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Abstract

Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the
rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored
images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety
and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is
a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method
using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to
eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated
the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera
systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of
detecting dissimilarities in the image sequences.
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1. Introduction
The Internet of Video Things (IoVT) has become a
fundamental part of the infrastructure in smart cities,
where situation awareness (SAW) plays a critical role
in city monitoring and management [1], [2]. Expanding
deployment of the IoVT systems leads to a vast volume
of visual data captured and processed every minute.
The data growth has also increased the requirements
for a more scalable, flexible, and reliable IoVT system
[3], [4], which is very challenging for human-in-
loop platforms. Consequently, artificial intelligence (AI)
based computer vision has been widely recognized
as the core of next-generation IoVT [5]. A trained
AI deep learning computer vision technique seeks to
emulate how humans perceive the visual information
[6], leading to an enhanced and secure infrastructure
environment.

Compared to other embedded systems, IoVT systems
have an additional level of abstraction, the visual layer,
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which opens a new dimension for attackers or abusers
[7], [8] that should be closed. In a smart surveillance
framework, the visual layer information serves as
pseudo sensing for monitoring the security of the
infrastructure [9], [10], [11]. By taking advantage of the
imagery semantics and target recognition in modern AI
powered surveillance systems, attackers can potentially
mislead the operator, hide malicious activities, or get
around detection algorithms. The visual layer backdoor
has been identified on CCTV (closed-circuit television)
cameras [12] and on a full-body scanner [13]. These
visual layer backdoor attacks can be installed either
locally through malicious updates over a Universal
Serial Bus (USB) port or remotely via a command
injection or a malicious firmware update over a web
interface [14], [15], [16]. The malicious component is
triggered and controlled via an unique imagery input.
The trigger can be Quick Response (QR)-like codes or
pre-defined imagery printed on T-shirts, cars, or any
accessory visible to the cameras [17], [18].
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The lack of authentication tools with the same level of
proficiency as the forging tools necessitates the develop-
ment of multimedia forensic tools [19]. Using machine
learning-based tools for verifying multimedia record-
ings could be standardized for reliable forensic finger-
print analyisis. Authenticating a multimedia recording
and then making decisions based on the authenticity,
complements the reliability on the IoVT systems at
the edge, and reduces the downtime from cloud-based
applications. Electric Network Frequency (ENF) is one
fingerprinting technique available for authentication
of digital recordings due to its instantaneous behavior
changing with time. ENF is a time-varying signal fluctu-
ating across its nominal frequency 50Hz or 60Hz based
on the power supply-demand from electrical power
grids. Imbalance in power consumption and power flow
are causes of the instantaneous variations of the ENF
[20], where the fluctuations are consistent throughout
the interconnect power grid. The deviation of ENF from
its nominal frequency in the United States is between
[-0.02, 0.02] Hz and [-0.05, 0.03) Hz in Asian and
European countries.

In digital video recordings, the ENF traces occur from
the light source connected to the power supply grid. As
the light source flickers at both negative and positive
cycles of the alternating current (AC), the illumination
frequency becomes twice that of the nominal frequency
[21]. Whereas in digital audio recording, ENF traces
occur as a result of electromagnetic field interference by
direct connection to a power grid or acoustic hum from
devices connected to power grid. Estimating ENF traces
from the digital recordings adds a layer of authenticity
to video recordings.

For the IoVT framework, emphasizing video record-
ings, there are two different types of ENF estimation in
digital video recordings based on the type of imaging
sensor used, charge-coupled device (CCD) and com-
plementary metal-oxide-semiconductor (CMOS). The
difference between the imaging sensors used is the type
of shutter mechanism implemented. For CCD sensors,
the pixels on the sensor grid capture the visible light
at the same time instant, known as the global shutter
mechanism. For CMOS sensors, each row in the pixel
grid captures the visible light sequentially at different
time instants, known as the rolling shutter mechanism.
Since the majority of the sensors in the IoVT envi-
ronment consist of CMOS sensors, the proposed ENF
estimation algorithm assumes that the video frames
captured utilize the rolling shutter mechanism. A com-
parison between ENF estimations from both types of
imaging sensors justifies the use of CMOS sensors for
the proposed technique.

In the IoVT infrastructure, strategically deployed
surveillance cameras monitor the movements of objects
of interest with minimal blind spots. Processing video
frames with subjects moving can cause deformation in

the pixel values. For the estimation of ENF from video
recordings consisting of moving subjects, an effective
algorithm addresses the challenges of compensating for
occlusion caused by moving subjects.

