
Probabilistic Inference of the Stealthy Bridges
between Enterprise Networks in Cloud
Xiaoyan Sun1,∗, Jun Dai1, Anoop Singhal2, Peng Liu3

1California State University, Sacramento, CA 95819, USA
2National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
3The Pennsylvania State University, University Park, PA 16802, USA

Abstract

Cloud computing, with the paradigm of computing as a utility, has the potential to significantly tranform
the IT industry. Attracted by the high efficiency, low cost, and great flexibility of cloud, enterprises began
to migrate large parts of their networks into cloud. The cloud becomes a public space where multiple
“tenants” reside. Except for some public services, the enterprise networks in cloud should be absolutely
isolated from each other. However, some “stealthy bridges” could be established to break such isolation due to
two features of the public cloud: virtual machine image sharing and virtual machine co-residency. This paper
proposes to use cross-layer Bayesian networks to infer the stealthy bridges existing between enterprise network
islands. Cloud-level attack graphs are firstly built to capture the potential attacks enabled by stealthy bridges
and reveal hidden possible attack paths. Cross-layer Bayesian networks are then constructed to infer the
probability of stealthy bridge existence. The experiment results show that the cross-layer Bayesian networks
are capable of inferring the existence of stealthy bridges given supporting evidence from other intrusion steps
in a multi-step attack.

Received on 25 December 2017; accepted on 26 December 2017; published on 4 January 2018
Keywords: cloud, stealthy bridge, Bayesian network, attack graph

Copyright © 2018 Xiaoyan Sun et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.4-1-2018.153526

1. Introduction
To gain various benefits in terms of efficiency, cost
and flexibility, enterprise networks are now moving
some of their parts (such as web server, database
server, etc.) from traditional infrastructure into cloud
environments. Cloud providers such as Amazon
Elastic Compute Cloud (EC2) [1], Rackspace [2], and
Microsoft’s Azure cloud platform [3] provide virtual
servers that can be rented on demand by users. This
paradigm enables cloud customers to provide highly
available and scalable services by acquiring computing
resources easily and instantly. Specifically, in the
service model of Infrastructure-as-a-Service (IaaS),
cloud providers provide resources such as storage,
network and platforms in the forms of virtual machines.
Cloud customers, such as the enterprises, can readily
construct the entire virtual network infrastructure

*Corresponding author. Email: xiaoyan.sun@csus.edu

by renting a number of virtual machines. As the
demand for computing resources changes according to
the business volume, the network size can grow or
shrink through simply adjusting the number of rented
machines.

Although attractive in many aspects, moving into
cloud also introduces security issues that are yet to
be solved. One major threat is posed due to multiple
tenants “living” in the same public space of cloud.
Generally speaking, a public cloud can provide virtual
infrastructures to many enterprises. Except for provid-
ing some public services such as web services, an enter-
prise network is normally expected to be like an isolated
island: connections from the outside network to the
protected internal network are prohibited. However,
in the cloud environment, virtual machines rented by
different enterprises may reside on the same cloud, and
even on the same host machine. Consequently, some
“stealthy bridges” can be created by attackers between
the isolated enterprise network islands. As shown in

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<xiaoyan.sun@csus.edu>

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

Attacker

Web

Server

File

Server

Database

Server
DNS

Server

Email

Server

Web

Server

File

Server SSH Server
Database

Server

DNS

Server

Email

Server

VMI repository

Web

Server

NFS

Server
SSH

Server

Database

Server

DNS

Server

Email

Server

Enterprise A

Enterprise B
Enterprise C

Cloud

Other Enterprise
networks

Figure 1. The Attack Scenario

Figure 1, attackers are able to establish stealthy bridges
connecting several enterprise networks. Once the isola-
tion among enterprise networks is penetrated, informa-
tion confidentiality could be violated. Moreover, with
the stealthy bridges, the attack path confined inside
an enterprise network is able to traverse to another
enterprise network in cloud, or even extend to the
traditional infrastructures in a hybrid network. In this
situation, the compromised virtual machines involved
in a stealthy bridge become stepping stones for a multi-
step cross-network attack. Therefore, stealthy bridges
pose non-trivial threats to the security of enterprise
networks residing in the cloud.

Two unique features of the public cloud enable
the creation of stealthy bridges. First, cloud users are
allowed to create and share virtual machine images
(VMIs) with other users. Besides, cloud providers also
provide VMIs with pre-configured software, saving
users’ efforts of installing the software from scratch.
These VMIs provided by both cloud providers and users
form a large repository. For convenience, users can take
a VMI directly from the repository and instantiate it
with ease. The instance virtual machine inherits all the
security characteristics (if any) from the parent image,
such as the security configurations and vulnerabilities.
The countermeasure is to fix these problems through
vulnerability patching, or re-configuration, etc, as soon
as the VMIs are instantiated. In actual fact, however,
these problems are usually ignored by normal users,
which make the instance virtual machines remain
vulnerable. Therefore, if an attacker creates and
shares a malicious VMI that contains security holes,
and the malicious VMI is later instantiated by an
innocent user in an enterprise network, then it’s like

moving the attacker’s machine directly into the internal
network, without triggering the security sensors such
as Intrusion Detection Systems (IDSs) or the firewall. In
this case, a “stealthy bridge" can be created via security
holes that bypass the hypervisor (e.g., backdoors). For
example, in Amazon EC2, if an attacker intentionally
leaves his public key unremoved when publishing an
AMI (Amazon Machine Image), the attacker can later
login into the running instances of this AMI with his
own private key.

Second, virtual machines owned by different tenants
may co-reside on the same physical host machine. To
achieve high efficiency, customer workloads are mul-
tiplexed onto a single physical machine utilizing vir-
tualization. Virtual machines on the same host may
belong to unrelated users, or even rivals. Thus co-
resident virtual machines are expected to be absolutely
isolated from each other. However, current virutal-
ization mechanisms cannot ensure perfect isolation.
Since virtual machines on the same host transparently
share the physical resources, the co-residency relation-
ship can enable security problems such as informa-
tion leakage, performance interference [4], or even co-
resident virtual machine crashing. To detect and con-
firm the co-residency relationship, a number of tech-
niques such as side-channel analysis or traffic anal-
ysis can be employed. Previous work [5] has shown
that it is possible to identify on which physical host
a target virtual machine is likely to reside, and then
intentionally place an attacker virtual machine onto the
same host in Amazon EC2. Once the co-residency is
achieved, a “stealthy bridge" can be further established
via a number of techniques, such as the side-channel for
passively observing the activities of the target machine

2
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

to extract information for credential recovering [6], or
a covert-channel for actively sending information from
the target machine [8].

Stealthy bridges are stealthy information tunnels
existing between disparate networks in cloud, that
are unknown to security sensors and should have
been forbidden. Stealthy bridges are developed mainly
by exploiting vulnerabilities that are unknown to
vulnerability scanners. Isolated enterprise network
islands are connected via these stealthy tunnels,
through which information (data, commands, etc.) can
be acquired, transmitted or exchanged maliciously.
Therefore stealthy bridges pose very severe threats to
the security of public cloud. However, the stealthy
bridges are inherently unknown or hard to detect:
they either exploit unknown vulnerabilities, or cannot
be easily distinguished from authorized activities by
security sensors. For example, side-channel attacks
extract information by passively observing the activities
of resources shared by the attacker and the target
virtual machine (e.g. CPU, cache), without interfering
the normal running of the target virtual machine.
Similarly, the activity of logging into an instance by
leveraging intentionally left credentials (passwords,
public keys, etc.) also hides in the authorized user
activties.

The stealthy bridges can be used to construct a multi-
step attack and facilitate subsequent intrusion steps
across enterprise network islands in cloud. The stealthy
bridges per se are difficult to detect, but the intrusion
steps before and after the construction of stealthy
bridges may trigger some abnormal activities. Human
administrators or security sensors like IDS could notice
such abnormal activities and raise corresponding alerts,
which can be collected as the evidence of attack
happening1. Therefore, our strategy is to leverage the
evidence (e.g. abnormal system activities, alerts, etc.)
captured in other intrusion steps to infer the existence
of stealthy bridges. Our approach has two insights:
1) It is quite straightforward to build a cloud-level
attack graph to capture the potential attacks enabled by
stealthy bridges. 2) To leverage the evidence collected
from other intrusion steps, we construct a cross-layer
Bayesian Network (BN) to infer the existence of stealthy
bridges. Based on the inference, security analysts will
know where stealthy bridges are most likely to exist and
need to be further scrutinized.

