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Abstract 

INTRODUCTION: With rising age, functional deficit and frequent falls may lead to long-term care admission. Mobility 
assessment tests can detect fall risk and may induce interventions that prevent a fall. 
OBJECTIVES: To assess mobility of older persons using real time data and to compare these data with the mobility 
assessment of physiotherapists. 
METHODS: 20 older people aged 74±5 (mean ± SD) were monitored over 10 months to investigate the performance of an 
automated mobility tracker. Physiotherapists performed periodic mobility assessments. Annotated 3d recordings served as 
ground truth data. 
RESULTS: High correlation (r=0.684) of annotated and tracked gait speed was found. The mean absolute error is 0.16 
m/s. 
CONCLUSION: 3D mobility trackers can be used to collect long-term mobility data. Since changes in mobility might 
indicate functional decline, long-term tracking allows to react to changes in mobility. Such a technology may have 
essential medical and social value. 
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1. Introduction

Population ageing [1] leads to an increased number of 
people with frailty, functional decline, immobility and 
falls.  All these changes are indicators for an increased 
need in long-term care [2]. Consequently, the number of 
care beds, health workers as well as costs will increase 
[2]. For example, in Austria, the estimated average annual 
growth of care costs between 2015 and 2030 is estimated 
to lie between 4.4 and 6.2 percent [2]. Apart from 
economic issues, the demographic change leads to 
challenges concerning the quality of life in older persons 

and their caregivers and to impacts on the labour market 
[3]. Along with the general population, the nursing staff 
members are also ageing. In Germany, 40.6% of health 
workers were over the age of 50 years old in 2018 
already† and in the US, one third of the nursing staff will 
be at retirement age within the next 10 to 15 years [4]. In 
Austria, the number of additional nursing staff needed is 
estimated to be 80.000 by 2050 [5]. Apart from the 

† German Federal Statistical Office, Health staff in age groups, 
https://www.destatis.de/DE/Themen/Gesellschaft-  
  Umwelt/Gesundheit/Gesundheitspersonal/_inhalt.html, last 
accessed on 03.03.2021 
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shortages in health care staff and the increasing number of 
people in higher age, almost all older persons prefer to 
stay at home as long as possible. The American 
Association of Retired Persons (AARP) reported that 
almost 80 percent of adults aged 50 and older want to 
remain in their communities and homes as they age [6]. 
Older persons however, are at an increased injury risk. 

Falls are a major public health issue that can lead to 
physical injury, psychological harm or both [7, 8]. In 
addition, falls can reduce the ability to live in the 
community. About 28-35% of persons aged 65 and older 
fall each year [9, 10] and, the number of falls significantly 
increases with age [11]. The risk of future falls can be 
detected by a structured fall risk assessment that leads to 
interventions that reduce potential fall risk factors [12]. 
Several functional screening tests are available to measure 
mobility and subsequently identify elevated fall risk [13]. 
The results of such tests help to identify people at high 
risk for falling and normally trigger further assessment 
and ideally interventions. 

Well-known assessment methods are the “Timed Up 
and Go Test (TUG)” where the subject stands up from a 
chair, walks 3 meters, turns around, walks back and sits 
down again, and the Gait Speed 3-meter test [14]. The 
time measured to perform the TUG test is highly 
associated with increased fall risk. Another validated 
parameter that correlates with fall risk is habitual gait 
speed [15]. Schwenk et al. [16] describe gait speed as the 
parameter with highest performance in distinguishing not 
only between frail and non-frail persons, but also between 
frail subgroups. The advantages of such tests are that they 
do not need a lot of time and can be applied in different 
settings such as primary care practices and hospital 
settings. However, a trained person is necessary to 
provide low inter or intra-rater variability. Another 
common observation is that older persons “tend to do 
their best” during clinical assessments, in order to 
dissimulate subtle functional deficits, while they perform 
differently when unobserved [17].  

In this paper, we present a 10-month pilot field trial study 
using a non-wearable 3d sensor to automatically monitor 
body parameters for mobility assessments. This approach, 
based on an unobserved home-based assessment, is 
beneficial for reflecting the functional reality. 
Additionally, older persons can have access to 
assessments of fall risk despite a shortage of qualified 
staff. Using this approach is a novel way to monitor gait 
speed while ensuring user’s privacy, minimizing 
obtrusiveness and thus, increasing user acceptance. 

