
An Evaluation Framework for Moving Target
Defense Based on Analytic Hierarchy Process
Chu Huang1, Yi Yang2,∗, and Sencun Zhu1,†

1Pennsylvania State University, University Park, PA 16802, USA
2Fontbonne University, St. Louis, MO 63105, USA

Abstract

A Moving Target Defense (MTD)-enabled system is one which can dynamically and rapidly change its
properties and code such that the attackers do not have sufficient time to exploit it. Although a variety of MTD
systems have been proposed, fewwork has focused on assessing the relative cost-effectiveness of differentMTD
approaches. In this paper, based on a generic MTD theory, we propose five general evaluation metrics and
an assessment framework on top of Analytic Hierarchy Process (AHP), which aggregates these five metrics
and systematically evaluates/compares security strengths and costs of multiple MTD-based approaches in
the same category. This framework could be widely used in different MTD categories under various attacks
and it will enable a security specialist to choose the best MTD approach from a set of possible alternatives
based on his/her goal and understanding of the problem. A detailed case study on a specific MTD category
called software diversification validates the effectiveness of this framework. Our evaluation results rank three
software diversity algorithms and choose the best one among three based on problem setting and situation
constraints.

Received on 24 December 2017; accepted on 26 December 2017; published on 4 January 2018
Keywords: Moving Target Defense, Analytic Hierarchy Process, Evaluation and Comparison

Copyright © 2018 Chu Huang et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.4-1-2018.153527

1. Introduction

In the history of arms-race between attackers and
defenders, the game setting has always favored the
attackers. This is because as defenders we must assume
that the attackers know how the system works, and
hence we must carefully examine the whole system
to make sure that no vulnerability exists, while the
attackers only need to know a single vulnerability
to break the system. To ensure that a system is
free of vulnerability is extremely difficult, if not
impossible, especially for large systems with millions
lines of code. Hence, besides keeping up with novel
and advanced techniques for identifying and patching
system vulnerabilities, detecting malware, and building
new systems with security embedded from scratch,

∗Corresponding author. Email: yyang@fontbonne.edu
†Acknowledgement: The work of Dr. Zhuwas supported throughNSF
CNS-1618684.

recently an innovative theme in cyber security has
emerged.

This new theme is named Moving Target Defense (or
MTD) [1]. The philosophy of MTD is that instead of
attempting to build flawless systems to prevent attacks,
one may continually change certain system dimensions
over time in order to increase complexity and cost for
attackers to probe the system and launch the attack.
Rather than leaving the system properties and code
static and persistent long enough for an attacker to
exploit vulnerabilities, a MTD-enabled system would
rapidly change its properties and code such that the
attackers do not have sufficient time to study, search,
and further to exploit. This strategy ultimately reverses
the asymmetric advantage of attackers.

The state-of-art approaches based on the concept
of MTD can be roughly classified into a few
categories. For example, various obfuscation techniques
have been proposed to safeguard individual system
against code injection attacks and memory error

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

exploits, e.g., address space randomization (ASLR) [2–
4] and instruction set randomization (ISR) [5, 6].
Higher level MTD approaches have been mainly
based on diversity-inspired software assignment [7–9],
system and network re-configuration, substitution, and
shuffling techniques [10–13]. In military environments,
frequency hopping techniques such as Frequency
Hopping Spread Spectrum (FHSS) [14] has been used
to defend against eavesdropping and radio jamming for
long time. Such techniques are all examples of MTD.
Although a variety of moving target defenses have

been discussed in literatures [1], a well-accepted
methodology to assess the cost-effectiveness of different
MTDs is still missing. Many fundamental questions
have been raised regarding the evaluation of MTD.
For example, how to compare two or more MTD
approaches, and how to determine the most cost-
effective MTD-based approach for addressing a specific
security issue?
The difficulty of evaluating the strength of MTD-

based approaches is mainly due to the following
reasons. First, there is a lack of knowledge about which
criteria or metrics that must be considered. Currently
different MTD approaches [1] use a different set of
terminologies to evaluate their performance. Second,
because such factors as the types of exposed attack
surface, and the capabilities, resources and strategies
of both attackers and defenders vary among systems,
different MTD approaches are needed to address
different threats; thus, it is difficult to find unified
criteria that fit all the MTD approaches. Third, the
effectiveness of aMTDmay ormay not be quantitatively
measurable, as in practice system security analysis is
often done in an ad-hoc and descriptive way. Despite
all the challenges, we still need a way to evaluate
and compare different MTD techniques in the same
category. Although there are many previous works on
evaluating system and network security mechanisms, to
our knowledge, few focused on MTD evaluations.
In this paper, we propose an assessment framework

for systematically evaluating and comparing the
security strengthes and costs of multiple MTD-based
approaches. This framework will enable a security
specialist to choose the best MTD approach from a
set of possible alternatives based on his/her goal and
understanding of the problem. The ability to choose the
appropriate MTD approach (w.r.t. the specific system or
network setting and constraints) would be critical for
the successful deployment of MTD systems. Our main
contributions are in three aspects:

• Based on a generic MTD theory, we carefully
select five general evaluation metrics tailored for
MTD evaluation and comparison;

• We aggregate five evaluationmetrics by proposing
a generic MTD evaluation framework for the first

time, based on Analytic Hierarchy Process (AHP).
Due to its generality, this framework could be
used in different MTD categories under a variety
of attacks;

• We present a detailed case study on evaluating a
specific MTD category called software diversifica-
tion with evaluation results, which validates the
effectiveness of our proposed evaluation frame-
work.