The main contributions of this work are as follows:
First, a cloud-level attack graph is built to capture the

potential attacks enabled by stealthy bridges and reveal
possible hidden attack paths that are previously missed
by individual enterprise network attack graphs.

1 In our trust model, we assume cloud providers are fully trusted by cloud customers. In addition to security alerts generated
at cloud level, such as alerts from hypervisors or cache monitors, the cloud providers also have the privilege of accessing alerts
generated by customers’ virtual machines.

Second, based on the cloud-level attack graph,
a cross-layer Bayesian network is constructed by
identifying four types of uncertainties. The cross-layer
Bayesian network is able to infer the existence of
stealthy bridges given supporting evidence from other
intrusion steps.

The preliminary version of this paper has appeared
in [9]. In this paper, we extend the previous version
and add new experiments to further evaluate our
approach. The remainder of this paper is organized
as follows. In Section 2, we review the research work
related to this paper. In Section 3, we explain the
existing attack graph models and introduce the cloud-
level attack graph model. In Section 4, the cross-
layer Bayesian network is presented with four types
of identified uncertainties. Section 5 describes the
implementation details for cloud-level attack graph
generation and Bayesian network construction. In
Section 6, we demonstrate the experiment results. More
experiments are added in this section compared to [9].
Section 7 concludes the paper.

2. Related Work
We explore the literature for the following topics that
are related to our paper.

VMI sharing. [42] explores a variety of attacks that
leverage the virtual machine image sharing in Amazon
EC2. Researchers were able to extract highly sensitive
information from publicly available VMIs. The analysis
revealed that 30% of the 1100 analyzed AMIs (Amazon
Machine Images) at the time of the analysis contained
public keys that are backdoors for the AMI Publishers.
The backdoor problem is not limited to AMIs created
by individuals, but also affects those from well-known
open-source projects and companies.

Co-Residency. The security issues caused by virtual
machine co-residency have attracted researchers’ atten-
tion recently. [12] pointed out that the shared resource
environment of cloud will introduce security issues that
are fundamentally new and unique to cloud. [5] shows
how attackers can identify on which host a target virtual
machine is likely to reside in Amazon EC2, and then
place the malicious virtual machine onto the same host
through a number of instantiating attemps. Such co-
residency can be used for further malicious activities,
such as launching side-channel attack to extract infor-
mation from a target virtual machine [6]. [11] takes
an opposite perspective and proposes to detect co-
residency via side-channel analysis. [4] demonstrates
a new class of attacks called resource-freeing attacks
(RFAs), which leverage the performance interference of
co-resident virtual machine. [8] presents a traffic analy-
sis attack that can initiate a covert channel and confirm
co-residency with a target virtual machine instance. [7]
also considers attacks towards hypervisor and propose

3
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

to eliminate the hypervisor attack surface through new
system design.

Attack Graphs. The attack graph is the basis graph
model in our paper to capture the combined vulnerabil-
ity exploits. There are mainly two representation types
of attack graph [13, 14]: state enumeration attack graph
(also called network-state attack graph [23]) and depen-
dency attack graph. At the early development stage,
state enumeration attack graph is the main stream.
[15–21] are research works regarding state enumera-
tion attack graph. Because of the serious complexity
problem of state enumeration attack graph, researchers
began to develop the new dependency attack graph.
Representative works in dependency attack graph are
[13, 22–27].

Bayesian Networks. BNs have been applied to
intrusion detection [43] and cyber security analysis
in traditional networks [30]. [30] analyzes which
hosts are likely to be compromised based on known
vulnerabilities and observed alerts. Our work lands
on a different cloud environment and takes a reverse
strategy by using BN to infer the stealthy bridges, which
are unknown in nature. In the future, the inference of
stealthy bridges can be further extended to identify the
zero-day attack paths in cloud, as in [10] for traditional
networks.

3. Cloud-level Attack Graph Model
To reflect the potential attacks that could be enabled by
stealthy bridges, a cloud-level attack graph should be
built first as the basis for subsequent Bayesian network
construction.

3.1. Attack Graph
Attack graph is a widely accepted solution for
network vulnerability analysis. Although a number of
vulnerability scanners are available for dealing with
known vulnerabilities, such as Nessus[31] and OVAL
interpreter [32], these scanners view vulnerabilities
as isolated from each other. This is problematic
considering the fact that individual vulnerabilities
can be combined together for penetrating a network.
Keep patching and perfectly secure one single host is
useless for secure the entire network. Unfortunately,
few of the security tools provide information about how
attackers could combine vulnerabilities to achieve an
attack goal. Even for experienced security experts or
network administrators, it is quite difficult to construct
an attack scenario solely by reading the vulnerability
scan reports. The situation becomes even worse when
it comes to big enterprise networks with hundreds to
thousands of hosts.

The attack graph is powerful for dealing with the
combination of security holes. Taking vulnerabilities
existing in a network as the input, attack graph can

26:networkServiceInfo(web
Server,openssl,tcp,22,_)

27:vulExists(webServer,’CVE-2008-
0166’,openssl,remoteExploit,privEscalation)

22:Rule(remote exploit of a server program)

14:execCode(webServer,root)

23:netAccess(webServer,tcp,22)

...

...

Figure 2. A Portion of an Example Logical Attack Graph

generate the possible attack paths leveraging these
vulnerabilities. An attack path shows a sequence of
potential exploitations to specific attack goals. For
instance, an attacker may first exploit a vulnerability
on Web Server to obtain the root privilege, and then
further compromise Database Server using the acquired
privilege.

A variety of attack graphs have been developed
for vulnerability analysis, mainly including state
enumeration attack graphs [17, 18, 21] and dependency
attack graphs [23–25]. In both types, the attack graph
is represented with a directed graph G(V,E), where V is
the set of vertex and E is the set of directed edges. The
difference between state enumeration and dependency
attack graphs lies in the semantic meaning of vertices
and edges.

In state enumeration attack graph, a vertex represents
one state of the entire network and the edges represent
the transition between vertices. The network state will
transit from one to another due to attacker actions.
For example, s1 → s2 → s3 is an attack path meaning
that the network state transits from state s1 to s2, and
then to state s3. The transition happens when some
specific conditions are enabled, but the transition edges
do not directly show when these conditions are first
enabled. The order of exploits is also considered in state
enumeration attack graph.

In the dependency attack graph, a vertex represents
a system condition rather than the entire network
state. The edges between vertices represent the causality
relationship. The dependency attack graph clearly
shows what are the required preconditions for a post-
condition to become true, and how the causality
relationship takes effect and enables the attack to step
forward. A single independent exploit appears only
once in the graph and the order of exploits is not
considered. This makes the dependency attack graph
more succinct and easy to understand.

Our paper employs logical attack graph, which is a
type of dependency attack graph. Figure 2 shows part
of an exemplar logical attack graph. There are two types
of nodes in logical attack graph: derivation nodes (also
called rule nodes, represented with ellipse), and fact

4
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

vm11 vm12 vm1i

Hypervisor 1

... vm21 vm2j vm2k

Hypervisor 2

...

Host 1 Host 2

May be instantiated from the same virtual machine image

May belong to the same enterprise network

Figure 3. Features of the Public Cloud Structure

nodes. The fact nodes could be further classified into
primitive fact nodes (in rectangles), and derived fact
nodes (in diamonds). Primitive fact nodes are typically
objective conditions of the network, including network
connectivity, host configuration, and vulnerability
information. Derived fact nodes represent the facts
inferred from logical derivation. Derivation nodes
represent the interaction rules used for derivation. The
directed edges in this graph represent the causality
relationship between nodes. In a logical dependency
attack graph, one or more fact nodes could serve as the
preconditions of a derivation node and cause it to take
effect. One or more derivation nodes could further cause
a derived fact node to become true. Each derivation
node represents the application of an interaction rule
given in [27] that yields the derived fact.