2. Related Work

In this section, we will review existing approaches to 
assess gait speed in order to contextualize our work. 
To date, several different methods have been available to 
assess gait parameters. One can distinguish between 
wearable and non-wearable devices [18]. While wearable 

sensors like watches, belts or shoes are placed at certain 
parts of the body, non-wearables are installed in a 
person’s environment like floor sensors or cameras 
mounted on the wall [19] [20]. A wearable device for gait 
analysis is used by Parvaneh et al. [21] who present a 
chest-worn accelerometer-based sensor technology to 
identify frailty status. Based on the number of postural 
transitions during a day, like sit-to-stand or walk-to-stand, 
community-dwelling older adults are classified as pre-
/non-frail or frail. Walk-to-stand and quick-sitting could 
be recognized as variables able to identify frailty status.  
An approach using multiple inertial sensors on different 
body parts (shanks, thighs, lower back) to discriminate 
between different frailty categories is described by 
Schwenk et al. [16]. Gait as well as balance parameters 
were separately used to identify the frailty status. Gait 
speed was identified as the most sensitive parameter for 
determining pre-frailty. Balance parameters did not lead 
to a clear frailty assessment. While this approach enables 
frailty assessment within an in-home assessment, 
supervision by professionals is required. 

Although wearable systems have multiple advantages like 
being portable and lower in costs [22], they are also 
intrusive since the person wearing has to adjust daily 
routine to the sensor [23]. Another drawback is that 
wearable sensors are regarded as obtrusive, meaning that 
the effort to use and interact with the system might be 
higher than the user accepts [24]. In contrast with 
stationary devices, which are mostly equipped with a 
power cable, regularly charging a wearable device can be 
a disadvantage too [24].  
Alshamaa et al. [25] propose a Doppler Radar sensor for 
in-home assessment of gait speed. The gait is separated in 
different zones that are automatically distinguished. The 
sensor is mounted on a chair, in front of which a person 
walks forth and back with three different paces. For 
validation of the radar system a motion capture system is 
used. The correlation between the reference system and 
the radar sensor results in 0.9788.  
Dolatabadi et al. [26] describe a way to bypass the 
drawbacks of wearable devices while also considering 
privacy aspects. They present an unobtrusive, machine 
learning method, where they use the Microsoft Kinect to 
discriminate between healthy and pathological gait 
patterns, separated in trunk, upper and lower limb. While 
a person is walking at different speed, the skeleton is 
tracked and two different ML approaches used to 
distinguish between healthy and non-healthy gait patterns. 
Data was collected in a clinical setting, where two Kinect 
sensors are installed in the opposite direction. A binary 
classifier then generates a label for multiple walking 
sequences of the person. The assignment of the label 
“healthy gait” or “pathological gait” reached a 
performance higher than 0.94. For people walking 
unsupervised misclassification was more likely than in 
people using walking aids or were supervised. The 
proposed method aims for applicability in smart homes 
able to be used with little effort. 
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Distinguishing between supervised and non-supervised 
assessment is another way of differentiating between 
technology for mobility assessment [27]. Used for passive 
observation, automated testing enables undistorted results, 
at habitual speed and without behaviour change of the 
participants [17]. One approach of an unsupervised gait 
assessment is the Mixed Reality-based assessment method 
utilizing a Microsoft HoloLens headset presented by Sun 
et al. [28]. This approach shall help to guide users through 
mobility assessment tests without direct clinical oversight. 
They automatically track the performance of the TUG and 
STS (Sit-to-Stand) tests and validate the results with 
inertial sensors. Comparing their approach to standard 
stopwatch measures, the completion time of the task 
calculated by the HoloLens highly agrees with the 
reference values.
Yagi et a. [29] instead use a simple RGB-camera to 
measure gait speed at home. With a neural network 
model, persons and their joints are detected. From this 
information as well as the floor position, step positions 
are determined, from which other gait parameters such as 
gait speed and stride length can be calculated. They 
validate the performance with a motion capture system 
and conclude that the error is small enough not to be 
clinically meaningful. 
Although RGB cameras are cheaper than depth cameras, 
they reveal a person’s identity and can lead to low 
acceptance by the users if installed long-term. In case the 
system needs to be installed or switched on regularly for 
carrying out the assessment test, the user is more likely to 
feel like being in a test situation and not performing 
realistically. Furthermore, the effort for the user to set the 
system up is higher than a one-time installation. 
While several authors used in home gait analyses using in 
depth sensors such as the Microsoft Kinect [26] or even 
tracked functional parameters such as the time to perform 
sit-to-stand tests [28], to date there are no data on 
longitudinal changes of functional parameters using 
nonintrusive 3D sensor technology. 