In this paper, we propose an ENF-based Video
Authentication scheme leveraging Superpixel masking
(EVAS) using the rolling shutter mechanism. The
masking enables a novel ENF estimation method using
Selective Superpixel Masking (SSM) and implements
a non-parametric based spectrogram method in which
the weighted energy is adopted to estimate the ENF. In
this work, we assume that ENF traces are present in
video recordings under light sources like fluorescent,
incandescent, or Light Emitting Diode (LED) lights in
an indoor setting, and the attacker can modify the
incoming video frames by frame injection or frame
duplication attacks. The paper’s contributions are as
follows:

• A Superpixel Segmentation algorithm is intro-
duced that compensates for occlusion caused by
moving subjects;

• A comparison of ENF estimates from video
frames captured using CMOS sensors using a
Rolling Shutter mechanism with and without the
proposed superpixel segmentation algorithm;

• A dynamic cross-correlation coefficient is adopted
that verifies the authenticity of the ENF estimate
with a parallel ground truth ENF estimate from
the main power grid;

• By comparing ENF estimates generated by
different camera devices in a heterogeneous IoVT
environment using a cross-correlation coefficient,
the EVAS scheme can be further expanded to
be deployed independently of the power grid
module when more devices are attached; and

• A proof-of-concept prototype is built and tested
using real-world scenarios, and the results verify
that the EVAS scheme meets the design goals.

The rest of this paper is structured as follows. Section
2 provides background knowledge for readers along
with a brief review of related work. Section 3 describes
the mathematical model for ENF estimation and the key
components of the EVAS scheme. Section 4 presents the
experimental results and the discussions are in Section
5. Section 6 concludes the paper.

2. Background and Related Work
Electric Network Frequency (ENF), as a digital finger-
print technique, provides for forensic audio, video, and
telecommunication analysis [20]. The application of
ENF to authenticate multimedia recording for jurisdic-
tion purposes has paved the way for more applications
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such as multimedia synchronization, geographical loca-
tion tagging, detecting audio forgeries in surveillance
network and verification of time of recording [7], [22],
[23], [24].

Due to relatively advanced and diverse application
of ENF, signal processing techniques like multi-
harmonic spectral combination [25], high precision
phase analysis [26], spectrogram estimation methods
[20] and frequency tracking techniques [27] allows for
reliable ENF estimations in signals with lower signal-
to-noise ratio (SNR) augmenting ENF-based forensic
applications. Forensic operations like spectrogram
and inter-frequency consistency check to support the
resilience of ENF against anti-forensic techniques [28];
hence, ENF is adapted as a reliable environmental
fingerprint for video authentication.

2.1. ENF Estimation using Video Recordings

For IoVT environments that include audio and video,
authentication adds a dual-layer security. Imaging
sensors used in video cameras measure the intensity of
photons falling on a sensor array and convert them to
an electric current to produce a digital image. These
photons collected under indoor light sources, that run
on the power grid, carry ENF traces in the form of
illumination frequency [21]. The current in the light
source changes polarity twice that of the nominal
frequency, and hence the illumination frequency is
100/120 Hz.

Researchers have tested ENF estimation in various
indoor light sources and different compression ratios
[29]. The experimental results yield that a minimum
data compression of 500 kbps, and under LED
illumination, the ENF estimation is quite robust. To
confirm the presence of ENF in indoor lighting, we
used a photodiode BPW21 with high spectral sensitivity
in the visible range [21] to measure illumination
frequency. The spectral estimation techniques like
Short-time Fourier transform (STFT), followed by
quadratic interpolation or weighted energy from
spectral bins estimated the ENF from the recordings
made in the scenario.

Figure 1 shows two optical sensor readings along with
simultaneous power recordings. The first recording
represents the optical sensor placed under a LED
light source. For the second recording, the sensor
recorded the ambient light in the room in the
absence of a direct overhead light source. It is clear
that the ENF signal is present in the light source,
and the captured video recordings under these light
sources contain ENF traces. The correlation coefficient
between the two recordings determines the similarity
of frequency fluctuations. In Fig. 1, the optical
sensor recorded light fluctuations at 120Hz; and for

Figure 1. Optical sensor reading collected under direct mains
powered light source and ambient light. Compared with
simultaneous power recording using Cross Correlation Coefficient.

convenient representation, the illumination frequency
and collected power ENF are compared at 60Hz.