For example, in Figure 2, Node 26, 27 (primitive fact
nodes) and Node 23 (derived fact node) are three fact
nodes. They represent three preconditions respectively:
Node 23, the attacker has access to the Web Server;
Node 26, Web Server provides OpenSSL service; Node
27, Openssl has a vulnerability CVE-2008-0166. With
the three preconditions satisfied simultaneously, the
rule of Node 22 (derivation node) can take effect,
meaning the remote exploit of a server program could
happen. This derivation rule can further cause Node 14
(derived fact node) to be valid, meaning attacker can
execute code on Web Server.

3.2. Cloud-level Attack Graph
When applying attack graphs to cloud, each enterprise
network on cloud can scan its own virtual machines
for existing vulnerabilities and generate an individual
attack graph. The individual attack graph shows
how attackers could exploit certain vulnerabilities
and conduct a sequence of attack steps inside the
enterprise network. However, such individual attack
graphs are confined to the enterprise networks
without considering the potential threats from cloud
environment. The entire cloud-level attack graph may
not be complete due to unawareness of existing
stealthy bridges. Stealthy bridges could activate the
prerequisites of some attacks that are previously
impossible in traditional network environment and

VM Layer

Host Layer

VMI Layer

Host h1

Enterprise A

Image v1

Enterprise CEnterprise B

Enterprise C

Enterprise D

Figure 4. An Example Cloud-level Attack Graph Model

thus enable new attack paths. These attack paths are
easily missed by individual attack graphs. For example,
in Figure 1, without assuming the stealthy bridge
existing between enterprise A and B, the individual
attack graph for enterprise B can be incomplete
or even not established due to lack of exploitable
vulnerabilities. In actual fact, an attack path indeed
exists. Therefore, a cloud-level attack graph needs to
be built to incorporate the existence of stealthy bridges
in the cloud. By considering the attack preconditions
enabled by stealthy bridges, the cloud-level attack
graph can reveal hidden potential attack paths that are
missed by individual attack graphs.

The cloud-level attack graph should be modeled
based on the cloud structure. Due to the VMI sharing
feature and the co-residency feature of cloud, a public
cloud has the following structural characteristics. First,
virtual machines can be created by instantiating VMIs.
Therefore virtual machines residing on different hosts
may actually be instances of the same VMI. In another
word, they could have the same VMI parents. Second,
virtual machines belong to one enterprise network may
be assigned to a number of different physical hosts
that are shared by other enterprise networks. That is,
the virtual machines employed by different enterprise
networks are likely to reside on the same host. As
shown in Figure 3, the vm11 on host 1 and vm2j
on host 2 may be instances of the same VMI, while
vm12 and vm2k could belong to the same enterprise
network. Third, the real enterprise network could be a
hybrid of a cloud network and a traditional network.
For example, most servers of an enterprise network
could be implemented in the cloud, while the personal
computers and workstations could be in the traditional
network infrastructure.

Therefore, taking the above characteristics of cloud
structure into account, our cloud-level attack graph is
modeled as follows.

1) The cloud-level attack graph is a cross-layer graph
that is composed of three layers: virtual machine layer,
VMI layer, and host layer, as shown in Figure 4. With
these layers, the attack graphs are not only about the
individual virtual machines, but also include potential
attacks at the VMI level and the host level.

5
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

2) The virtual machine layer is the major layer in
the attack graph stack. This layer reflects the causality
relationship between vulnerabilities existing inside the
virtual machines and the potential exploits towards
these vulnerabilities. If stealthy bridges do not exist,
the attack graph generated in this layer is scattered:
each enterprise network has an individual attack graph
that is isolated from others. The individual attack
graphs can be the same as the ones generated by cloud
customers themselves through scanning the virtual
machines for known vulnerabilities. Without the VMI
layer and the host layer, such individual attack graphs
can be scattered. However, if stealthy bridges exist on
the other two layers, the isolated attack graph could
be connected, or even experience dramatic changes:
some hidden potential attack paths will be revealed and
the original attack graph is enriched. For example, in
Figure 4, without the stealthy bridge on h1, attack paths
in enterprise network C will be missing or incomplete
because no exploitable vulnerability is available as the
entry point for attack.

3) The VMI layer mainly captures the stealthy bridges
and corresponding attacks caused by VMI sharing.
Since virtual machines in different enterprise networks
may be instantiated from the same parent VMI, they
could inherit the same security issues from parent
image, such as software vulnerabilities, malware, or
backdoors, etc. Bugiel et al. explores a number of
attacks that take advantage of the VMI sharing in
Amazon EC2 [42]. Evidence from [28] shows that 98%
of Windows VMI and 58% of Linux VMIs in Amazon
EC2 contain software with critical vulnerabilities. A
large number of software on these VMIs are more
than two years old. Since cloud customers take full
responsibility for securing their virtual machines, many
of these vulnerabilities remain unpatched and thus pose
great risks to cloud. Once a parent VMI is identified
with a specific vulnerability, it will affect all its children
virtual machine instances, and thus all the relevant
enterprise networks. As a result, the attack graphs
involving this VMI will be affected at the VMI layer.
Besides, the attack graphs for the children virtual
machines are influenced as well: a precondition node
could be activated, or a new interaction rule should be
constructed in the attack graph generation tool.

The incorporation of the VMI layer provides another
benefit to the subsequent Bayesian network analysis.
It enables the interaction between the virtual machine
layer and the VMI layer. On one hand, the probability
of a vulnerability existence on a VMI will affect the
probability of the vulnerability existence on its children
instance virtual machines. On the other hand, if new
evidence is found regarding the vulnerability existence
on the children instances, the probability change will in
turn influence the parent VMI. If the same evidence is

26_networkServiceInfo

27_vulExists

...

...

23_netAccess

14_execCode

1

26 27 23 14
T T T 0.9
otherwise 0

Figure 5. A Portion of Bayesian Network with associated CPT
table

observed on multiple instances of the VMI, this VMI is
very likely to be problematic.

4) The host layer mainly captures the stealthy
bridges caused by virtual machine co-residency and
other exploits towards the physical hosts. Exploits on
this layer could lead to further penetrations on the
virtual machine layer. In addition, this layer actually
captures all attacks that could happen on the host
level, including those on pure physical hosts with no
virtual machines. Hence it provides a good interface to
hybrid enterprise networks that are implemented with
partial cloud and partial traditional infrastructures.
The potential attack paths identified on the cloud part
could possibly extend to traditional infrastructures if
all prerequisites for the remote exploits are satisfied,
such as network access being allowed, and exploitable
vulnerabilities existing, etc. As in Figure 4, the attack
graph for enterprise C extends from virtual machine
layer to host layer.

4. Cross-layer Bayesian Networks
Since the stealthy bridges are hard to detect, our
strategy is to infer the ex- istence by leveraging the
evidence collected from other intrusion steps before
and after the stealthy bridges. The Bayesian network
is the proper tool for incorporating such evidence and
performing probability inference.

4.1. Bayesian Networks
A Bayesian network (BN) is a probabilistic graphical
model representing cause and effect relations. For
example, it is able to show the probabilistic causal
relationships between a disease and the corresponding
symptoms. Formally, a Bayesian network is a Directed
Acyclic Graph (DAG) that contains a set of nodes and
directed edges. The nodes represent random variables
of interest and the directed edges represent the causal
influence among the variables. The strength of such
influence is represented with a conditional probability

6
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

...

...

23 26 27 AAN

14

1

26 27 23 AAN 14
T T T T 0.9

otherwise 0

Figure 6. A Portion of Bayesian Network with AAN node

table (CPT). For example, Figure 5 shows a portion
of a BN constructed directly from the attack graph in
Figure 2 by removing the rule Node 22. Node 14 can
be associated with the CPT table as shown. This CPT
means that if all of the preconditions of Node 14 are
satisfied, the probability of Node 14 being true is 0.9.
Node 14 is false in all other cases.

