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Abstract 

MEP (Maps for Easy Paths) is a project for the enrichment of geographical maps with information about accessibility of 

urban pedestrian pathways, targeted at people with mobility problems. In this paper, we describe the tools developed to 

collect data along the paths travelled by target people and the algorithms for a good quality reconstruction of the path 

developed to overcome the intrinsic limitation of the sensors available on mobile devices. Experimental results show the 

feasibility of the approach. 
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1. Introduction

According to World Health Organization, about 15% of the 

world’s population has some form of disability and 

traveling through cities is one of the main concerns for 

people with mobility impairments [19]. Some help could 

come from an adaptive navigating system capable of 

considering their needs and taking into account the 

(mapped) accessibility of urban routes. Nevertheless, 

mapping accessible paths in a sustainable way is still an 

open challenge. Indeed, the most cumbersome activity in 

providing a map enriched with accessibility information is 

gathering such information through field surveys, typically 

done manually by users or volunteers.  

    Maps for Easy Paths (MEP) is an ongoing project [11] 

aiming to overcome the limitations of current collaborative 

approaches in mapping accessible routes by easing the 

surveying effort through the collection of motion data from 

sensors commonly available in mobile devices. The 

accessibility of city routes, e.g., sidewalks, walkways, etc., 

is defined through the active contribution and participation 

*Corresponding author. Email: sara.comai@polimi.it 

of target users, which include people with permanent or 

temporary motor disabilities and, possibly, active citizens.  

    To ease target users and volunteers in data collection, we 

developed a set of tools to track, and automatically 

reconstruct, paths travelled by target users. In particular, 

we developed a mobile application called MEP Traces that 

automatically stores mobile sensors data such as position 

estimates from GNSS satellites (Global Navigation 

Satellite System) and motion data coming from 

accelerometers, magnetometers, and gyroscopes. When 

users travel through the city, they just need to start the app 

at the beginning of their journey and stop it when they 

arrive. The underlying idea is that the route travelled by a 

person with some sort of disability can be considered 

accessible also for other persons having the same (or a 

lower) type of disability. More in general, we assume that 

a path taken mostly by people with disabilities can be 

perceived as a friendlier route; this allows us to 

automatically identify accessible paths without the need of 

an ad-hoc field survey simply because the traveller who 

captures the data has been register to have some specific 

sort of disability.  
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   Once sensors data of a route have been collected, they are 

processed by means of different algorithms: sensor fusion 

techniques improve the sparseness of GNSS data; mapping 

on cartography can improve the quality of the paths; 

clustering techniques can merge different traces over the 

same route.    

   After reporting related works in Section 2, in Section 3 

we provide an overview of the MEP project: in particular, 

we describe the MEP Traces application and the overall 

process to extract the accessible paths. In Section 4 

experimental results of a survey done in Cernobbio (Como, 

Italy) are reported, while in Section 5 we draw our 

conclusions and outline future plans.    

2. Related work

Several collaborative projects proposed in the literature 

aim to improve city accessibility, through the Web or, more 

recently, through smartphones/tablets applications, as 

surveyed in [5]. Different types of barriers, but also of 

facilitators, have been identified and classified in several 

studies [10][12], such works are at the basis of our analysis 

for the collection of data about accessibility of city 

pedestrian pathways.   

   Considering the status of Web/Android/iOS applications 

available to the public, almost all of them focus on 

accessibility of points of interest (e.g., museums, 

restaurants, etc.). Among them, Wheelmap [20] is a map 

for finding and marking wheelchair accessible places of 

daily life, based on Open Street Map.  

   Only some of available apps include also information 

about condition of sidewalks and pedestrian crosswalks, or 

about the presence of cobblestones, curb ramps, and street 

lighting, such as RotaAccesivel [17], Comuni per tutti [6] 

and Mapability [9]. These proposals are very general and 

try to address all the disabilities. However, the collection 

of data is quite heavy, being mainly manual.  

   In the literature, solutions for the identification of 

accessible paths and sidewalk conditions have been 

considered only by few approaches, like, e.g., 

[4][8][14][18]. Cardonha et al. [4] adopted an approach, in 

part, similar to MEP: the Breadcrumb application was 

developed to periodically capture a sequence of 

measurements based on the device geo-location (i.e., 

longitude and latitude) without any need for user 

intervention. To enhance the quality of the collected data, 

Breadcrumb applies a simple moving average of the last 10 

estimates of the velocity of the device to identify 

slowdowns as obstacles. Compared to Breadcrumb, in our 

approach we try to extract as much as information as 

possible from the available sensors fusing the GNSS 

(Global Navigation Satellite System, at present GPS and 

GLONASS) with the inertial data in order to reconstruct 

the exact path of the user, supposed to be accessible as 

explained in Section 3. 