3. Methods

In order to overcome the drawbacks of supervised 
mobility assessments and the need for wearable devices, 
we present a method to automatically detect gait 
parameters with an ambient sensor. We focus on the 
assessment of gait speed since this parameter correlates 
with frailty [15, 18] and is part of standardized mobility 
assessments. 
The development of the presented method and the 
corresponding user study were part of a project, where an 
exergame (games controlled by body movements) system 
was installed in order to analyse its potential influence on 
overall mobility. The methodology described in this paper 
aims to present how the automated tracker was developed 
and tested. In brief, gait and mobility data derived from 
the automated tracker were compared to standardized 

functional assessment tests carried out by trained physical 
therapists. Annotated 3d recordings serve as ground-truth 
data. In order to assess a person’s mobility in a non-
invasive way, a 3d sensor automatically measures 
mobility parameters that are part of standardized 
assessment methods.  

3.1 Automated tracking 

We used the Orbbec Astra 3d camera for person 
detection and movement tracking. The sensor was placed 
on the wall or at the ceiling during the entire time of the 
field trial, with no interaction from users or professionals 
required. The objective was to extract gait parameters 
from the detected movement of a person while carrying 
out the assessment tests. In a first step, the ground plane 
was spotted by analysing depth data only as described in 
[30]. In brief, this was done by classifying grouped points 
depending on their size as static objects. The first frame 
represented the background model. Frames were then 
periodically compared to the background model. The 
differences were detected as moving voxels. The number 
of connected pixels, height, density and shape of the 
object were used to compose feature vectors. These 
vectors were then classified by a Random Forest classifier 
which in a next step predicted, if an object was a person 
or not.  

Analysing detected person regions of a frame together 
with the subsequent frame resulted in person tracks. The 
person tracks were then assessed by extracting walking 
patterns, as described by Kampel et al. [31]. In this step, 
the coordinates of the centre of mass of the tracked object 
were used as well as its velocity. The movement patterns 
were then analysed for walking velocity, distance and 
duration. Since only depth data was processed, no facial 
recognition was possible and therefore, full anonymity 
was provided. Moreover, the depth data was only 
processed locally.  

3.2 Experimental study 

A field trial was done over a period of 10 months in the 
private homes of 20 generally healthy older people living 
in Vienna, Austria (05/2018 – 03/2019). This trial was 
carried out in order to test the automated tracking-method 
in a realistic environment. Participants were selected with 
help of the respective end-user organisations within the 
project. About 10 end- 
users should be aged 65-74 years and the other 10 75 
years or older. The amount of 20 study participants was 
regarded as adequate in terms of assessing the 
performance of the automated tracker for persons of 
different height, size and movement patterns. 
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For each subject, a trained physical therapist manually 
conducted GS tests. Therefore, the participant walks a 
pre-defined distance while the physical therapist measures 
the time it takes the participant to complete this task. The 
distance used in this study was 3 metres, although this is 
not significant since the test could have also been 
conducted with another distance. Four physical therapists 
were involved in the trial. They were instructed to apply 
the gait analyses based on current recommendation and 
used a digital stopwatch.  

Each participant was asked to do three repetitions per 
test in order to screen possible changes in regards to the 
mobility of the test users. The 3 GS tests were performed 
between two and five times per participant within a time 
between 3 and 12 months. The number of measurements 
per PT (Figure 2) includes tests of users who later 
dropped out. At the same time the physical therapists 
carried out the GS tests, the automated tracker measured 
gait velocity and test duration. To be able to compare the 
data derived from the manual method with the automated 
tracker we defined ground truth data. This was again 
generated by the 3d depth sensor. During the PT 
assessments, 3d data were permanently recorded. Each 
recorded sequence was then watched frame by frame and 
the start as well as the end of an assessment were 
manually labelled. Thus, the exact time for completing the 
task could be determined. Together with the fixed walking 
distance, this led to a highly accurate gait speed value 
which was used as reference. 

The recorded sequence was also used for automatic 
tracking. Hence, it was possible to directly compare the 
tracking algorithm performance to the manual annotation 
and the physiotherapist’s measurement (see Figure 1).  

Figure 1. Relationship between a recorded 
sequence, the annotation and the tracked walks. 
The sequence contains all recorded tests. The 
manual annotation labels starting and endpoint. 
Tracks are detected movements, while walks are the 
gait tracks that are detected within the tests. 