A Bayesian network can be used to compute the prob-
abilities of variables of interest. It is especially powerful
for diagnosis and prediction analysis. For example, in
diagnosis analysis, given the symptoms being observed,
a BN can calculate the probability of the causing fact
(respresented with Pr(cause | symptom = T rue)). While
in prediction analysis, given the causing fact, a BN will
predict the probability of the corresponding symptoms
showing up (P r(symptom|cause = T rue)). In the cyber-
security field, similar diagnosis and prediction analysis
can also be performed, such as calculating the proba-
bility of an exploitation happening if related IDS alerts
are observed(P r(exploitation|IDSalert = T rue)), or the
probability of the IDS raising an alert if an exploitation
already happened (P r(IDSalert|exploitation = T rue)).
This paper mainly carries out a diagnosis analysis that
computes the probability of stealthy bridge existence
by collecting evidence from other intrusion steps. Diag-
nosis analysis is a kind of “backward" computation.
In the cause-and-symptom model, a concrete evidence
about the symptom could change the posterior proba-
bility of the cause by computing P r(cause|symptom =
T rue). More intuitively, as more evidence is collected
regarding the symptom, the probability of the cause
will become closer to reality if the BN is constructed
properly.

4.2. Identify the Uncertainties
Inferring the existence of stealthy bridges requires real-
time evidence being collected and analyzed. BN has
the capability, which attack graphs lack, of performing
such real-time security analysis. Although the attack
graph shows the potential attack paths, it cannot
quantitatively analyze which path is ongoing or has
been completed. The reason is that attack graphs
only perform deterministic logic reasoning and do not
consider the uncertainties associated with attacks. For
example, in an attack graph, if all the preconditions
of an attack are satisfied, the attacker should be able

to launch the attack. However, in real-time security
analysis, there are a range of uncertainties associated
with this attack that cannot be reflected in an attack
graph. For example, has the attacker chosen to launch
the attack? If he launched it, did he succeed to
compromise the host? Are the Snort [29] alerts raised
on this host related to the attack? Should we be more
confident if we got other alerts from other hosts in
this network? Bayesian network is able to address such
uncertainties existing in the real-time security analysis
process.

One non-trivial difficulty for constructing a well
functioning BN is to identify and model the uncertainty
types existing in the attack procedure. In this paper, we
mainly consider four types of uncertainties related to
cloud security.

Uncertainty of stealthy bridges existence. The pres-
ence of known vulnerabilities is usually determinis-
tic due to the availability of vulnerability scanners.
After scanning a virtual machine or a physical host,
the vulnerability scanner such as Nessus [31] is able
to tell whether a known vulnerability exists or not2.
Nonetheless, due to the unknown or hard-to-detect
feature of stealthy bridges, effective scanners for them
are rare. Therefore, the existence of stealthy bridges
itself is a type of uncertainty. In this paper, to enable
the construction of a complete attack graph, stealthy
bridges are hypothesized to be existing when corre-
sponding conditions are met. For example, if two vir-
tual machines co-reside on the same physical host and
one of them has been compromised by the attacker, the
attack graph will be generated by making a hypothesis
that a stealthy bridge can be created between these two
virtual machines. This is enforced by crafting a new
interaction rule as follows in MulVAL:

interaction rule(

(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),

ResideOn(Vm_1, Host),

ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual

machines co-residing on the same host after

one virtual machine is compromised’)).

Afterwards, the BN constructed based on the attack
graph will infer the probability of this hypothesis being
true.

Uncertainty of attacker action. Uncertainty of
attacker action is first identified by [30]. Even if all
the prerequsites for an attack are satisfied, the attack
may not happen because attackers may not take action.
Therefore, a kind of Attack Action Node (AAN) is added
to the BN to model attackers’ actions. An AAN node is
introduced as an additional parent node for the attack.
For example, the BN shown in Figure 5 is changed to

2The assumption here is that a capable vulnerability scanner is able to scan out all the known vulnerabilities.

7
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

26 27

...

...

23

14

AAN

Evidence

ECN

1

AAN True False
ECN VeryHigh High Medium Low None VeryHigh High Medium Low None
True 0.95 0.8 0.6 0.55 0.5 0.05 0.2 0.4 0.45 0.5
False 0.05 0.2 0.4 0.45 0.5 0.95 0.8 0.6 0.55 0.5

Figure 7. The Evidence-Condidence Pair and Associated
Exemplar CPT

Figure 6 after adding an AAN node. Correspondingly,
the CPT table is modified as in Figure 6. This means
“attacker taking action" is another prerequisite to be
satisfied for the attack to happen.

An AAN node is not added for all attacks. They
are needed only for important attacks such as the
very first intrustion steps in a multi-step attack, or
attacks that need attackers’ action. Since an AAN
node represents the primitive fact of whether an
attacker taking action and has no parent nodes, a prior
probability distribution should be assigned to an AAN
to indicate the likelihood of an attack. The posterior
probability of AAN will change as more evidence is
collected.

Uncertainty of exploitation success. Uncertainty
of exploitation success goes to the question of “did
the attacker succeed in this step?". Even if all the
prerequisites are satisfied and the attacker indeed
launches the attack, the attack is not guarenteed to
succeed. The success likelihood of an attack mainly
depends on the exploit difficulty of vulnerabilities. For
some vulnerabilities, usable exploit code is already
publicly available and the exploitation can be easy.
While for some other vulnerabilities, the exploit is still
in the proof-of-concept stage and no successful exploit
has been demonstrated. Exploiting such vulnerabilities
from scratch should be fairly difficult. Therefore, the
exploit difficulty of a vulnerability can be used to derive
the CPT table of an exploitation. For example, if the
exploit difficulty for the vulnerability in Figure 5 is very
high, the probability for Node 14 when all parent nodes
are true could be assigned as very low, such as 0.3. If
in the future a public exploit code is made available for
this vulnerability, the probability for Node 14 may be
changed to a higher value accordingly.

The National Vulnerability Database (NVD) [33]
maintains a CVSS [34] scoring system for all CVE
[35] vulnerabilities. In CVSS, Access Complexity (AC)
is a metric that describes the exploit complexity of
a vulnerability using values of “high", “medium",
“low". Hence the AC metric can be employed to
derive CPT tables of exploitations and model the

uncertainty of exploitation success [30]. For example,
the parameters in CPT table for Node 14 can be
determined according to the corresponding AC value of
the involved vulnerability.

Uncertainty of evidence. Evidence is the key
factor for BN to function. In BN, uncertainties are
indicated with probabilities of related nodes. Each
node describes a real or hypothetical event, such as
“attacker can execute code on Web Server", or “a
stealthy bridge exists between virtual machine A and
B", etc. Evidence is collected to reduce uncertainty and
calculate the probabilities of these events. According
to the uncertainty types mentioned above, evidence is
also classified into three types: evidence for stealthy
bridges existence, evidence for attacker action, and
evidence for exploitation success. Whenever a piece of
evidence is observed, it is assigned to one of the above
evidence types to support the corresponding event. This
is done by adding evidence as the children nodes to the
event nodes. For example, an IDS alert about a large
number of login attempts can be regarded as evidence
of attacker action, showing that an attacker could have
tried to launch an attack. This evidence is then added
as the child node to an AAN, as exemplified in Figure 7.
For another example, the alert “system log is deleted"
given by Tripwire [36] can be the child of the node
“attacker can execute code", showing that an exploit has
been successfully achieved.

However, evidence per se contain uncertainty. The
uncertainty is twofold. First, the support of evidence
to an event is uncertain. For analogy, a symptom of
coughing cannot completely prove the presence of lung
disease. In the above examples, could the multiple
login attempts testify that attackers have launched the
attack? How likely is it that attackers have succeeded
in compromising the host if a system log deletion is
observed? Second, evidence from security sensors is not
100% accurate. IDS systems such as Snort, Tripwire, etc.
suffer a lot from a high false alert rate. For example,
an event may trigger an IDS to raise an alert while
actually no attack happens. In this case, the alert is
a false positive. The reverse case is a false negative,
that is, when an IDS should have raised an alarm but
doesn’t. Therefore, we propose to model the uncertainty
of evidence with an Evidence-Confidence(EC) pair as
shown in Figure 7. The EC pair has two nodes, an
Evidence node and an Evidence Confidence Node
(ECN). An ECN is assigned as the parent of an Evidence
node to model the confidence level of the evidence. If
the confidence level is high, the child evidence node
will have larger impact on other nodes. Otherwise, the
evidence will have lower impact on others. An example
CPT associated with the evidence node is given in
Figure 7. Whenever new evidence is observed, an EC
pair is attached to the supported node. A node can have
several EC pairs attached with it if multiple instances

8
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

of evidence are observed. With ECN nodes, security
experts can tune confidence levels of evidence with ease
based on their domain knowledge and experience. This
will greatly enhance the flexibility and accuracy of BN
analysis.