Sensors in cameras like CCD or CMOS capture visual
data at the rate of 25/30 frames per second (FPS). The
nominal frequencies of ENF are 50/60 Hz in different
parts of the world. A lower sampling rate of cameras
with 25/30 FPS introduces significant aliasing of the
ENF component in video recordings due to the Nyquist
criterion. The majority of the video cameras are not
truly 25/30 FPS; instead, they capture at 23.98/29.97
FPS due to the video standards established. The aliasing
effect causes the 25/30 FPS sampling to disappear as
the DC component, whereas 23.98/29.97 FPS causes
the ENF to appear at different aliasing frequencies,
determined from the sampling theorem

fa = |fl − k · fv | <
fv
2

(1)

where fa is the aliasing frequency, fl is the illumination
frequency, fv is the sampling rate of video recorders, i.e.
video FPS, and k varies until the condition is satisfied.
Table 1 presents different fa for their respective nominal
frequency.

Based on the types of imaging sensors, there are
different ENF extraction techniques. In the case of
CCD sensors, all the exposed imaging pixels on the
sensor capture the visible photons at the same time,
also known as global shutter sensors. Sampling the
mean of pixel intensities in frames gives video samples.
Using the aliasing frequency, the ENF is estimated. For
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Table 1. Aliased Frequency for a given Video Frame rate with
different nominal frequency.

Nominal Frame Aliasing 2nd
Frequency (Hz) Rate Frequency (Hz) Harmonic

60 29.97 0.12 0.24
60 30 0 0
60 25 5 10
50 29.97 10.09 9.79
50 25 0 0
50 30 10 10

example, a 720p video recording of 5 minutes in CCD
with 23.987 FPS has an aliasing frequency of 0.12Hz,
where the nominal frequency is 60Hz from Eq. (1), and
the number of samples obtained are 7196 samples.

In the case of the CMOS sensor, a sequential exposure
of the sensor pixels to light results in different rows
in the pixel grid having different light exposures at
unique time instances. The shutter mechanism in which
the sensor and imagery pixels are sequentially exposed
to light is also called a rolling shutter mechanism.
Each row represents one sample of pixel intensities
followed by an idle period before the next frame,
which collectively increases the temporal resolution of
video samples satisfying the Nyquist criterion [30]. For
example, a 720p video recording of 5 minutes in CMOS
with 23.987 FPS, from Eq. (2) the number of samples
obtained are 5,181,192 samples, which is comparatively
very high from CCD sensors, as by:

Fs(CMOS)
= Frameheight ∗ V ideoFP S (2)

where Fs(CMOS)
is the sampling frequency of CMOS

sensor video recording. With a better sampling
frequency, the ENF estimation from CMOS sensors
yields better results compared to the CCD sensors.
Recent advancements in ENF estimation involves
efficient idle period estimation [31], [32], since the
idle period results in pixels with no exposure, i.e.,
missing ENF samples. For applications in surveillance
recordings using a rolling shutter mechanism, each
sample is represented by each row in a frame. The
videos include moving subjects, which causes non-rigid
deformation or occlusion. To reserve the computational
load by looking for ENF artifacts in all video recordings,
a superpixel based approach to verify the presence of
ENF has been introduced. Authors in [33] verified the
presence of ENF in global shutter mechanism based
video recordings using superpixels. This technique only
validated the presence of ENF, in a video recording by
comparing different superpixels.

For indoor video recordings, in the IoVT infrastruc-
ture, the chances of capturing ENF traces are much
higher through indoor lighting. The ENF traces from

Figure 2. Superpixel segmentation on a surveillance frame.

the video feed compared with ENF collected from the
power grid for the same time instant can serve as a
standard video authentication system. A vast deploy-
ment of the CMOS sensors in mobile devices, portable
computers, and the surveillance cameras, which alto-
gether represents the majority of the devices in the
IoVT infrastructure, provides enough basis to focus on
the CMOS sensors. This paper explores the presence
of ENF traces from CMOS sensors in IoVT recordings
and tackles the occlusion problem caused due to the
movement of the subjects in the video frames using
superpixels. Compared to [33], we adopt superpixels to
tackle the occlusion problem due to moving subjects in
the rolling shutter based video recordings.