The following content is organized as follows. We
summarize the related work in Section 2 on MTD
systems and their evaluations. We present our system
models, including a uniform MTD theory model and
our attack model in Section 3. Then, we propose a
generic evaluation framework for MTD in Section 4.
After that, we give a detailed case study on a specific
MTD category, named software diversification and we
also present our evaluation results in Section 5. In
Section 6, we discuss the issues to apply our evaluation
methodology in other MTD categories and how to apply
our methodology in different levels. Last, we conclude
our paper and discuss future work in Section 7.

2. Related Work
The dynamic nature of Moving Target Defense (MTD)
alleviates the asymmetry of timing differences between
attacks and defenses. So far, many MTD systems have
been developed [15–17].
Major MTD systems could be divided into four cate-

gories. The first category is software-based diversifica-
tion such as [18]. The basic defensive idea is to switch
among multiple functionally equivalent but internally
different program variants to hinder the attacks. Differ-
ent software implementations are not supposed to share
the same vulnerability, so even if the attacker exploits
a vulnerability in one software version it still takes
similar time to compromise other software versions.
The second category is called runtime-based diversifi-
cation. Basic defensive idea here is to mitigate attacks
via introducing randomization in runtime environment
dynamically. Examples in this category include instruc-
tion set randomization [5, 6], system call number ran-
domization [19], and address space layout randomiza-
tion [20]). The third MTD category is named network-
based diversification [21], such as host IP mutation
and hopping, network database schema mutation, and
random finger printing, with the basic defensive idea
to be: randomly change network configurations with-
out causing network service failures. The fourth MTD
category is dynamic platform techniques [21], which
changes platform properties or switches among differ-
ent platforms to stop attacking processes. Examples in
this category include virtual machine rotations, server-
switching techniques, and self-cleaning techniques.

2
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

An Evaluation Framework for Moving Target Defense Based on Analytic Hierarchy Process

However, based on the current literature, it is hard
to compare different MTD systems by evaluations and
to pick an optimal system based on the given situation
and constraints. Current MTD evaluation methodolo-
gies [22–24] could be divided into four main categories,
too. They are: attack-based experiments, simulation-
based evaluation, mathematics-based evaluation, and
game theory based evaluation [25]. Among these,
mathematics-based evaluation can be further catego-
rized into probability-based evaluation and Markov
model based evaluation [26]. There also exist hybrid
approaches which combine at least two above methods
together. The major limitation of previous work is that
there is a lack of a generic, systematic, and fine-tuned
way to evaluate and compare MTD systems of the same
category.
In this paper, for the first time, we carefully choose

five general evaluation metrics, based on a generic
MTD theory. We also aggregate these five metrics by
proposing an evaluation framework on top of Analytic
Hierarchy Process (AHP). We validates the effectiveness
of this framework through a case study on a specific
MTD category called software diversification and we
discuss how to apply it to other MTD categories.

3. System Models
3.1. A Uniform MTD Theory Model
A uniform MTD theory model is shown in Figure 1.
In this model, MTD system starts from an initial state.
Based on the current pool of adaptation space, there
will be numerous valid states (after eliminating those
defined by the environment constraints) in the space
that the initial state could transit to. MTD system
randomly picks a state based on the current situation
and transits to that state after a small but unpredictable
delay. Ideally, this process is an infinite loop and the
MTD system will never run out of valid states, even
under some attacks.

An Initial

State

Choose an Adaptation

Based on the Pool of

Adaptation Space and

the Environment

Constraints

Valid?
Implement the

Adaptation

Delay
A New

State

Yes

No

Figure 1. A uniform MTD theory model

3.2. Attack Model
The attacker’s eventual goal is to stop the MTD self-
evolving process, i.e., to terminate the infinite loop.
There are two ways for the attacker to break the MTD
system. The first way is to break states as many as
possible by exploiting vulnerabilities, then once the

MTD system is evolving into one of those vulnerable
states the MTD system will be broken into. The second
way is for the attacker to be able to predict the next state
and break that specific state. These two methods should
be equally difficult for the attacker to achieve if our
MTD defensive system is designed in a good manner.

4. The Proposed Generic MTD Evaluation
Framework
We first give an overview of the evaluation framework.
We then briefly present all the five general evaluation
metrics. The AHP procedure which aggregates all the
evaluationmetrics is discussed at the end of this section.

4.1. An Overview of the Evaluation Framework
We propose that the evaluation of MTD-based
approaches be generalized with five metrics:
survivability, unpredictability, movability, stability,
and usability. In practice, however, not all metrics
can be directly quantitatively measured with absolute
meanings, so we will further propose a way for metric
aggregation based on relative importance of metrics,
which enables us to quantitatively assign weights
to metrics in an automatic way and compare MTD
approaches in each same category. An overall flowchart
of the evaluation framework could be seen in Figure 2.

MTD application

requirement and

environment

constraints

Determine an

MTD category

and evaluation

metrics

Calculate running scores

for different MTD

approaches in this

category based on AHP

Select an MTD

approach with

the highest score

Input Output

Figure 2. An overview of the generic evaluation framework

4.2. Evaluation Metrics
Below, we justify the rationale to pick these five
general evaluation metrics (including survivability,
unpredictability, movability, stability, and usability)
based on our systemmodels, then we briefly explain the
concepts/definitions of all the five metrics. The whole
picture and interactions among different metrics could
be seen in Figure 3.