5. Implementation
5.1. Cloud-level Attack Graph Generation
This paper uses MulVAL [27] as the attack graph
generation tool. To construct a cloud-level attack graph,
new primitive fact nodes and interaction rules have
to be crafted in MulVAL on the VMI layer and host
layer to model the existence of stealthy bridges. Each
virtual machine has an ID tuple (Vm_id, VMI_id, H_id)
associated with it, which represents the ID for the
virtual machine itself, the VMI it was derived from, and
the host it resides on. The VMI layer mainly focuses
on the model of VMI vulnerability inheritance and
the VMI backdoor problems. The host layer mainly
focuses on modeling the virtual machine co-residency
problems. Table 1 provides a sample set of newly
crafted interaction rules that are incorporated into
MulVAL for cloud-level attack graph generation.

5.2. Construction of Bayesian Networks
Deriving Bayesian networks from cross-layer attack
graphs consists of four major components: removing
rule nodes in the attack graph, adding new nodes,
determining prior probabilities, and constructing CPT
tables.

Remove rule nodes of attack graph. In an attack
graph, the rule nodes imply how postconditions
are derived from preconditions. The derivation is
deterministic and contains no uncertainty. Therefore,
these rule nodes have no effect on the reasoning process,
and thus can be removed when constructing the BN.
To remove a rule node, its preconditions are connected
directly to its postconditions. For example, in Figure 2,
Node 26, 27, and 23 will be connected directly to Node
14 by removing Node 22.

Adding new nodes. New nodes are added to capture
the uncertainty of attacker action and the uncertainty of
evidence. To capture the uncertainty of attacker action,
each step has a separate AAN node as the parent, rather
than sharing the same AAN among multiple steps. The
AAN node models attacker action at the granularity of
attack steps, and thus reflects the actual attack paths.
To model the uncertainty of evidence, whenever new
evidence is observed, an EC pair is constructed and
attached to the supported node with uncertainty.

Determining prior probabilities. Prior probability
distributions should be determined for all root nodes
that have no parents, such as the vulnerability existence
nodes, the network access nodes, or the AAN nodes.

Constructing CPT tables. Some CPT tables can be
determined according to a standard, such as the the AC
metric in CVSS scoring system. The AC metric describes
the exploit complexity of vulnerabilities and thus can
be used to derive the CPT tables for corresponding
exploitations. Some other CPT tables may involve
security experts’ domain knowledge and experience.
For example, the VMIs from a trusted third party
may have lower probability of containing security holes
such as backdoors, while those created and shared by
individual cloud users may have higher probability.

The constructed BN should be robust against small
changes in prior probabilities and CPT tables. To ensure
such robustness, we use SamIam [41] for sensitivity
analysis when constructing and debugging the BN. By
specifying the requirements for an interested node’s
probability, SamIam will check the associated CPT
tables and provide suggestions on feasible changes.
For example, if we want to change P (N5 = T rue) from
0.34 to 0.2, SamIam will provide two suggestions,
either changing P (N5 = T rue|N2 = T rue,N3 = T rue)
from 0.9 to <= 0.43, or changing P (N3 = T rue|N1 =
T rue) from 0.3 to <= 0.125.

6. Experiment
6.1. Attack Scenario
Figure 1 shows the network structure in our attack
scenario. We have 3 major enterprise networks: A, B,
and C. A and B are all implemented within the cloud,
while C is implemented by partially cloud, and partially
traditional network (the servers are located in the cloud
and the workstations are in a traditional network).
The attack includes several steps conducted by attacker
Mallory.

Step 1, Mallory first publishes a VMI that provides
a web service in the cloud. This VMI is malicious in
that it contains a security hole that Mallory knows how
to exploit. For example, this security hole could be an
SSH user authentication key (the public key located in
.ssh/authorized_keys) that is intentionally left in the VMI
by Mallory. The leftover creates a backdoor that allows
Mallory to login into any instances derived from this
malicious VMI using his own private key. The security
hole could also be an unknown vulnerability that is not
yet publicly known. To make the attack scenario more
generic, we choose a vulnerability CVE-2007-2446 [37],
existing in Samba 3.0.0 [38], as the one imbedded in
the malicious VMI, but assume it as unknown for the
purpose of simulation.

Step 2, the malicious VMI is then adopted and
instantiated as a web server by an innocent user
from A. Mallory now wants to compromise the live
instances, but he needs to know which instances are
derived from his malicious VMI. [28] provides three
possible ways for machine fingerprinting: ssh matching,

9
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

Table 1. a Sample Set of Interaction Rules

/***Model the Virtual Machine Image Vulnerability Inheritance***/

primitive(IsInstance(Vm_id, VMI_id))

primitive(ImageVulExists(VMI_id, vulID, _program, _range, _consequence))

derived(VulExists(Vm_id, vulID, _program,_range,_consequence)).

%remove vulExists from the primitive fact set

primitive(vulExists(_host, _vulID, _program, _range, _consequence)

interaction rule(

(VulExists(Vm_id, vulID, _program, _range, _consequence):-

ImageVulExists(VMI_id, vulID, _program, _range, _consequence),

IsInstance(Vm_id, VMI_id)),

rule_desc(‘A virtual machine instance inherits the vulnerability from the parent VMI’)).

/***Model the Virtual Machine Image Backdoor Problem***/

primitive(IsThirdPartyImage(VMI_id)).

derived(ImageVulExists(VMI_id, sealthyBridge_id, _, _remoteExploit, privEscalation)).

interaction rule(

(ImageVulExists(VMI_id,stealthyBridge_id, _, _remoteExploit, privEscalation):-

IsThirdPartyImage(VMI_id)),

rule_desc(‘A third party VMI could contain a stealthy bridge’)).

interaction rule(

(execCode(Vm_id, Perm):

VulEixsts(Vm_id, stealthyBridge_id, _, _, privEscalation),

netAccess(H, _Protocol, _Port)),

rule_desc(‘remoteExploit of a stealthy bridge’)).

/***Model the Virtual Machine Co-residency Problem***/

primitive(ResideOn(VM_id, H_id)).

derived(stealthyBridgeExists(Vm_1,Vm_2, H_id, stealthyBridge_id).

interaction rule(

(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),

ResideOn(Vm_1, Host),

ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on

the same host after one virtual machine is compromised’)).

interaction rule(

(execCode(Vm_2,_user):-

stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id)),

rule_desc(‘A stealthy bridge could lead to privilege escalation on victim machine’)).

interaction rule(

(canAccessHost(Vm_2):-

logInService(Vm_2,Protocol,Port),

stealthyBridgeExists(Vm_1,Vm_2,Host,stealthyBridge_id)),

rule_desc(‘Access a host through a log-in service by obtaining authentication

information through stealthy bridges’)).

service matching, and web matching. Through ssh key
matching, Mallory finds the right instance in A and
completes the exploitation towards CVE-2007-2446
[37].

Step 3, enterprise network B provides web services
to a limited number of customers, including A. With
the acquired root privilege from A’s web server, Mallory
is able to access B’s web server, exploit one of its
vulnerabilities CVE-2007-5423 [39] from application
tikiwiki 1.9.8 [40], and create a reverse shell.

Step 4, Mallory notices that enterprise B and C has a
special relationship: their web servers are implemented
with virtual machines co-residing on the same host. C is
a start-up company that has some valuable information
stored on its CEO’s workstation. Mallory then leverages
the co-residency relationship of the web servers and
launches a side-channel attack towards C’s web server
to extract its password. Mallory obtains user privilege
through the attack. Mallory also establishes a covert
channel between the co-resident virtual machines for
convenient information exchange.

10
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

Step 5, the NFS server in C has a directory that is
shared by all the servers and workstations inside the
company. Normally C’s web server should not have
write permission to this shared directory. But due to a
configuration error of the NFS export table, the web
server is given write permission. Therefore, if Mallory
can upload a Trojan horse to the shared directory, other
innocent users may download the Trojan horse from
this directory and install it. Hence Mallory crafts a
Trojan horse management_tool.deb and uploads it into
the shared NSF directory on web server.