2.2. Superpixels Application in Video Recordings
Segmentation of image involves grouping the pix-
els with similar intensity and texture pattern, which
divides the image into non-overlapping sub-pixels
known as superpixels. Instead of pixel-wise computa-
tion, superpixel computation has decreased the image-
based computational load. Grouping of pixels with
similar spatial features is used for applications like
edge-detection, classification, and recognition. In this
work, a gradient-ascent based algorithm with k-means
clustering is adopted [34], also known as the Simple
Linear Iterative Clustering (SLIC) algorithm. The SLIC
algorithm was preferred over other graph-based algo-
rithms due to better memory efficiency, segmentation
performance, and fast computation. Figure 2 represents
the superpixel segmentation of a frame collected from
indoor corridor surveillance. Here, the moving subject
can be distinguished from the static background using
superpixels.

An earlier tracking algorithm separates the moving
subject from its background with superpixels using
mid-level cues [35], which handles heavy occlusion and
shows that superpixel segmentation for motion tracking
yielding better performance. A robust background ini-
tialization algorithm using superpixels was introduced
recently [36], in which the stored background from the
sub-sequences removes the moving subjects from the
frame and generates reliable background candidates.
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3. EVAS: Mathematical Model and Detection
Calculating pixel intensities for ENF estimation faces
challenges like moving subjects in the frame, which
cause undesired changes in intensity values. For a better
ENF estimate from these video recordings, addressing
the dynamic nature of this problem is required. In
the EVAS scheme, we introduce a Selective Superpixel
Masking (SSM) technique to address the challenges of
moving objects in the image.

3.1. Fundamentals of Superpixel Segmentation
Video frames collected in the IoVT environment have
a static background recorded with a stationary camera
for most infrastructures. Based on this assumption, the
discrepancies caused by moving subjects are separated
from the stationary frame using superpixels. Based on
the SLIC algorithm [34], cluster centers are initialized
by assuming N pixels in the image. The number
of pixels in each superpixel is N

K , where K is the
parameter controlling superpixel size. For the CIELAB
color space representation, the center of each superpixel
is initialized as

Ci = [li , ai , bi , xi , yi]
T
i=1,...,K (3)

where Ci is the ith cluster center, [li , ai , bi] are
components of lab color space, and [xi , yi] are the pixel
position.

The lab color space values vary in a known range,
whereas the pixel position values vary based on the
frame resolution. The distance D between the ith pixel
and the K th cluster center estimates whether the pixel
belongs to that superpixel cluster. The distance measure
is calculated as

D =

√
dc

2 +
ds
S

2
m2 (4)

dc =
√

(lk − li)2 + (ak + ai)2 + (bk + bi)2 (5)

ds =
√

(xk − xi)2 + (yk − yi)2 (6)

where dc and ds are distance measurements of color
proximity and spatial proximity. S is the approximate

superpixel grid size (S × S) and is given as S =
√
N
K .

Lastly, m is the weighting factor between color and
spatial difference ranging from [1, 40], where a larger
value enforces a superpixel with more regular and
smoother shapes. In this study, we selected a m value
of 10 after several experimental tests.

For a k-means algorithm, the computation complexity
of superpixel segmentation is O(N ), where N is the
number of pixels. The SLIC algorithm is both compu-
tationally and memory efficient, and the advantages of
the algorithm increases with the size of the frame.

3.2. Selective Superpixel Masking
Moving subjects in the frame are a common problem
for analyzing video frames using pixel intensities, due
to non-rigid deformation and occlusion in uniform
pixel values. The EVAS scheme proposes a selective
superpixel masking (SSM) algorithm to compensate
for the motion detected in the video. SSM uses
frame segmentation on consecutive video frames and
compares the superpixel similarity among these frames.
Any inconsistencies in the pixel values are masked,
leading to more uniform pixel values.

For a given video frame sequence F = {Fn}n=1,...,M ,
where M is the total number of frames in the given
sequence, a Gaussian mixture model (GMM) is used.
The GMM is a simple non-parametric adaptive density
estimation method for background subtraction [37],
which generates the motion mask Dx,y . The background
for the test videos are largely static and unchanging
over consecutive frames of a video. Therefore, with
a GMM model, the foreground is segmented from
the background allowing any substantial change like
moving subjects. The obtained matrix Dx,y consists of
the subject motion in the form of a logical matrix, and
it is compared with the superpixel segmentation Sn of
the frame.

S
′
n = Sn. ∗Dx,y (7)

M
′
n = Sn − S

′
n (8)

Here S ′n is a superpixel frame which carries the
individual affected pixels from Dx,y due to subject
motion. By comparing S ′n with Sn, EVAS generates a
motion mask of superpixels M′

n, which preserves the
steady superpixel regions and focuses on the superpixel
regions with modified pixels.