Survivability. Survivability describes the degree to
which a system/network is able to withstand attacks.
Higher survivability means that the system under
attack is able to function as in normal at a high
probability for a longer time. Survivability is closely
related to the size of attack surface and the types
of vulnerabilities. The larger the attack surface, the
more ways a system could be attacked, and the
lower the survivability. On the other hand, if the
vulnerability is in the kernel level, greater damage
could be done. Although it is desirable to directly
measure survivability of the whole system, in reality
this is often not possible because a system may carry

3
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

Valid State

Invalid State

Due to

Constraints

MTD

Evolving

Trajectory

Unpredictablity

Survivability

Movability

Stability

Figure 3. The MTD self-evolving loop with evaluation metrics

multiple types of vulnerabilities of different impacts. In
this paper, we consider survivability in the context of a
particular attack, and it is measured through either one
of the following two ways, depending on whether the
system of protection is a host or a networked system:
(i) likelihood that a host machine will be compromised
in the presence of an attack when an attacker exploits
a vulnerability; (ii) the maximal number of machines
in a network that will be compromised altogether
when an attacker discoveries and exploits a particular
vulnerability.
More specifically, survivability relates to the life span

(or depth) of the MTD self-evolving loop. Ideally, a
successful MTD system should have an infinite loop.
In reality, if the loop is longer, that means that the
survivability of the MTD system is higher. Considering
the cost of the system, there exists a max number of
possible states in practice.

Definition 1. Survivability is defined as the relative
depth of the MTD self-evolving loop, i.e., it is a real
value between 0 and 1, which represents the ratio
between total number of states in the MTD self-evolving
loop and the max number of possible states in practice.

Unpredictability. MTD-based approaches introduce ran-
domness into the protected system to make its state
more unpredictable to an attacker. As a fundamental
criterion, unpredictability requires the critical aspects
of the system to keep uncertain to the attacker, which
makes it difficult for the attacker to anticipate defensive
actions. Higher unpredictability means that an attacker
is less likely to accurately determine the “key" of trans-
formation of a particular MTD strategy; consequently
the data collected by the attacker contains more noises.
In general, unpredictability is determined by the num-
ber of states in the moving space of a system and the
probability that each state is traversed.
More specifically, unpredictability relates to the

unlinkability between two consecutive valid states.

Definition 2. Unpredictability is defined as the
unlinkability between two consecutive valid states in

the MTD self-evolving loop. Unpredictability will be
high (close to 1) if the current state is equally likely
to transit to all the valid states in the next adaptation
space, i.e., prob(Si → Sj)=

1
n , where n is the total number

of valid states in the next adaptation space and j is an
integer between 1 and n.

Movability. Movability is an important characteristic of
a MTD-based strategy that overcomes the limitation
of static defense mechanisms by dynamically altering
some properties of systems/programs (e.g., proxy
substitution or reconfiguration of the network such
as IP addresses). For an actual host or a network,
there could be many practical constraints on moving.
Instead of randomly changing states, a movable strategy
or algorithm should be designed to conform to such
constraints. Hence, movability is defined as the degree
to which certain aspects of a system can be altered
without impacting its normal operations; that is, how
well a MTD strategy is able to accommodate given
practical constraints.
More specifically, movability relates to the breadth

(or width) of the MTD system self-evolving loop.

Definition 3. Movability Mt is defined as the width of
the MTD system self-evolving loop at time t, i.e., the
total number of valid states in the adaptation space at
time t, after eliminating all the invalid states due to
practical constraints.

Stability. Stability describes the performance of the
MTD approach to be sustained and effective over the
“moving space". Assuming a particular MTD approach
changes the system’s state from one to another, stability
requires the security level of the system remains
approximately the same. A non-stable MTD approach
might produce one state with a greater attacking surface
(e.g., lots of entry points available to untrusted users, or
lots of untrusted software running) and another state
with a smaller attacking surface, thus exposing the
system to a greater danger once compromised in the
first state.
More specifically, stability means that the MTD self-

evolving channel should have roughly even or balanced
widths.

Definition 4. Stability is defined as the standard
deviation of widths of the MTD system self-evolving
loop. If the standard deviation is higher, stability of the
MTD system will be lower.

Usability. Usability is defined, from user’s experience,
as “ease of use". It is the degree to which a user
is satisfied with a particular system state. In other
words, it reflects how comfortable it is for system
users to perform tasks or routine operations on a
protected system. A protected system adopting MTD
is considered to have high usability if it causes little

4
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

An Evaluation Framework for Moving Target Defense Based on Analytic Hierarchy Process

inconvenience (e.g., not requiring users to be re-trained
for every change of state), efficient in time and resources
(e.g., minimum delay and disruption), etc.
More specifically, usability reflects the tradeoffs

among ease of use, performance, and security.

Definition 5. Usability complements the other evalu-
ation metrics by defining how easy of use the MTD
system is. An ideal MTD system should maximize ease
of use and minimize the performance penalty while
achieving maximally possible security.

Note that we do not consider hardware/software
cost when comparing MTD approaches, because the
comparable MTD approaches are from the same
category and hence have similar hardware/software
requirements.

4.3. Aggregation of Evaluation Metrics by Analytic
Hierarchy Process (AHP)
To achieve a comprehensive and systematic evaluation,
we need fully consider different types of information,
which each relates to a specific criterion/attribute.
Hence, after identifying the criteria for evaluation,
we further adopt a methodology to aggregate them
and provide a comprehensive analysis. Many analytical
tools have been discussed to address these problems
associated with the field of decision analysis, such
as Multiple Attribute Utility Theory (MAUT) [27],
Multiple-Attribute Decision Analysis (MADA) [28],
Multiple Correspondence Analysis (MCA) [29] and
Analytic Hierarchy Process (AHP) [30], to name a few.
We adopt the multi-criteria evaluation methodology

named Analytic Hierarchy Process (AHP), for measur-
ing the relative strength of MTD approaches. AHP [30,
31] plays an important role in many real world deci-
sion situations such as government, business, indus-
try, healthcare and education. It provides the decision
makers a comprehensive and rational framework for
structuring a decision problem, for representing and
quantifying its elements, for relating those elements to
overall goals and their understanding of the problem,
and for evaluating alternative solutions (A running
example on how to choose a company leader can be
found in [32]).
AHP suits our problem setting very well because

of the following reason. For MTD approaches of
different categories (e.g., software diversity, address
space/data/instruction set randomization, N-version),
their actual security and performance concerns vary
a lot, because the type and size of attack surface,
the likelihood of successful attacks, as well as
cost of dynamically changing attack surface in each
category are very different from one another. As such,
although the five metrics we propose are generic,
their relative weights in final evaluation would vary

for different categories. Hence, to determine the best
approach in each category, we will first understand
the network/system model, the security model and the
cost model for each category. We can leverage AHP
to evaluate the alternative MTD approaches in each
category against each criterion/metric that measures
how well a method accomplishes a particular criterion.
Then we compare the alternative MTD approaches by
generating a score of each alternative MTD approach
for ranking. Note that a very attractive feature of AHP
is that for comparison purpose it will help generate
relative scores for criteria which cannot be directly
quantified with an absolute meaning.