Step 6, The innocent CEO from C downloads
management_tool.deb and installs it. Mallory then
exploits the Trojan horse and creats a unsolicited
connection back to his own machine.

Step 7, Mallory’s VMI is also adopted by several
other enterprise networks, so Mallory compromises
their instances using the same method in Step 2.

In this scenario, two stealthy bridges are established3:
one is from Internet to enterprise network A through
exploiting an unknown vulnerability, the other one is
between enterprise network B and C by leveraging
virtual machine co-residency. The attack path crosses
over three enterprise networks that reside in the same
cloud, and extends to C’s traditional network.

6.2. Experiment Results
The purpose of our experiment is to check whether the
BN-based tool is able to infer the existence of stealthy
bridges given the evidence. The Bayesian network has
two inputs: the network deployment (network connec-
tion, host configuration, and vulnerability information,
etc.) and the evidence. The output of BN is the prob-
ability of specific events, such as the probability of
stealthy bridges being established, or the probability of
a web server being compromised. We view the attackers’
sequence of attack steps as a set of ground truth. To
evaluate the effectiveness of the constructed BN, we
compare the output of the BN with the ground truth
of the attack sequence. For example, given the ground
truth that a stealthy bridge has been established, we
will check the corresponding probability provided by
the BN to see whether the result is convincible.

For the attack scenario illustrated in Figure 1, the
cross-layer BN is constructed as in Figure 8. By
taking into account the existence of stealthy bridges,
the cloud-level attack graph has the capability of
revealing potential hidden attack paths. Therefore,
the constructed BN also inherits the revealed hidden
paths from the cloud-level attack graph. For example,
the white part in Figure 8 shows the hidden paths
enabled by the stealthy bridge between enterprise

3The enterprise networks in Step 7 are not key players, so we do not analyze the stealthy bridges established in this
step, but still use the raised alerts as evidence.

Table 2. Network Deployment

Node Deployed Facts
N1 IsThirdPartyImage(VMI)
N2 IsInstance(Aws, VMI)
N4 netAccess(Aws, _protocol, _port)

N16 VulExists(Bws, ’CVE-2007-5423’, tikiwiki, remoteEx-
ploit, privEscalation)

N17 netServiceInfo(Bws, tikiwiki, http, 80, _)
N19 ResideOn(Bws, H)
N20 ResideOn(Cws, H)
N26 hacl(Cws, Cnfs, nfsProtocol, nfsPort)
N27 nfsExport(Cnfs, ’/export’, write, Cws)
N30 nfsMountd(CworkStation, ’/mnt/share’, Cnfs, ’/export’,

read)
N32 VulExists(CworkStation, ’CVE-2009-2692’, kernel, local-

Exploit, privEscalation)
N41 IsInstance(Dws, VMI)
N43 netAccess(Dws, _protocol, _port)

Table 3. Collected Evidence Corresponding to Attack Steps

Node Step Collected Evidence
N9 2 Wireshark shows multiple suspicious connec-

tions established
N11 2 IDS shows malicious packet detected
N13 2 Wireshark “follow tcp stream" shows a back

telnet connection is instructed to open
N23 4 Cache monitor observes abnormal cache activi-

ties
N34 5 Tripwire shows several file modification toward

management_tool.deb
N37 6 IDS shows Trojan horse installation
N39 6 Wireshark “follow tcp stream" find plain text in

supposed encrypted-connection
N47 7 Wireshark shows a back telnet connection is

instructed to open
N49 7 IDS shows malicious packet detected

network B and C. These paths will be missed by
individual attack graphs if the stealthy bridge is not
considered. The inputs for this BN are respectively
the network deployment shown in Table 24 and the
collected evidence is shown in Table 3. Evidence is
collected against the attack steps described in our
attack scenario. Not all attack steps have corresponding
observed evidence.

The preliminary version of this paper contains four
sets of simulation experiments, each with a specific
purpose [9]. In this paper, we add two more set of
experiments to test how the evidence confidence value
can mitigate the impact of false alerts, and to analyze
the scalability of this approach. For simplicity, we
assume all attack steps are completed instantly with
no time delay. The ground truth in our attack scenario
tells that one stealthy bridge between attacker and
enterprise A is established in attack step 2, and the
other one between B and C is established in step 4.

4Aws,Bws,Cws,Cnfs,Cworkstation denote A’s web server, B’s web server, C’s web server, C’s NFS server, C’s workstation
respectively.

11
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

N1_IsThirdPartyImage

N2_IsInstance N3_ImageVulExists N41_IsInstance

N5_Vul_StealthyBridgeN4_netAccess_Aws

N8_execCode_Aws

N18_execCode_Bws

N15_netAccess_Bws

N7_AAN_Aws

N12_ECN

N11_Evd_IDS_badPkt N13_Evd_Wireshark_TelnetConn

N9_Evd_Wireshark_multiConn

N10_ECN

N14_ECN

N17_netSrv_Bws

N16_VulExists_tikiwiki

N6_AAN_Bws

N19_ResideOnH_Bws

N20_ResideOnH_Cws

N22_StealthyBridge_Exists_Bws_Cws_H

N25_execCode_Cws

N21_AAN_H

N23_Evd_abnormalCacheActivity

N24_ECN

N26_hacl_Cws_Cnfs

N27_CnfsExport

N28_accessFile_Cnfs

N29_accessFile_Cws N30_nfsMountd_CworkSta

N31_TrojanInstalled_CworkSta

N32_VulExists_nullPointer

N33_AAN_CworkSta

N34_Evd_Tripwire_fileModification

N35_ECN

N36_execCode_CworkSta

N37_Evd_IDS_trojanInstall

N38_ECN

N39_Evd_Wireshark_plainTextInEncryptedConn

N40_ECN

N42_Vul_SB

N43_netAccess_Aws

N46_execCode_otherVM

N44_AAN_otherVMN50_ECN

N49_Evd_IDS_badPkt

N47_Evd_Wireshark_TelnetConn

N48_ECN

Figure 8. The Cross-Layer Bayesian Network Constructed for the Attack Scenario

By taking evidence with a certain order as input, the
BN will generate a corresponding sequence of marginal
probabilities for events of interest. The probabilities
are compared with the ground truth to evaluate the
performance of the BN.

Experiment 1: Probability Inferring.
In experiment 1, we assume all the evidence is

observed in the order of the corresponding attack
steps. We are interested in four events, a stealthy
bridge exists in enterprise A’s web server (N5), the
attacker can execute arbitrary code on A’s web server
(N8), a stealthy bridge exists in the host that B’s
web server reside (N22), and the attacker can execute
arbitrary code on C’s web server (N25). N8 and N25
respectively imply that the stealthy bridges in N5 and
N22 are successfully established. Table 4 shows the
results of experiment 1 given supporting evidence with
corresponding confidence values. The results indicate
that the probability of stealthy bridge existence is
initially very low, and increases as more evidence is
collected. For example, marginal probability P r(N5 =
T rue) increases from 34% with no evidence observed to
88.95% given all evidence presented. This means that a
stealthy bridge is very likely to exist on enterprise A’s
web server after enough evidence is collected.

The first stealthy bridge in our attack scenario is
established in attack step 2, and the corresponding
pieces of evidence are N9, N11, and N13. P r(N8 =

T rue) is 95.77% after all the evidence from step 2
is observed, but P r(N5 = T rue) is only 74.64%. This
means that although the BN is almost sure that A’s web
server has been compromised, it doesn’t have the same
confidence of attributing the exploitation to the stealthy
bridge, which is caused by the unknown vulnerability
inherited from a VMI. P r(N5 = T rue) increases to
88.95% only after evidence N47 and N49 from other
enterprise networks is observed for attack step 7. This
means that if the same alerts appear in other instances
of the same VMI, the VMI is very likely to contain the
related unknown vulnerability.

The second stealthy bridge is established in step
4, and the corresponding evidence is N23. P r(N22 =
T rue) is 57.45% after evidence N9 to N23 is collected.
The number seems to be low. However, considering
the unusual difficulty of leveraging a co-residency
relationship, this low probability still should be treated
with great attention. After all evidence is observed,
the increase of P r(N22 = T rue) from 13.91% to 73.29%
may require security experts to carefully scrutinize the
virtual machine isolation status on the related host.

Experiment 2: Impact of False Alerts.
Experiment 2 tests the influence of false alerts to BN.