The time measured manually by PT and the results of the 
automatically tracked time were compared with the 
annotated ground truth data. We observed the differences 
between the instructing physical therapists by calculating 
the Mean Average Error (MAE) and the relative error. 
The performance of the tracking algorithm was obtained 
by calculating the error between the annotated and the 
corresponding tracked data for each available data point. 

Habitual GS as a validated parameter to determine 
people’s risk of falling was used for comparison. This 
measurement can be automatically carried out without the 
need of a special test set up at home.  

3.3 Statistical Analysis 

Each participant was assigned to an individual anonymous 
identifier. Gait speed is defined in m/sec. Data are 
expressed as means and standard deviation. We applied 
linear regression analysis to assess the associations of 
manual (PT) with machine based gait data. Data were 
entered into an Excel spreadsheet and calculated within 
Excel. 

4. Results

In the beginning of the trial, a total of 20 persons was 
recruited, 15 females and 5 males with a mean age of 
74.1±5.9 years. Table 1 shows the full demographic 
profile of the initial study population. Seven participants 
(six women, one man) decided to leave the project. 
Reasons for leaving the study were scheduled surgery or 
different expectations. Six new participants could be 
recruited during the ongoing study to replace the 
participants who had dropped out. The mean observation 
period was 9.7 months. Due to drop-outs and the 
replacement of participants, for a total of 18 users, 
annotated GS data of at least two time points could be 
collected. For each participant in the study, an identifier is 
created, which is used for documenting study data in an 
anonymized manner (Figure 5). The mean number of GS 
assessments was 2.2. 

Table 1. Characteristics of initial study population. 

Particip
ant 

Gend
er Age 

1 f 75 
2 m 75 
3 f 70 
4 f 78 
5 m 69 
6 f 67 
7 f 90 
8 f 72 
9 f 68 

10 m 72 
11 f 70 
12 m 69 
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13 m 67 
14 f 73 
15 f 79 
16 f 76 
17 f 75 
18 f 85 
19 f 74 
20 f 77 

Mean - 74.1 

4.1 Manual gait speed assessment 

Four PT performed a total of 78 gait analyses. Compared 
to the ground truth, we observed deviations between 0.01s 
(0.31%) and 3.25s (44.98%) (Figure 2). 

4.2 Tracking system 

The mean average error (MAE) of the GS duration 
measured by the automated tracker was 0.928s while the 
MAE of the GS was 0.153m/s. Using linear regression, 
we found a significant positive correlation of tracked 
versus annotated (ground truth) assessment of gait speed 
(Figure 3). 

4.3 Comparison of manual versus tracked 
gait speed 

The manual measurements of the physical therapists 
reached a higher accuracy than the automated tracker. The 
mean deviation in measured GS duration between those 
two methods is 1.4 seconds. 
Figure 4 shows a direct comparison between the 
automated tracker, the physical therapist measurements 
and the ground truth data concerning the obtained GS 
duration. The ground truth illustrates the reference value, 
which enables to make statements about the performance 
of the manual measurements carried out by physical 
therapists and the tracker. Additionally, the error of the 
tracker as well as of the manual measurements are 
visualized. The tracker and the manual measurements 
follow the trend of the ground truth data, which allows the 
tracker to monitor the mobility of older people. 
The number of the data points in Figure 4 derives from 
the amount of directly comparable data between all of the 
three methods. This means that it some cases, only data 
from one or two measurement methods were available, 
limiting the comparable amount of data to 59 data points. 

4.4 Individual Longitudinal Gait Speed 
Changes 

Over the (9 month) period of the trial, regular mobility 
assessments conducted by the three different methods 
enabled us to track the changes in the GS tests over time. 
Six users participated in less than two tests and hence are 
not listed. Compared with t0, eleven participants show 
increased gait speed at the end of the trial, while it 
decreased in seven. Among all participants, the change in 
gait speed ranged between -25.26% and +47.62%. 

Figure 2. Number of measurements per 
physiotherapist. The black lines indicate the 
corresponding error range and the mean average 
error between the manual measurement and ground 
truth. 
 

Figure 3. Correlation of manually annotated and 
automatically tracked Gait Speed (GS) in m/sec. 
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5. Discussion

In our long-term observation comparing tracker-based 
versus physiotherapist-based mobility assessments we 
found that the deviation between the measured GS 
duration and the annotated data varied by physiotherapist. 
The mainly positive bias shows that human timing takes 
longer than the actual value which is most likely due to 
the reaction time of the physical therapist and of the test 
person. We also demonstrated that the measurements of 

physiotherapists were more accurate than the data 
collected by the tracker. Still, the tracker correlates 
positively with the annotated ground truth data. Both the 
Kinect-based method from Ejupi et al. [27] and the Mixed 
Reality-based approach with the Microsoft HoloLens [28] 
deliver mobility data in agreement with the supervised 
assessments, but in contrast to our passive approach, the 
user is guided either by visual or auditory test 
instructions. This leads to more effort for the user on the 
one hand, and to test situations which could lead to 
unrealistic results on the other hand. 