General Principles of AHP. Specifically, using AHP we
can first construct a hierarchy, as shown in Figure 4.
This hierarchy has three levels: the top one is our
goal to find the best MTD strategy in a category, the
second one includes the five criteria we proposed,
and the bottom one includes the alternative MTD
approaches to evaluate. Once the hierarchy is built,
we can systematically evaluate its various elements by
comparing them in a pairwise way, with respect to their
impacts on an element above them in the hierarchy.

Figure 4. An AHP hierarchy to choose the best MTD approach

For example, we will start from the bottom level
by comparing each pair of alternatives w.r.t. each of
the five metrics above and totally we will perform
3 ∗ 5 = 15 comparisons. During the comparison, we
calculate numerical weights (priorities) for each of the
decision alternatives and these numbers represent the
alternatives’ relative ability to achieve the decision
goal. For each criterion (metric), the weights of all
alternatives are then transferred to an AHP matrix
to calculate the priority of each alternative. After
evaluating the alternatives with respect to their strength
in meeting the criteria, we will then evaluate the criteria
with respect to their importance in reaching the overall
goal. Following a similar process, each criterion will
be given a weight w.r.t. the goal. Finally, with all the
priorities of the criteria with respect to the goal, and the
priorities of the alternatives with respect to the criteria,
we can synthesize and calculate the priorities of the
alternatives with respect to the goal. The one with the
highest priority will be the winner. (we will show a
concrete example later in the case study of Section 5.)

5
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

A Detailed Procedure of AHP. Suppose thatm criteria are
considered and n alternatives are to be evaluated. In our
case, m = 5 and n = 3. The AHP can be implemented in
three consecutive steps [33, 34].
Step 1. Computing the vector of criteria weights:

The AHP starts with creating a pairwise comparison
matrix A. The matrix A is a m ×m matrix with real
numbers. Each entry ajk in matrix A represents the
importance of jth criterion relative to the kth criterion.
The entries ajk and akj satisfy the following constraint:
ajk × akj = 1. Obviously, ajj = 1 for all 1 ≤ j ≤ m. The
relative importance between two criteria is measured
according to a numerical scale from 1 to 9 [34].
Once the matrix A is constructed, it is possible to

derive from A the normalized pairwise comparison
matrix Anorm by summing all the entries in each
column, then each entry ajk of the matrix Anorm is

computed as ajk =
ajk∑m
l=1 alk

, i.e.,

A =

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

ajk=

ajk∑m
l=1 alk

−−−−−−−−−−−→

Anorm =

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

Finally, the criteria weight vector w (that is an m-

dimensional column vector) is built by averaging the
entries on each row of Anorm, i.e.,

wj =
∑m

l=1 ajl
m , for w =

w1
w2
w3
w4
w5

Step 2. Computing the matrix of alternative scores:

The matrix of alternative scores is a n ×mmatrix S with
real numbers. Each entry sij of S represents the score
of the ith alternative with respect to the jth criterion.
In order to derive such scores, a pairwise comparison
matrix B(j) is first built for each of the m criteria. The
matrix B(j) is a n × nmatrix with real values. Each entry
bih of the matrix B(j) represents the evaluation of the
ith alternative compared to the hth alternative with
respect to the jth criterion. Similarly, the entries bih and
bhi satisfy the following constraints: bih × bhi = 1 and
bii = 1 for all i. An evaluation scale [34] will be used to
translate the decision maker’s pairwise evaluations into
numbers.
Second, the AHP applies to each matrix B(j) the

same two-step procedure described for the pairwise
comparison matrix A, i.e., it divides each entry by the
sum of the entries in the same column, and then it
averages the entries on each row, thus obtaining the

score vectors s(j), j = 1, · · · , m. The vector s(j) contains
the scores of the evaluated alternatives with respect to
the jth criterion.
Finally, the score matrix S is obtained as S =

[s(1) · · · s(m)], i.e., the jth column of S corresponds to s(j).
Step 3. Ranking the alternatives: Once the weight

vector w and the score matrix S have been computed,
the AHP obtains a vector v of global scores by
multiplying S and w, i.e., v = S × w. The ith entry vi of
v represents the global score assigned by the AHP to the
ith alternative.
AHP incorporates an effective technique for checking

the consistency of the evaluations made by the decision
maker when building the pairwise comparison matrices
involved in the process, namely the matrix A and the
matrices B(j). The technique relies on the computation
of a suitable consistency index CI . CI is obtained by
first computing the scalar λ as the average of the
elements of the vector whose jth elements is the ratio of
the jth element of the vector A × w to the corresponding
element of the vector w. Then, CI = λ−m

m−1 . A perfectly
consistent decision maker should always obtain CI = 0,
but small values of inconsistency could be tolerated.

5. A Case Study on Software Diversification MTD
To demonstrate the applicability of our proposed
evaluation framework, next we present a case study on
a network level approach - dynamic software diversity
based MTD.