In this experiment, we assume evidence N11 is a false
alert generated by IDS. We perform the same analysis
as in experiment 1 and compare results with it. Table 5
shows that when only 3 pieces of evidence (N9, N11,

12
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

Table 4. Results of Experiment 1

Events
No N9 N11 N13 N23 N34 N37 N39 N47 N49

evidence Medium High VeryHigh High VeryHigh High VeryHigh VeryHigh VeryHigh
N5=True 34% 34% 51.54% 74.64% 75.22% 75.22% 75.41% 75.5% 86.07% 88.95%
N8=True 20.25% 22.96% 54.38% 95.77% 96.81% 96.81% 97.14% 97.31% 98.14% 98.37%

N22=True 13.91% 14.32% 19.03% 25.23% 57.45% 57.45% 67.67% 73.04% 73.24% 73.29%
N25=True 17.52% 17.89% 22.13% 27.71% 56.7% 56.7% 68.11% 74.1% 74.27% 74.32%

Table 5. Results of Experiment 2

Events
with 3 pieces of evidence with all evidence
N11=True N11=False N11=True N11=False

N5 74.64% 53.9% 88.95% 79.59%
N8 95.77% 58.6% 98.37% 79.07%

N22 25.23% 19.66% 73.29% 68.62%
N25 27.71% 22.7% 74.32% 70.24%

Table 6. Results of Experiment 3

Events
with 3 pieces of evidence with all evidence

N14=VeryHigh N14=Low N14=VeryHigh N14=Low
N5 74.64% 54.29% 88.95% 79.82%
N8 95.77% 59.30% 98.37% 79.54%

N22 25.23% 19.77% 73.29% 68.73%
N25 27.71% 22.79% 74.32% 70.34%

and N13) are observed, the probability of the related
event is greatly affected by the false alert. For instance,
P r(N5 = T rue) is 74.64% when N11 is correct, and is
53.9% when N11 is a false alert. But P r(N8 = T rue) is
not greatly influenced by N11 because it’s not closely
related to the false alert. When all evidence is input into
the BN, the influence of false alerts to related events is
reduced to an acceptable level. This shows that the ratio
of false alerts in the overall evidence set is an important
factor determining the impact of false alerts. When the
ratio of false alerts is low, a BN can provide relatively
correct answer by combining the overall evidence set.

Experiment 3: Impact of Evidence Confidence
Value.

Since security experts may change their confidence
value towards evidence based on their new knowledge
and observation, experiment 3 tests the influence of
evidence confidence value to the BN. This experiment
generates similar results as in experiment 2, as shown
in Table 6. When evidence is rare, the confidence value
changes from “VeryHigh” to “Low” has larger influence
to related events than when evidence is sufficient.

Experiment 4: Impact of Evidence Input Order.
In experiment 4, we test the affect of evidence input

order to the BN analysis result (we assume the evidence
is fed into BN immediately after it is collected). We
bring forward the evidence N47 and N49 from step
7 and insert them before N23 and N37 respectively.
The results in Table 7 show that when all the evidence
from N9 to N39 is fed into BN, the final calculated
probabilities are the same. This means, given the same

set of evidence, BN will generate the same result
regardless of the input order of evidence. However, this
doesn’t imply that the input order of evidence is not
important for real-time security analysis. For example,
in both Table 4 and Table 7, N23 is the crucial evidence
for determining Pr(N22 = True). If N23 is collected at
an early stage of the attack, the relatively high value
of Pr(N22 = True) generated by BN may alert network
defenders to check the involved virtual machines and
hosts. As a result, the potential damage and loss to the
victim enterprise network could possibly be mitigated
or even stopped. Therefore, promptly collecting and
feeding the evidence into BN is vital for real-time
security analysis.

Experiment 5: Mitigate Impact of False Alerts by
Tuning Evidence Confidence Value.

As evaluated in experiment 2, the ratio of false
alerts in the overall evidence set is an important
factor determining the impact of false alerts. However,
in real security analysis, the ratio of false alerts is
usually not a parameter that can be adjusted. In most
cases, it is determined by the deployed security sensors
and will not change significantly. For example, if an
enterprise network deploys an IDS that suffers from
high false rates, the ratio of false alerts in the overall
evidence set will also be relatively high. The ratio will
generally remain unchanged unless the security sensor
is replaced. Hence, given such relatively stable ratio, it
is important to find another way to mitigate the impact
of false alerts. Tuning the evidence confidence value is
one solution.

In experiment 5, we still assume evidence N11 is
a false alert generated by IDS and only 3 pieces of
evidence (N9, N11, and N13) are observed (so that
the influence of confidence value towards impact of
false alerts will be more evident). Table 8 shows
the computed probabilities when the confidence
value (specified in N12) for false alert N11 is
“VeryHigh”, “Medium”, and “Low” respectively. When
the confidence value is “VeryHigh”, the false alert
can generate great impact on the final results (e.g.
Pr(N5 = True) is 76.49% when N11 is “True”, and
34.00% when N11 is “False”). When the confidence
value for false alert N11 is “Low”, the false alert has
little impact on the final result (e.g. the results for
Pr(N5 = True) are very close: 69.96% when N11 is
“True”, and 67.09% when N11 is “False”). Therefore,

13
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Xiaoyan Sun, Jun Dai, Anoop Singhal, Peng Liu

Table 7. Results of Experiment 4

Events
No N9 N11 N13 N47 N23 N34 N49 N37 N39

evidence Medium High VeryHigh VeryHigh High VeryHigh VeryHigh High VeryHigh
N5=True 34% 34% 51.54% 74.64% 85.51% 85.89% 85.89% 88.8% 88.9% 88.95%
N8=True 20.25% 22.96% 54.38% 95.77% 97.07% 97.8% 97.8% 98.06% 98.27% 98.37%

N22=True 13.91% 14.32% 19.03% 25.23% 25.43% 57.7% 57.7% 57.77% 67.96% 73.29%
N25=True 17.52% 17.89% 22.13% 27.71% 27.89% 56.93% 56.93% 56.99% 68.37% 74.32%

Table 8. Results of Experiment 5

Events
N12=VeryHigh N12=Medium N12=Low

N11=True N11=False N11=True N11=False N11=True N11=False
N5 76.49% 34.00% 71.12% 65.31% 69.96% 67.09%
N8 99.08% 22.96% 89.47% 79.01% 87.38% 82.25%

N22 25.73% 14.32% 24.29% 22.73% 23.98% 23.21%
N25 28.16% 17.89% 26.86% 25.46% 26.58% 25.89%

the impact of false alerts can be mitigated by tuning
the corresponding confidence value for the evidence.
In practical application, if a security sensor suffer from
high false rates, the evidence generated by this sensor
should have a relatively low confidence value. Similarly,
evidence generated by security sensors with low false
rates should have a relatively high confidence value. In
such a way, the impact of false alerts can be mitigated
in BN analysis.

Experiment 6: Complexity.
Since the BN is constructed on the basis of an attack

graph, the size of BN mainly depends on the size of
attack graph. According to Theorem 2 in [26], the
logical attack graph for a network with N machines
has a size at most O(N2). As we apply logical attack
graph to cloud, we consider both virtual machines
and physical hosts and regard them as normal hosts
having special connections between each other. For a
cloud with n virtual machines and m physical hosts, the
corresponding attack graph has a size at most O((n +
m)2). Considering n >> m in a normal cloud, the size
should be at most O(n2).

To further investigate the inference costs for BNs,
we constructed 11 Bayesian networks with different
size (Table 9) in SamIam. For most exact inference
algorithms, the complexity of inference is mainly deter-
mined by the treewidth of the network. Nevertheless,
determining the treewidth is also difficult. While we
cannot explore all different tree structures and infer-
ence algorithms in this limited space, we provide the
compilation costs for the BNs we constructed, as shown
in Figure 9, to give readers a sense regarding the time
and memory cost. The experiment was conducted in
SamIam, with recursive conditioning as the inference
algorithm adopted.