From our observations, some pixels are modified
due to reflective property of objects in the frame,
compared to moving subjects where the changes are
drastic. So, a superpixel region is masked out when the
number of pixels it contains are significantly modified
by comparing it to a threshold. For all the superpixels
SPK in M′

n, where K is the number of superpixels in
a frame, the Superpixel based Motion Mask Mn for
moving object is given as,

Mn =

SP k = 1, N (M′
SPk

) < τpixels
SP k = 0, N (M′

SPk
) ≥ τpixels

(9)

where N (M′
SPk

) is the number of pixels affected in

a superpixel (SP k) for M′
n. By comparing with a

threshold τpixels, the algorithm decides if a pixel was
affected due to moving subject or small environmental
interference. The mask Mn eliminates any motion
detected, and the masked superpixels are not accounted
for pixel intensity vector. The irregularities like
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Figure 3. Rolling Shutter Sampling Mechanism.

occlusion caused due to subject motion are eliminated.
With the stable pixel values collected using the
superpixel mask, the ENF is estimated from the steady
pixel intensities obtained.

3.3. ENF Estimation Using Rolling Shutter
Mechanism

With Rolling Shutter, each frame consists of multiple
ENF samples where the samples are distributed
sequentially from the top row of the frame to the
bottom row. Due to sequential sampling, the temporal
sampling rate of the video recording can be much
higher compared to the ENF estimation using aliasing
frequency, Eq. (2). Figure 3 represents the image
acquisition mechanism in a CMOS sensor camera where
the frames are sequentially exposed. Figure 4 depicts
a time-domain illustration of the L-branch filter bank
model. Assuming that the camera can produce M
samples i.e., the number of rows per frame, the camera
retains only L samples due to the idle period introduced
by camera manufactures (L ≤M).

From the time-domain illustration, the input signal
x(n) represents the illumination samples when there
is no idle period, and y(n) represents the illumination
samples with idle period i.e., after dropping some
samples. For a frequency domain representation, an
L-branch filter bank model is used. Here, x(n) to the
model is shifted back in time, followed by an M-fold
down-sampling filter. Then an L-fold up-sampling filter
is applied, followed by shifting the signal forward in
time, resulting in the output signal y(n). The discrete-
time Fourier transform (DTFT) of the lth branch, the

Figure 4. Filter Bank Model where (L ≤M) [32]

frequency domain representation [32] of the output
signal Yl(ejω) is represented as,

Yl(e
jω) =

1
M

M−1∑
m=0

X
(ωL − 2πm

M

)
ej

ωL−2πm
M l

 e−jωl
where m and l varies over the actual number of row
samples per frame (M) and row samples retained
(L) respectively, and ω is a frequency variable with
radians/sample unit and 2π periodicity. After combining
the individual branch output Yl(ejω), and representing
Y (ejω) as Y (ω) for simplicity, the resulting output
signal,

Y (ω) =
L−1∑
l=0

Yl(e
jω)

Y (ω) =
L−1∑
l=0

1
M

M−1∑
m=0

X
(ωL − 2πm

M

)
ej

ωL−2πm
M l

 e−jωl
Y (ω) =

M−1∑
m=0

X
(ωL − 2πm

M

)
Fm(ω) (10)

where

Fm(ω) =
1
M

L−1∑
l=0

e−j
ω(M−L)+2πm

M l

In Eq. (10), the frequency-domain representation
shows how the input visual signal through pixel
intensities is affected due to the camera image
acquisition system. The attenuation in the ENF signal
is represented using Fm, depending on the proportions
of L to M. The idle period specific to individual camera
manufacturer can be estimated [32] by finding the
emerging shifted illumination frequency using Eq. (10).
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The ENF signal fluctuations are embedded in these
video recordings in the form of illumination frequency,
along with the steady video content. For a static video
with no object movement, the row signal R(r, n) can be
represented as a sum of video content V (r, n) and ENF
signal E(r, n). Here r is the row position and n is the
frame number.