5.1. Software Diversification MTD
Software diversity [7–9], in spirit of survivability
through heterogeneity, has been one of the major
MTD approaches. Specifically, the purpose of software
diversity is to select and deploy a set of off-the-shelf
software to hosts in a networked system, such that the
number and types of vulnerabilities presented on one
host would be different from that on its neighboring
nodes. In this way, one would be able to contain an
automated worm attack in an isolated “island".
An illustrating example is showed in Figure 5.

We use an undirected graph as the abstraction of a
general networked system. Example networked systems
include intranet, enterprise social networks, tactical
mobile ad hoc networks, and wireless sensor networks
of different network topologies. In this figure, there
are 11 machines represented by nodes and 5 distinct
pieces of vulnerable software represented by different
colors. An attack can propagate by exploring one type
of vulnerability (color). From the figure, we can see
that a successful attack exploiting the green color can
compromise up to four machines (v2, v5, v7, v11), but it
can only compromise one machine when it exploits the
yellow color as machines with the yellow color cannot
communicate directly.

6
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

An Evaluation Framework for Moving Target Defense Based on Analytic Hierarchy Process

Figure 5. Network topology utilizing a diverse software
distribution. Dashed or solid lines mean two nodes can
communicate directly (e.g., through TCP/IP or being friends in
a social network). Solid lines further indicate two nodes share at
least one common color.

5.2. Quantifying Five Evaluation Metrics
Next, we discuss how to instantiate and quantify five
general evaluation metrics.

Survivability. According to Figure 5, a defective edge
between two nodes (which share the same color) indi-
cates that the exploitation of one type of vulnerability
on one host can lead to the compromise of the other. The
size of a connected component indicates the number of
compromised machines if the corresponding vulnera-
bility is discovered and exploited by the attacker (e.g.,
via a worm attack). We denote a connected component
as a common vulnerability graph (CVG). If one can
effectively limit the size of the largest CVG, system
survivability can then be improved. A better software
assignment algorithm should be able to produce a soft-
ware assignment solution with a smaller largest CVG.
Formally, the survivability of a networked system can
be computed as follows:

Survivability = 1 − smax(ci)/N , (1)

where smax(ci) denotes the size of the largest CVG that
is formed by color ci , and N denotes the network size.

Unpredictability. The goal of the attacker is to compro-
mise as many nodes as possible; thus, the vulnerability
(color) of the largest CVG is always the attackerŠs
first choice to exploit. Unpredictability of a software
assignment strategy in this case describes the difficulty
for an attacker to determine the prevailing color (which
forms the largest CVG) after shuffling. For example,
given two software assignment algorithms, to compare
their unpredictability, we can observe the distribution
of colors for the largest CVGs across a number of soft-
ware shufflings. If the prevailing colors are uniformly
randomly distributed, it would be hard for an attacker
to learn the pattern and predict the next prevailing
color. The attacker has to try out every color with
about an equal probability in order to compromise the
network to the largest extent.

To formulate unpredictability of software assignment
in a quantitative way, we use entropy to measure
the expected or average ŚsurpriseŠ over all shufflings,
reflecting the uncertainty of the prevailing color before
it is determined. If the color of the largest CVG is
c, let p(ci) be the probability c = ci . Given a set of
colors C and the probabilities of their occurrences,
unpredictability produced by the software diversity
algorithm is quantified as:

Unpredicability =
∑
ci∈C
−p(ci) × ln(p(ci)). (2)

Movability. In order to survive from long-lasting
(persistent) attacks, software diversity mechanisms
should further adopt the technique of software
shuffling. By (periodically) re-allocating software on the
machines, the attack surfaces of the systems continually
change to confuse the attacker and thus delay the
attack. In practice, however, to make the assignment
solution generated after each shuffling acceptable,
the software assignment algorithm needs to take a
number of realistic constraints into account. A software
assignment algorithm may be able to well or only
partially accommodate the practical constraints that
give rise by host and software requirements. Here host
constraint means that certain hosts should be installed
with some specific types of software to perform
required functionality (e.g., to deploy a database server
it is required to assign DB2). Software constraint means
certain combination of software should (or should not)
be assigned to specified hosts simultaneously (e.g., PHP,
Apache, MySQL and Linux need to be assigned together
to implement LAMP on a single node).
Besides, in practice the constraints are not equally

important. Some of the constraints are critical and thus
cannot be violated, for example, the case of LAMP -
a lack of any one of these four components would
cause a service failure on the web server. On the other
hand, some constraints are less critical and thus can be
relaxed to some extent without impacting the essential
functionality of the machine. For example, suppose
there is a constraint that a PC should not install a
program (for the lack of understanding of its security).
If a software assignment algorithm has to assign the
program to this machine for greater security of the
network, one may, for example, relax this constraint
by launching it through a browser-based SaaS cloud
service.
We assume that a software assignment algorithm

unable to satisfy the practical constraints is less
appropriate than an algorithm that well accommodates
them. Thus we propose to use penalty score to
quantitatively determine the functionality loss caused
by violations of given practical constraints. Specifically,
we initially assign a penalty score to each constraint

7
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

reflecting its significance and the penalty is only
applied when that particular constraint is violated.
For instance, penalty(xi) denotes the penalty score of
violating constraint xi . For the most critical constraints
that cannot go against, we assign an infinite value to
them. In this way, given a set of constraints CSTR =
{x1, x2, · · · , xm}, the total penalty score for the system is
given as:

P enalty =
m∑

xi∈CSTR
penalty(xi) × d(xi), (3)

where
d(xi) =

1, if xi is violated
0, otherwise

specifies which constraint is violated.
Stability. Stability of a software assignment algorithm
measures variation of the quality of the assignment
solutions, in terms of variation of the largest CVG sizes
generated by shuffling. In this case, we equate stability
with variability. Note that for the unpredictability
of shuffling, ideally the shuffling process should be
stateless, i.e., each shuffling is independent of the
history. Standard deviation can be used to quantify
the average difference between assignment solutions,
independent of the temporal order in which each
assignment solution is generated. The less the variation
of the largest CVG size, the more stable of a given
software assignment algorithm. Let E(S) be the mean
size and N be the number of shufflings, the stability of
the software assigning algorithm is quantified as:

Stability =

√
1
N

∑
i=1

(Si − E(S))2. (4)

Usability. The combination of the software installed
in a machine is prone to variation due to shuffling.
For example, Microsoft Office may be substituted
by Open Office and Firefox may be substituted by
Internet Explorer or Google Chrome. Among all these
options, some software products are easier to operate
as compared to others. Besides, users tend to choose
software that they are familiar with or have certain
preference with. A software assignment algorithm
might cause inconvenience to users in accomplishing
their tasks (e.g, when a secretary’s computer cannot
install Microsoft Word despite the fact she has been
using it in the past years), and it is very likely
not a comfortable assignment for some users. Thus,
for software diversity algorithms, usability is defined
to reflect user’s experience regarding the assigned
software, e.g., familiarity, comfort, satisfaction and ease
of use from a user’s point of view. A good algorithm
should be able to take user’s concerns as one input and
maximize overall usability.

We will use acceptance rate (a real value from 0 to
1) to measure user’s satisfaction level, reflecting their
attitudes toward shifting from a particular software
product to another one. We first categorize software
products based on their functionalities. For example,
Linux, Snow Leopard, Windows are in the operating
system category while Firefox, Chrome, IE and Opera
are in the web browser category. Software may be
replaced by another one in the same category. Software
substitution with high acceptance rate indicates users
are satisfied or at least have little trouble with the
assignment. Low acceptance rate, on the other hand,
indicates that a user finds it inconvenient (or even
being prevented from doing his job) switching to new
software.
There are two methods to measure usability of a

software shuffling. The first one asks users to assign
an acceptance rate for every software substitution (in
pairwise) in each category based on their experience
and attitude. Given these ratings, one can automatically
compute the overall acceptance rate for each assign-
ment (compared with the previous assignment) and
check whether it is optimal. The other way is to conduct
a survey after each shuffling. Users are asked to provide
their feedbacks/scores indicating their willingness to
accept or reject the assignment of software in their
systems. By adding up the scores from users, the final
score is then used as the overall usability of a software
assignment. Generally speaking, the first approach is
more preferable as it only conducts user survey once. A
good algorithm may take into consideration individual
user acceptance rates when running.

5.3. Evaluation Results
We first evaluate three software diversification algo-
rithms in terms of our general evaluation metrics
including survivability, unpredictability, movability,
and stability (usability is subject to the user survey
results), which builds a foundation for our AHP proce-
dure. Then, we use AHP procedure to produce the best
alternative/option among three algorithms for this cat-
egory. Three software diversification algorithms under
our consideration are:

• Algorithm I: basic software diversity
algorithm [35];

• Algorithm II: an adjusted software assignment
algorithm [36];

• Algorithm III: an Ant Colony Optimization (ACO)
based software assignment algorithm [18].

Figure 6 shows an example to compare three software
assignment algorithms in terms of survivability. Here
the x-axis is the ratio #weight/#color, where #weight is
the number of vulnerable software assigned to a single
machine and #color is the total number of vulnerable

8
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

An Evaluation Framework for Moving Target Defense Based on Analytic Hierarchy Process

software installed in the whole network system. This
ratio implicitly reflects the likelihood of sharing same
colors among nodes. The y-axis is the size of the largest
CVG. As we can see, Algorithm I outperforms the other
two algorithms by creating smaller smax under the same
situation. Algorithm III is better than Algorithm II.
Thus it is straightforward to rank these algorithms as
Algorithm I > Algorithm III > Algorithm II, in terms of
survivability. Note that in practice it is not necessarily
always the case one algorithm outperforms the others
all the time. (These three algorithms will be used for
illustration purpose throughout this paper.)

Figure 6. Survivability of different algorithms
To gain intuition for unpredictability, we show below

an illustrative example on distribution of the prevailing
color (of the largest CVG). As observed in Figure 7,
in Algorithm III, smax(ci) is formed by any color ci
among all the available colors with approximately the
equal probability, which indicates the random nature
of assignments generated by Algorithm III. According
to Shannon theory, when p(ci) = p(cj) for any i , j,
unpredictability (entropy) reaches a maximum. As for
Algorithm I and Algorithm II, they are more predictable
to the attacker than Algorithm III. For example, in the
shuffling outcome of Algorithm I, color 1 is more likely
to cause largest CVGs, hence more preferable for the
attacker to exploit.

Figure 7. Unpredictability of different algorithms. Here totally
20 colors (vulnerable software) are assigned in the networked
system, and the x-axis is the numerical label for each color.
Figure 8 is an example that plots the moving

penalties for three algorithms. Each data point in
this figure is obtained by calculating the penalty
score for a corresponding software assignment. It

is observed that, in general, the penalties resulted
from Algorithm II are the highest, indicating the
performance of Algorithm II is largely restricted by
practical constraints (lowest movability). Algorithm III
cannot accommodate constraints well either. Algorithm
I has the least penalty scores, so it offers better software
assignment strategies over Algorithm II and Algorithm
III in terms of movability.