7. Conclusion and Discussion
This paper identifies the problem of stealthy bridges
between isolated enterprise networks in the public

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	
5	

39	 49	 520	 745	 1069	 1589	 2068	 2588	 3082	 5150	 10300	

Co
m
pi
la
(o

n	
Ti
m
e	
(s
)	

#	 of	 nodes	

Compila4on	 Time	

0	

5	

10	

15	

20	

25	

30	

35	

39	 49	 520	 745	 1069	 1589	 2068	 2588	 3082	 5150	 10300	

M
em

or
y	
U
se
d	
(M

b)
	

#	 of	 nodes	

Memory	 Used	

Figure 9. Time and Memory Used for BN Compilation

cloud. To infer the existence of stealthy bridges, we
propose a two-step approach. A cloud-level attack
graph is first built to capture the potential attacks
enabled by stealthy bridges. Based on the attack
graph, a cross-layer Bayesian network is constructed
by identifying uncertainty types existing in attacks
exploiting stealthy bridges. We designed and conducted
six sets of experiments to evaluate our approach. The
experiment results show that the cross-layer Bayesian
network is able to infer the existence of stealthy bridges
given supporting evidence from other intrusion steps.
However, one challenge posed by cloud environments

14
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

Probabilistic Inference of the Stealthy Bridges between Enterprise Networks in Cloud

Table 9. Size of Bayesian Networks

BN 1 2 3 4 5 6 7 8 9 10 11
of nodes 39 49 520 745 1069 1589 2068 2588 3082 5150 10300
of edges 37 48 668 968 1244 1912 2545 3213 3854 6399 12798

needs further effort. Since the structure of cloud is very
dynamic, generating the cloud-level attack graph from
scratch whenever a change happens is expensive and
time-consuming. Therefore, an incremental algorithm
needs to be developed to address such frequent
changes such as virtual machine turning on and off,
configuration changes, etc.

Disclaimer
This paper is not subject to copyright in the United
States. Commercial products are identified in order
to adequately specify certain procedures. In no case
does such identification imply recommendation or
endorsement by the National Institute of Standards
and Technology, nor does it imply that the identified
products are necessarily the best available for the
purpose.

Acknowledgements
This work was supported by ARO W911NF-09-1-0525
(MURI), NSF CNS-1223710, NSF CNS-1422594,
ARO W911NF-13-1-0421 (MURI), and AFOSR
W911NF1210055.

References
[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/
[2] Rackspace. http://www.rackspace.com/
[3] Windows Azure: Microsoft’s Cloud. https://www.windowsazure.com/en-us/
[4] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,

Resource-freeing attacks: improve your cloud performance (at your neighbor’s
expense), in Proceedings of the 2012 ACM conference on Computer and
communications security (CCS), 2012.

[5] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds, in Proceedings of the 2009 ACM conference on Computer and
communications security (CCS), 2009.

[6] D. X. Song, D. Wagner, and X. Tian, Timing Analysis of Keystrokes and
Timing Attacks on SSH., in USENIX Security Symposium, 2001.

[7] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, Eliminating the Hypervisor
Attack Surface for a More Secure Cloud, in Proceedings of the 2011 ACM
conference on Computer and communications security (CCS), 2011.

[8] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler,
Detecting co-residency with active traffic analysis techniques, in Proceedings of
the 2012 ACM Workshop on Cloud computing security workshop (CCSW),
2012.

[9] X. Sun, J. Dai, A. Singhal, and P. Liu, Inferring the Stealthy Bridges between
Enterprise Network Islands in Cloud Using Cross-Layer Bayesian Networks, in
Proceedings of 10th International Conference on Security and Privacy in
Communication Networks (SecureComm), 2014.

[10] J. Dai, X. Sun, and P. Liu, Patrol: Revealing Zero-Day Attack Paths through
Network-Wide System Object Dependencies, in 2013 European Symposium on
Research in Computer Security (ESORICS), 2013.

[11] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, HomeAlone: Co-residency
Detection in the Cloud via Side-Channel Analysis, in Proceedings of 2011
IEEE Symposium on Security and Privacy (S&P), 2011.

[12] Y. Chen, V. Paxson, and R. H. Katz, What’s new about cloud computing
security, University of California, Berkeley Report No. UCB/EECS-2010-5
January, 2010.

[13] S. Noel and S. Jajodia, Managing attack graph complexity through visual
hierarchical aggregation, in Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, 2004.

[14] R. Sawilla and X. Ou, Googling attack graphs. Defence R&D Canada-
Ottawa, 2007.

[15] O. M. Sheyner, Scenario graphs and attack graphs, University of Wisconsin,
2004.

[16] O. Sheyner and J. Wing, Tools for generating and analyzing attack graphs, in
Formal methods for components and objects, 2004.

[17] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, Automated
generation and analysis of attack graphs, in Proceedings of 2002 IEEE
Symposium on Security and Privacy (S&P), 2002.

[18] C. R. Ramakrishnan, R. Sekar, Model-based analysis of configuration
vulnerabilities, Journal of Computer Security, vol. 10, no. 1/2, 2002.

[19] S. Jha, O. Sheyner, and J. Wing, Two formal analyses of attack graphs, in
Proceedings of the 15th IEEE Computer Security Foundations Workshop,
2002.

[20] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, Computer-attack
graph generation tool, in Proceedings of DARPA Information Survivability
Conference & Exposition II, 2001.

[21] C. Phillips and L. P. Swiler, A graph-based system for network-vulnerability
analysis, in Proceedings of the 1998 workshop on New security paradigms,
1998.

[22] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, Efficient minimum-cost
network hardening via exploit dependency graphs, in Proceedings of 19th
Annual Computer Security Applications Conference (ACSAC), 2003.

[23] S. Jajodia, S. Noel, and B. O’Berry, Topological analysis of network attack
vulnerability, Managing Cyber Threats, 2005.

[24] P. Ammann, D. Wijesekera, and S. Kaushik, Scalable, graph-based network
vulnerability analysis, in Proceedings of the 2002 ACM conference on
Computer and communications security (CCS), 2002.

[25] K. Ingols, R. Lippmann, and K. Piwowarski, Practical attack graph
generation for network defense, in 22nd Annual Computer Security
Applications Conference (ACSAC), 2006.

[26] X. Ou, W. F. Boyer, and M. A. McQueen, A scalable approach to attack graph
generation, in Proceedings of the 2006 ACM conference on Computer and
communications security (CCS), 2006.

[27] X. Ou, S. Govindavajhala, and A.W. Appel, MulVAL: A logic-based network
security analyzer, in USENIX Security Symposium, 2005.

[28] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, A
security analysis of Amazon’s elastic compute cloud service, in Proceedings of
the 27th Annual ACM Symposium on Applied Computing (SAC), 2012.

[29] Snort. http://www.snort.org/.
[30] Peng Xie, Jason Li, Xinming Ou, Peng Liu, and Renato Levy. Using

Bayesian networks for cyber security analysis, in Dependable Systems and
Networks (DSN), IEEE/IFIP, 2010.

[31] Nessus. http://www.tenable.com/products/nessus.
[32] OVAL. https://oval.mitre.org/
[33] NVD. http://nvd.nist.gov/.
[34] CVSS. http://nvd.nist.gov/cvss.cfm.
[35] CVE. http://cve.mitre.org/.
[36] Tripwire. http://www.tripwire.com/.
[37] CVE-2007-2446. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-

2446.
[38] SAMBA. https://www.samba.org.
[39] CVE-2007-5423. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-

5423.
[40] tikiwiki. https://info.tiki.org/.
[41] SamIam. http://reasoning.cs.ucla.edu/samiam/.
[42] S. Bugiel, S. Nurnberger, T. Poppelmann, A.-R. Sadeghi, and T.

Schneider, AmazonIA: when elasticity snaps back, in Proceedings of the 2011
ACM conference on Computer and communications security (CCS), 2011.

[43] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian event
classification for intrusion detection. in 19th Annual Computer Security
Applications Conference (ACSAC), 2003.

15
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e3

	1 Introduction
	2 Related Work
	3 Cloud-level Attack Graph Model
	3.1 Attack Graph
	3.2 Cloud-level Attack Graph

	4 Cross-layer Bayesian Networks
	4.1 Bayesian Networks
	4.2 Identify the Uncertainties

	5 Implementation
	5.1 Cloud-level Attack Graph Generation
	5.2 Construction of Bayesian Networks

	6 Experiment
	6.1 Attack Scenario
	6.2 Experiment Results

	7 Conclusion and Discussion