R(r, n) = V (r, n) + E(r, n)

Evaluating the average value of each of the signals,
we can see that for a static video V (r, n) is constant
whereas the average of E(r, n) is 0 for a large number
of frames since its value fluctuates around the nominal
value. Subtracting the averages from the row signal,

R̂(r, n) = R(r, n) − R̄(r)

R̂(r, n) = R(r, n) − V (r)

R̂(r, n) = E(r, n)

ENF signals can be estimated from a static video by
steady-content analysis. For video with motion, a real-
time Superpixel Segmentation Mask (SSM) from Eq. 9
is applied to ignore the moving subjects resulting in
video samples collected from static background. Using
the non-parametric spectrogram estimation methods,
the ENF is estimated from the evaluated row signal.

R̃(r, n) = R(r, n) �Mn

3.4. Measure of Similarity: Correlation Coefficient
ENF estimation from two recordings are compared
based on the Pearson Correlation Coefficient metric (ρ).
The ENF signal from power PENF and video VENF is
given as

ρ(l) =

∑N
t=1[fPENF (t) − µPENF ][fVENF (t − l) − µVENF ]

var(PENF) ∗ var(VENF)
(11)

where fPENF and fVENF are the ENF frequency estimation
from simultaneous power and video recordings. l is
the lag between the two signals, µ is the mean of the
signal, and var is the variance of the signal. In the next
section, we report the experimental studies based on the
proposed model of ENF estimation using the selective
superpixel masking.

4. Experimental Study
For a reliable ENF estimation from video recordings, the
pixel intensities should be free from any deformation
caused by a moving subject in the frame. As discussed
in Section 3.2, masking the moving subject from the
frame enables a more reliable and uniform pixel
intensity extraction. The SLIC algorithm is used for
segmentation of the frames in a video sub-sequence,
and based on the segmentation; the SSM algorithm
eliminates the pixels affected by moving subjects.

Figure 5. Comparing pixel fluctuations caused by a moving
subject. A 10 minutes video recording is used where the first
5 minutes has moving subject in frame and the next 5 minutes
has a static scene

4.1. Validation of the SSM Algorithm
The analysis of the video sub-sequence is first carried
out to determine any moving subjects with a threshold
of frame difference. Based on the identification of the
frame difference, a motion mask is applied to the frame.
The algorithm does not corrupt any underlying pixel
data. The main objection of SSM algorithm is to extract
pixel intensities from parts of image which remain
unaffected by a moving subject.

Figure 5 represents the measure of impact a moving
subject has on pixel intensities. A video recording of 10
minutes duration is used, where the first five minutes
have a moving subject in frame and the second half
includes a static scene. Average pixel intensity from
each frame is used to study the effects of a moving
subject. From the Fig. 5, it is clear that the impact
of motion is higher and can also have a significant
effect on ENF traces (further discussed in Section 4.4).
By applying the proposed motion mask, the pixel
fluctuation artifacts due to motion are removed in the
first half of recording and the resulting pixel intensity
is more stable.

The SSM algorithm is applied to different scenarios
in Fig. 6. The differences in pixel intensities are
first compared with the superpixel segmentation to
recognize the pixel changes. In some cases, the subject
in the frame is either moving slowly or stationary,
which implies a more subtle inconsistency. The frame
difference Dx,y in Fig. 6 shows that the subject is not
entirely covered based on the pixel difference.

Superpixels of the original frame are compared with
the frame difference matrix. All the superpixels which
intersect with the frame difference are masked. For the
moving subject, the motion masks Mn also covers the
reflection on the ground due to the lower threshold of
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∆. This superpixel based selective motion mask allows
eliminating the causes of the fluctuations due to motion,
and allows for a better static scene analysis in the IoVT
environments.

With the superpixel masking algorithm, any detected
change in the algorithm masks the entire superpixel
instead of restricting it to the region of movement.
The number of superpixels per-frame controls the area
under each superpixel region. Regardless of the speed
of the moving subject, the changes in each superpixel
are masked with similar computation requirements.
The sensitivity of masking can be increased with the
lower number of superpixels per frame.

4.2. ENF Estimation using Rolling Shutter
Mechanism
To verify the presence of ENF in a static video recording,
we opted to first check the presence of ENF in a
corridor surveillance video. It is clear from Fig. 7 that
ENF traces are present in an indoor illuminated video
recordings, in reference to the ground truth power ENF.
The corridor surveillance recording was made at 30
FPS, and the ENF traces are estimated without any
problem compared to the aliasing frequency technique
where the ENF would be found at 0 Hz from Table 1.