Figure 8. Movability of different algorithms
To fully evaluate the stability of an algorithm, we

will need to try different network settings. In this
way, one can see the ability of the assigning algorithm
to accommodate mutable environments (e.g., different
types of network topologies such as scale-free, random
or regular graph). Again we use the three algorithms as
an example to explain the concept of stability. Suppose
we run each of the three algorithms twenty times while
changing network topologies and use all generated
assignment solutions. In Figure 9, we observe that the
variation range of smax(ci) of Algorithm II is much
smaller, which means its standard deviation is lower
than the other two. Hence, it produces more stable
results, even though the size of smax(ci) of Algorithm
II is larger than Algorithm I (that is, Algorithm II is
inferior to Algorithm I in terms of survivability).

Figure 9. Stability of different algorithms
Table 1 is a simple illustrative example to compare

and rank three available software diversity algorithms.
We consider the five proposed metrics as the evaluation
criteria for ranking (if more metrics are required to be
considered, this example can be expanded accordingly).
We are interested in comparing relative strength of
the alternative software assignment algorithms and
determining the best one in terms of the proposed
evaluating metrics.

9
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

Table 1. Calculate running weights for evaluation metrics (CI=0.8%)

Metrics Ranking Survivability Unpredictability Movability Stability Usability Weights

Survivability 1 1/2 1/2 2 4 0.175
Unpredictability 2 1 2 4 9 0.415
Movability 2 1/2 1 3 6 0.273
Stability 1/2 1/4 1/3 1 2 0.092
Usability 1/4 1/9 1/6 1/2 1 0.045

Table 2. Final scores for every algorithm

Alternatives Survivability Unpredictability Movability Stability Usability Score
\Metrics (0.175) (0.415) (0.273) (0.092) (0.045)

Algorithm I 0.571 0.143 0.571 0.143 0.333 0.343
Algorithm II 0.143 0.286 0.143 0.571 0.333 0.25
Algorithms III 0.286 0.571 0.286 0.286 0.333 0.406

First, we need a judgment matrix for determining
weights of the 5 metrics according to their importance.
In comparing the 5 metrics, for illustration purpose,
we assume they are ordered as Unpredictability >
Movability > Survivability > Stability > Usability based
on their importance. The weight assigned to eachmetric
can then be determined by adopting a scale referred
to as 9-point scale of measurement [30]. The following
5 × 5matrix contains all of the pairwise comparisons for
the metrics, as shown in Table 1.
The matrixes for metrics of the MTDs are omitted

here because the value for each metric is mostly given
in the previous table. The final decision matrix for
this problem can be generated and the final scores are
shown in Table 2.
Finally, the ranking for these three software diversity

algorithms is: Algorithm III > Algorithm I > Algorithm
II, as shown in Figure 10.

Find the best software

assignment algorithm
Goal:

Criteria:

Alternatives:

Survivability

(0.175)

Unpredictability

(0.415)

Movability

(0.273)

Stability

(0.092)

Usability

(0.045)

Algorithm I

(0.343)

Algorithm II

(0.25)

Algorithm III

(0.406)

Figure 10. Evaluation result

6. Discussions

In this section, we discuss i) how to apply our generic
evaluation framework to other MTD categories, such
as runtime-based diversification and network-based
diversification; ii) how to apply our generic evaluation

framework in different levels, such as system-level,
platform-level, and network-level.

6.1. Evaluations on Other MTD Categories
In Section 2 we discussed four different MTD categories
and in Section 5 we discussed a detailed case study on
a specific MTD category called software diversification.
In this Section, we discuss how to apply our generic
evaluation framework to other three MTD categories.
Since our five evaluation metrics are general, they
could be applied to all other three MTD categories.
The ways that we instantiate or quantify them might
be different for each different category. The idea
of Analytic Hierarchy Process (AHP) in the generic
evaluation framework is similar, where five general
evaluation metrics might have different weights for
different categories and the alternative algorithms in
each MTD category will be different. Therefore, the
flowchart for our generic evaluation framework will
stay the same for all theMTD categories evaluations and
comparisons and our generic framework will work for
all the MTD categories.

6.2. Applying the Proposed Generic Evaluation
Framework in Different Levels
Our generic evaluation framework can also be applied
in different levels, including system-level, platform-
level, and network-level. Software diversification is a
network-level solution, so we have already seen the
instantiation of our generic framework on network-
level. For system-level, we consider a specific operating
system on a machine, then all the general evaluation
metrics will be defined in this domain. Also, for
platform-level, we consider a single machine with
potentially multiple operating systems, then our

10
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

An Evaluation Framework for Moving Target Defense Based on Analytic Hierarchy Process

general evaluation metrics need to be defined for this
scope. Other than this, the AHP procedure is similar.
So, our generic evaluation framework will apply to the
system-level and platform-level, too.

7. Conclusion and Future Work
In this paper, we carefully choose five general metrics
for MTD evaluations and comparisons, including
survivability, unpredictability, movability, stability, and
usability. We also aggregate these five evaluation
metrics by for the first time proposing a generic
evaluation framework based on Analytic Hierarchy
Process (AHP). We work on a detailed case study under
a specific MTD category named software diversification
with numerical evaluation results, which validates the
effectiveness of our generic evaluation framework. Our
evaluation framework can be easily ported and applied
to other MTD categories (such as runtime-based
diversification and network-based diversification) and
in different levels. Finally, we discuss the ways to do
them.
Our future work includes applying our generic eval-

uation framework to all other three MTD categories.
Besides software diversification, we will study all the
other three cases, including runtime-based diversifica-
tion, network-based diversification, and dynamic plat-
form techniques, in details by instantiating our general
evaluation metrics and AHP procedure. We believe that
our generic MTD evaluation framework will be effective
and efficient for all the MTD categories in different
scope/level.

References
[1] Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C. and

Wang, X.S. (2011) Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, 54 (Springer).

[2] Giuffrida, C., Kuijsten, A. and Tanenbaum, A. (2012)
Enhanced operating system security through efficient
and fine-grained address space randomization. In
USENIX Security Symposium.

