch predictor, the accuracy range 
varies between 83.63% to 85.97%. In the proposed LVQ 
branch predictor, the accuracy range varies between 
83.90% to 87.04% and provides a better accuracy rate 
than the other two predictor schemes.  
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Figure 5. Accuracy rate of different branch 
predictors by varying history length 
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The proposed LVQ branch predictor improves the 
accuracy rate by varying both parameters (Hardware 
Budget and History Length) over the perceptron based 
branch predictor and global perceptron branch predictors. 

5.3. Prediction Result in term of Confusion 
matrix and F-Score 

To obtain the precision results, all the input trace files are 
profiled to determine each predictor scheme's branch 
decision. A confusion matrix for all the branch predictor 
scheme in each input trace files give some interesting 
insights of its actual behaviour. The confusion matrix for 
each branch predictor according to the input trace files has 
been represented in this way: 

 Actual Value 
Taken (T) Not-Taken (NT) 

Prediction 
Value 

Taken (T) TT TNT 
Not-Taken (NT) NTT NTNT 

Here,  
Actual value means the actual outcome of the branch 
instruction. 
Prediction value means the prediction uses during the run 
time on the branch instruction. 
Taken means the prediction has been applied on the 
branch instruction. 
Not-Taken means the prediction has not been applied on 
the branch instructions. 
Further, the F-score is also calculated and it is a harmonic 
mean of precision and recall. The F-score is calculated 
using the given below formula: 

_ (2* Re * Pr ) / (Re Pr )F Score call ecision call ecision= +  
Here,  
Recall describes how many of the actual taken values to 
be predicted correctly out of the model. It is useful when 
false-negative dominates false positives. The formula for 
calculating the recall is:       

Re ( ) / ( )call TT TT NTT= +

Precision means the number of correct outputs given by 
the model out of all the model's correctly predicted 
positive values. 

Pr ( ) / ( )ecision TT TT TNT= +

5.3.1 Confusion and F-score outcome of  Perceptron 
Based Branch Predictor 
The confusion matrix and the f-score of input trace file 1k 
and trace file 2k are presented in Figures 6 and 7. The 
result is changing according to the branch predictor and 
the input trace files. The similar results has been obtained 
using other trace files for perceptron based branch 
predictor. 

Figure 6. Results of input trace1k 

Figure 7. Results of input trace2k 

5.3.2 Confusion and F-score outcome of Global 
Perceptron Branch Predictor 
The confusion matrix and the f-score of input trace file 1k 
and trace file 2k is presented in figure 8 and figure 9 
respectively. The result is changing according to the 
branch predictor and the input trace trace files. This 
global perceptron branch predictor gives better results as 
compare with the perceptron based branch predictor. The 
result of f-score of trace file 1k and trace file 2k is 
improve by 0.01 and 0.02 respectively over the 
perceptron based branch predictor. The similar results has 
been obtained using other trace files for global perceptron 
branch predictor. 

Figure 8. Results of input trace1k 

Figure 9. Results of input trace2k 

5.3.3 Confusion and F-score outcome of  Proposed 
Linear Vector Quantization Branch Predictor 
The confusion matrix and the f-score of input trace file 1k 
and trace file 2k is presented in figure 10 and figure 11 
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respectively. The result is changing according to the 
branch predictor and the input trace files. The similar 
results has been obtained using other trace files for global 
perceptron branch predictor. The proposed linear vector 
quantization branch predictor gives better results as 
compare with the perceptron based branch predictor and 
the global perceptron branch predictor. It improve the f-
score by 0.04 and 0.10 using trace file 1k and trace file 2k 
respectively over the perceptron based branch predictor 
and 0.03 and 0.07 using trace file 1k and trace file 2k 
respectively over the proposed linear vector quantization 
branch predictor. 

Figure 10. Results of input trace1k 

Figure 11. Results of input trace2k 

Table 12. The average accuracy rate of the branch 
predictors  

Algorithm Accuracy Rate 
(Hardware 

Budget) 

Accuracy Rate 
(History Length) 

Perceptron Based 
Branch Predictor 

82.85% 83.92% 

Global Perceptron 
Branch Predictor 

82.92% 83.63% 

Proposed LVQ 
Perceptron Branch 
Predictor 

82.46% 85.97% 

78.00%

80.00%

82.00%
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Figure 12. Average accuracy rate of the branch 
predictors  

Table 12 shows the comparative analysis of different 
methodologies used for the prediction of the conditional 
branch. It clearly shows that: 

• The accuracy rate of the proposed LVQ
perceptron branch predictor is 4.32% higher than
the perceptron based branch predictor and 1.98%
higher than the global perceptron branch
predictor as the effect of hardware budget is
varying.

• Further, the results in varying-parameter history
length also improve the accuracy rate of the
proposed LVQ branch predictor by 3.28% higher
than the perceptron based branch predictor, and
1.24% higher than the global perceptron branch
predictor.

5. Conclusion and Future Trends

In this paper, the concept of artificial intelligence based 
neural networks is explored and tested to predict the 
conditional branches. Firstly, the perceptron based neural 
network and the global based perceptron prediction has 
been exploited and implemented. To add more 
preciseness, a novel approach LVQ neural network is 
proposed and implemented to see their possibility and 
potentiality as a branch predictor in terms of accuracy 
rate. This neural based branch predictors replace the 
saturating counters into the training function. 
Furthermore, the propose LVQ approach achieves better 
accuracy results than traditional branch predictors. 
Simulation is performed by varying the parameter of 
hardware budget and the history length using different 
trace files for identification of the best branch predictor. 

The obtained results suggest that the proposed LVQ 
perceptron branch predictor provides increased accuracy 
rate of 85.56% by using a hardware budget and an 
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86.36% accuracy rate in terms of history length. The 
accuracy rate of the proposed LVQ perceptron branch 
predictor is 4.32% higher than the perceptron based 
branch predictor and 1.98% higher than the global 
perceptron branch predictor as the effect of hardware 
budget is varying. Further, the results in varying-
parameter history length also improve the accuracy rate of 
the proposed LVQ branch predictor by 3.28% higher than 
the perceptron based branch predictor, and 1.24% higher 
than the global perceptron branch predictor. These 
improvements make this predictor a more promising 
choice for future processors.  

According to this research paper, the concept of neural 
predictors could be a useful approach for understanding 
the process of branch predictors. Further, this concept can 
be used by using some other methods like back-
propagation, support vector machine algorithm for better 
improvement in the accuracy rate.  
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