4.3. Measure of Similarity
To validate the estimated ENF from both video
recordings and the power recordings, a correlation
coefficient is used. The value of correlation varies
from [-1,1] where 1 implies highest similarity. The
correlation for ENF estimations from the corridor
surveillance in Fig. 7 is shown in Fig. 8. To verify
the authenticity, a threshold of 0.8 is used after many
observations from multiple recordings.

4.4. Affects on ENF Fluctuations with SSM
With SSM, the unnecessary fluctuations in the pixel
intensities are eliminated. The resulting frame includes
of steady background, from which the pixel values
for each row can be extracted. Figure 9 represent
the difference in the ENF estimated from the video
recording with and without SSM applied. Figure 9
shows that with the proposed SSM framework, the
performance of ENF estimation is improved compared
to that of earlier proposed models. Since the position of
camera is assumed to be stable in an indoor surveillance
network, the superpixel segmentation of each frame
is not necessarily evaluated. The segmentation from
one frame can be applied to consecutive frames,
reducing the computational complexity to compute
superpixel segments per frame. Superpixel segments
are periodically calculated to avoid computation and
increase the pixel intensity evaluations.

The mismatch in ENF is observed in the correlation
coefficient as well. The video recording includes of
moving subject for first half period and then static
background for rest of the recording. Figure 10
demonstrates the different in the correlation coefficient
of ENF estimated from video recordings without SSM
and with SSM from Fig. 9. It is clear that with a
moving subject, the correlation drops significantly and
could result in false negative detection. The proposed
SSM algorithm avoids the affected pixels at real-time
and continues to generate reliable ENF estimations. The
SSM model compared to the earlier models is robust
to the environmental noise. A minor drop in the
correlation with SSM applied could potentially be
due to comparison between different harmonics, or a
significant number of pixels affected due to motion. For
such cases, the threshold can be revised based on the
deployed surveillance infrastructure.

4.5. Adaptation of proposed model in IoVT
environment
It is a concern that anti-forensic tools may become
capable of producing forgeries of any digital recordings
[8]. A real-time implementation of such forgery attacks
in the IoVT environment can be fatal for public security.
Integrating the proposed authentication technique in
IoVT environment reduces the detection time in case of
any forgery attacks. Edge-based devices like Raspberry
Pi are capable enough to handle multiple threaded
processes as well as provide sufficient computational
power. The EVAS system involves authenticating video
feeds by comparing two simultaneous ENF, one from
targeted video recording and another from ground
truth power ENF. The testbed setup includes a
Raspberry Pi 4 Edge based computer with a Camera
attached recording at a video resolution of 1080p. For
faster processing, the resolution is downsized to 720p,
without any significant loss of ENF estimation. A power
module with a voltage divider circuit and step down
transformer is attached through USB for ground truth
ENF. The Raspberry Pi can simultaneously estimate
ENF from video recording and power recording using
parallel threading.

To make real-time edge-based detection, the live
video feed is batched into windows and then incre-
mented in step sizes. For initialization of the system, a
delay of 45-60 seconds is required to compute the ENF
from first window, and then each window is shifted by
10 seconds to compute the next set of ENF correlations.
Using a sliding window approach allows an online
edge-based detection of any video feed tampering. The
wait period allows a systematic cool down period for
Raspberry Pi avoids bottle-necking problems. A com-
parison of multiple window sizes and shift sizes are
used to compare the video ENF and power ENF in Fig.
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Figure 6. Algorithm flow of the Selective Superpixel Segmentation Masking.

Figure 7. Comparing estimated ENF from Corridor Video
Surveillance recording and parallel Power ENF recording.

11. With these observations, we used a window size
of 60 seconds and shift size of 10 seconds. The shift
size can further be decreased to five seconds at no cost

Figure 8. Correlation coefficient for Fig. 7.

of performance, but 10 seconds is used to avoid CPU
(central processing unit) over-usage.

A Replay attack was performed on the video feed
where the frames are recorded and continuously
repeated to camouflage live events in the video. Using
the EVAS system, Fig. 12 shows the mismatch in the
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Figure 9. ENF signal of a video recording where the first half
of the recording includes moving subject.

Figure 10. Correlation of Video ENF and Power ENF with and
without SSM applied.