[3] Bojinov, H., Boneh, D., Cannings, R. and Malchev, I.

(2011) Address space randomization for mobile devices.
In Proceedings of the fourth ACM conference on Wireless
Network Security (ACM).

[4] Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A.,
Liebchen, C. and Sadeghi, A.R. (2013) Just-in-time code
reuse: On the effectiveness of fine-grained address space
layout randomization. In IEEE Symposium on Security
and Privacy (IEEE).

[5] Gundy, M.V. and Chen, H. (2009) Noncespaces: Using
randomization to enforce information flow tracking and
thwart cross-site scripting attacks. In NDSS.

[6] Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D.

and Prevelakis, V. (2010) On the general applicability
of instruction-set randomization. IEEE Transactions on
Dependable and Secure Computing 7(3): 255–270.

[7] O’Donnell, A. and Sethu, H. (2004) On achieving
software diversity for improved network security using
distributed coloring algorithms. In Proceedings of the
11th ACM conference on Computer and communications
security (ACM).

[8] Yang, Y., Zhu, S. and Cao, G. (2008) Improving sensor
network immunity under worm attacks: a software
diversity approach. In Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and
computing (ACM).

[9] Mont, M.C., Baldwin, A., Beres, Y., Harrison, K.,
Sadler, M. and Shiu, S. (2002) Towards Diversity of
Cots Software Applications: Reducing Risks of Widespread
Faults and Attacks. Tech. Rep. UK HPL-2002-178, HP
Laboratories, Bristol.

[10] Jia, Q., Sun, K. and Stavrou, A. (2013) Motag:
Moving target defense against internet denial of service
attacks. In 22nd International Conference on Computer
Communications and Networks (ICCCN) (IEEE).

[11] Crouse, M. and Fulp, E. (2011) A moving target
environment for computer configurations using genetic
algorithms. In 4th Symposium on Configuration Analytics
and Automation (SAFECONFIG) (IEEE).

[12] Cui, A. and Stolfo, S. (2011) Symbiotes and Defensive
Mutualism: Moving Target Defense (in Moving Target
Defense, Springer).

[13] Al-shaer, E. (2011) Toward Network Configuration
Randomization for Moving Target Defense (in Moving
Target Defense 2011, Springer).

[14] Wikipedia (2017), Frequency-hopping spread spectrum.
URL http://en.wikipedia.org/wiki/FHSS.

[15] Zhuang, R., DeLoach, S.A. and Ou, X. (2014) Towards a
theory of moving target defense. In MTD workshop.

[16] Zhuang, R., Bardas, A.G., DeLoach, S.A. and Ou,

X. (2015) A theory of cyber attacks: A step towards
analyzing mtd systems. In MTD workshop.

[17] Zhuang, R. (2015) A Theory for Understanding and
Quantifying Moving Target Defense. Ph.D. thesis, Kansas
State University.

[18] Huang, C., Zhu, S. and Guan, Q. (2015) Multi-objective
software assignment for active cyber defense. In CNS.

[19] Jiang, X., Wang, H.J., Xu, D. and Wang, Y.M. (2007)
Randsys: Thwarting code injection attacks with system
service interface randomization. In SRDS.

[20] Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu,

N. and Boneh, D. (2004) On the effectiveness of address-
space randomization. In CCS.

[21] Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M. and
Liu, P. (2014) Comparing different moving target defense
techniques. In MTD workshop.

[22] Zaffarano, K., Taylor, J. and Hamilton, S. (2015)
A quantitative framework for moving target defense
effectiveness evaluation. In MTD workshop.

[23] Lamb, C. and Hamlet, J. (2016) Dependency graph
analysis and moving target defense selection. In MTD
workshop.

[24] Taylor, J., Zaffarano, K., Koller, B., Bancroft, C. and
Syversen, J. (2016) Automated effectiveness evaluation
of moving target defenses: Metrics for missions and
attacks. In MTD workshop.

11
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

Chu Huang, Yi Yang, and Sencun Zhu

[25] Prakash, A. and Wellman, M. (2015) Empirical game-
theoretic analysis for moving target defense. In MTD
workshop.

[26] andăHodaăMaleki, S.V.,Koch,W.,AzerăBestavros and
van Dijk, M. (2016) Markov modeling of moving target
defense games. In MTD workshop.

[27] Kainuma, Y. and Tawara, N. (2006) A multiple attribute
utility theory approach to lean and green supply
chain management. International Journal of Production
Economics 101(1): 99–108.

[28] Yoon, K. and Hwang, C.L. (1995) Multiple Attribute
Decision Making: an Introduction (Sage).

[29] Abdi, H. and Valentin, D. (2007) Multiple Correspon-
dence Analysis, Encyclopedia of Measurement and Statistics.

[30] Saaty, T. (2008) Decision making with the analytic
hierarchy process. International Journal of Services
Sciences 1(1): 83–98.

[31] Saaty, T. (1990) How to make a decision: the analytic
hierarchy process. European journal of operational research
48(1): 9–26.

[32] (2017), AHP Example. URL https://en.wikipedia.

org/wiki/Analytic_hierarchy_process.
[33] Saaty, T. (1980) The Analytic Hierarchy Process (New

York: McGraw-Hill).
[34] (2017), The analytic hierarchy process. URL www.dii.

unisi.it/mocenni/Note_AHP.pdf.
[35] Huang, C., Zhu, S. and Erbacher, R. (2014) Toward

software diversity in heterogeneous networked systems.
In Proceedings of the 28th IFIP WG 11.3 Conference on
Data and Applications Security and Privacy (DBSec).

[36] Huang, C., Zhu, S., Guan, Q. and He, Y. (2017) A
software assignment algorithm for minimizing worm
damage in networked systems. Journal of Information
Security and Applications .

12
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e4