Stone et al. carried out similar studies than we did [32] 
[33], using the Microsoft Kinect sensor to compare the 

Figure 4: Comparison of methods assessing gait speed. The measurements of physiotherapists as well as the 
tracker follow the change of the ground truth data. The blue and orange lines illustrate the deviation from the 

ground truth. 

Figure 5: Individual changes in gait speed during the course of the pilot. 
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TUG time to In-home Gait Speed (IGS). Within an 
evaluation phase carried out in 14 homes of older people, 
correlations between the tests could be found. In contrast 
to our methodology, where the measurements of physical 
therapists and the automated tracker are compared to 
ground-truth data, in the work of Stone et al., the 
participants performed the tests without supervision. This 
might have led to incorrect test execution in some 
participants. In [34], similar tests have been carried out at 
senior centres, in a supervised manner. Both [32] and [34] 
can map the results between both tests, but they cannot 
determine their validity since ground-truth data is not 
gathered. Staranowicz et al. [35] assess fall risk of a 
person by integrating the Kinect on a mobile robot, which 
follows the participant at home and collects gait 
parameters. The results were compared to the Vicon 
motion-capture system. The question of obtrusiveness and 
user acceptance of this technology needs to be further 
addressed. 

In our longitudinal field test, we could demonstrate that 
GS varied between individuals and over time. While some 
persons suffered a significant decline, others improved by 
almost 50%. The differences in improvement can be 
explained by an exergame study carried out in parallel to 
the assessment tests. Participants using the provided 
games frequently showed on average better results in the 
GS test than infrequent players. Negative trends can be 
explained by less movement or a fall occurred during the 
trial phase. Due to the test setting, however, we were not 
able to provide physical activity diaries for our 
participants. In addition, our results could have been 
influenced by a recruitment bias. Only very motivated 
persons consented to participate in the study.  
We conclude that the presented tracking system is able to 
monitor the mobility of a person via GS. This data can be 
used to observe a mobility trend, and therefore, health 
staff can intervene if required. Especially in people with 
high risk of falling, assessing risk factors such as low gait 
speed and reacting to them reduces the likelihood of falls 
[12]. Reacting to changes in mobility allows 
physiotherapists to save valuable time for patients who 
actually require medical care.  

Additionally, the mobility of a higher number of 
persons can be observed than with physiotherapists 
carrying out regular assessment tests in people’s homes. 
The prevention of further mobility decline and falls also 
decreases medical costs. In 2015, the estimated care costs 
referred to falls in the US were approximately 50 billion 
US dollars [36]. Due to the ageing population, the costs 
are assumed to be rising [36]. 

Furthermore, the tracking method allows objective and 
unbiased mobility values. While recording 3d depth data, 
some walks could not be completely recorded. These 
limitations are based on the different apartments of the 
persons, which are partly narrow. Thus, correct system 
positioning during the installation was required to ensure 
proper person and GS detection. However, it was essential 
that the participants could carry out the tests in their own 

homes to keep the effect of the test situation and the stress 
to a minimum.  

Based on the findings of the study, we highlight the 
benefit of the automated tracker for people with either 
decreased mobility, high risk of falling or people who 
want to monitor their mobility and prevent mobility 
decline at an early stage. The prevention approach will 
also help to relieve the healthcare system and enable 
elderly people to stay at home as long as possible. 

6. Conclusion

A tracking system was presented to automatically monitor 
the mobility of a person by 3d depth data. In order to 
show its performance, assessment tests were carried out in 
a 10-month field trial with 20 older people. The 3d sensor 
used for the tracker was also used to gain ground truth 
data, which was then compared to the results measured by 
physical therapists and the automated tracking system. It 
has been shown that the presented tracker is able to 
monitor mobility changes in a passive manner, which 
allows to prevent falls and to enable target-oriented care 
work. As a next step, we suggest to investigate how 
valuable the tracking system is seen by physiotherapists in 
terms of productivity and support at work. Furthermore, 
additional gait parameters apart from gait speed will be 
raised that are useful for long-term monitoring. 
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