ENF signal estimated from the video recording and
a significant drop in the correlation coefficient. A
threshold of 0.8 is used depending on the computation
complexity and the ENF signal estimation accuracy. The
computation burden for STFT algorithm to estimate the
spectrogram of required nominal frequency strip is,

l
w − o

∗NFFT ∗ log2(NFFT )

The ENF signal resolution varies based on the
length of the signal used for ENF estimation (l),
window size (w), overlapping window size (o), and

Figure 11. Comparing multiple window sizes and shift sizes for
ENF comparison.

the frequency resolution (NFFT ) used for signal
estimation. Depending on the sensitivity of the location
which is monitored, the threshold requirements are
adjusted to minimize false negatives. Note that modern
large infrastructures include hundreds of cameras
for surveillance, and continuous monitoring of such
network is complicated. The EVAS system enables edge-
based detection for any video tampering and notifying
the surveillance authority.

4.6. Distributed ENF estimation from multiple
cameras

The surveillance camera network deployed in an indoor
environment can be adapted to the proposed model
by inter-authenticating the ENF signature. The nature
of the ENF signal is such a way that it is similar
at one time instant throughout the grid, and for the
targeted framework of surveillance network the ENF
should be similar for multiple cameras. To test the
ENF consistency, different cameras with different frame
rates were used to record a video at one time instant.
Figure 13 shows that the ENFs are similar at one
time instant throughout the surveillance infrastructure;
which helps in reducing the redundant power module
for authentication, and a distributed framework can be
established to authenticate video stream on the existing
system.
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Figure 12. Detection of Video Forgery Attacks on the
Surveillance system using the proposed EVAS model. The
correlation coefficient is compared to the threshold 0.8.

Figure 13. ENF estimated from Multiple cameras at one time
instant. Camera 1 had a frame rate of 30 FPS, and camera 2 had
a frame rate of 29.98 FPS.

5. Discussions
EVAS is a video authentication scheme based on an
ENF estimation method, which uses the rolling shutter
mechanism on extracted pixel intensities captured
from video recordings in the IoVT environment. The
recordings from a stationary surveillance camera might
include moving subjects, which results in the unwanted
pixel intensity fluctuations.

Some challenges still exist in the use of the
superpixel masking by comparing consecutive frames.
For example, any stationary subject might not be
masked when the number of superpixels used is higher.

By decreasing the number of segments per frame, any
changes in the frame by movement can be captured
by the whole superpixel. The pixel intensities are
also affected in the situation when the camera adjusts
its focus for tracking the subject, hence resulting in
unwanted fluctuations. These fluctuations are caused
due to a lower dynamic range of the commercial
surveillance cameras. But this is an unusual problem
since most of the deployed cameras include lower
aperture for focusing on large region, hence reducing
the occurrence of camera auto-focus.

A moving surveillance camera is also another difficult
case of generating static background. To tackle the
camera motion problem, a new modality for video
synchronization can be adopted where shifting the
pixels in two adjacent frames would produce a
stable static frame [38]. This would also require high
computation power along with the proposed EVAS
system.

For each camera recording, the nominal frequency
of the ENF in video recording depends on the frame
rate used by the camera. Since the focus of this
paper is in large scale deployed surveillance cameras
in an indoor environment, all the cameras have
similar configuration. With an initialization process
and dynamic estimation of nominal frequency collected
from peak frequency spectrum, the proposed model can
be adapted to large scale surveillance network.

From earlier observations, eliminating the power
module and depending on the existing video recording
stream from multiple cameras, can help with adapting
the EVAS framework with any surveillance system. As
a part of our on-going efforts, we are adapting the
EVAS system with a distributed system model for a cost-
effective and ready-to deploy system.

6. Conclusions

The paper proposes the ENF-based Video Authenti-
cation method leveraging steady Superpixels (EVAS)
framework to tackle the challenge of online video feeds
authentication in an edge IoVT environment using ENF
matching. EVAS verifies the authenticity of a video
by reference matching the ground truth ENF with the
estimated ENF from videos. From our observations,
the video recordings from surveillance cameras include
moving subjects, which disrupt the illumination sam-
ples resulting in inaccurate ENF estimation. Selective
Superpixel Masking in the EVAS model solves the
challenges of compensating for occlusion caused by
moving subjects. The proposed EVAS is deployed on an
edge-based system for indoor surveillance monitoring
and authentication using ground truth ENF. A sliding
window protocol type mechanism is used for batch
verification of recorded frames.
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For future directions of this work include applying
the EVAS framework to more online video services
like online conferences and social media video
recordings. Both audio and video ENF can be
synchronized for robust authentication and detecting
any spatio-temporal visual layer attacks. Currently, a
crawler network is being developed for verifying the
authenticity of online social media videos with ENF
traces as an environmental fingerprint to combat digital
video forgeries.
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