   Karimi et al. [8] propose a routing module which tracks 

the shuttles available in the main campus of the University 

of Pittsburgh and, given an accessibility map built 

manually, they provide turn-by-turn directions 

distinguishing among sidewalks along a street, along a 

building, and crosswalks along a building. Also [14] 

collects GPS data to determine the users’ trajectories and 

provides an algorithm to determine an accessible path 

between two locations for users with a certain disability: 

however, to the best of our knowledge, only a prototype has 

been produced. Finally, also the authors in [18] consider 

sidewalks, by providing a mobile application to capture 

pictures and upload data about some observable aspects of 

sidewalk conditions such as holes, presence of steps, etc. 

3. MEP Traces and Path Reconstruction

In the MEP project we adopted a user-centered design 

approach involving target users from the early phases of 

the project being them the main actors of the data collection 

besides being the beneficiaries of the collected data. 

3.1. Requirements of the Application 

Users’ requirements were collected with focus groups 

involving both manual and electric wheelchair users, as 

well as elderly people with mobility issues. The main 

requirements that emerged from the focus groups include 

easiness in using the app, interactive interfaces, easy to 

click and to understand icons and interactive buttons. With 

respect to this last point, some of the wheelchair users of 

the focus group had finger movement limitations, for 

example when performing zoom in and out or in typing 

with digital keyboards: simple single click commands are 

therefore required.  

   Regarding the information to be collected along the 

pathways, and therefore to display on the map, they 

highlighted that they would prefer an app telling them the 

accessible paths to follow, and that they would not like to 

hear about obstacles. Among possible accessible elements, 

they are interested in accessible toilets, transportation 

stops, and parking lots, as well as any building or point of 

interest of the city. In this project, we have mainly focused 

on the paths and on the algorithms for their reconstruction; 

however, our tools include the possibility to notify and 

consider obstacles and accessible elements.  

   In case of obstacles, it should be possible to signal them 

together with pictures that may give a better idea of the 

obstacle for the specific disability; simple and not-long-to-

fill obstacles’ evaluation forms should be offered by the 

application. Finally, personalized maps according to 

typical disabilities (e.g., manual vs. electric wheelchair) 

should be provided; the collected data should therefore take 

into account also the users’ characteristics, so that, for 

example, a path travelled by a user requiring step-free 

accessibility can be considered accessible also for users 

able to climb low curbs.  

   The whole mapping process should take into account the 

different kinds of users: not only the interface should be 

suitable for users with motor impairments, but also proc-
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Figure 1. Overview of the process for data collection and processing

essing algorithms should take into account mobility 

problems: in particular, when using sensor fusion 

techniques, they should be suitable for data collected on 

wheelchairs and cannot exploit step detection or similar 

techniques to improve the reconstruction of the path. 

3.2. Data Collection and Processing 
Overview 

Figure 1 describes the process for the collection of paths 

data and for their reconstruction; when a user starts a route, 

s/he activates a mobile app called MEP-Traces to collect 

along the whole path data needed to its reconstruction. 

Such data include GNSS positions estimates, motion 

sensors data (e.g., accelerometer, gyroscope, etc.) and, 

possibly, images; all the data are stored on the device SD-

card and then uploaded on the server in a PostGIS spatial 

database [16] for further processing. On the server, since 

the accuracy in positioning of GNSS data is quite low for 

mobile device GNSS receivers, we fuse GNSS positions 

with motion data to provide a better estimate of the path, 

especially in those parts of the route where GNSS satellites 

are not visible. The output is a path, which is further 

corrected exploiting the cartography and possibly merged 

with other paths on the same route, and is positioned in a 

geographical map. All the collected data are displayed in a 

different application, called MEP-App, for the target users. 

   Besides collecting sensors’ data along the path in an 

implicit way, without the intervention of the user, both 

MEP-Traces and MEP-App allow also the notification of 

explicit data. In particular, it is 

possible to notify (geolocalized) obstacles met along the 

path. Moreover, it is possible to enrich maps also with 

accessible elements (e.g., parking lots for disabled people, 

accessible transport, accessible entrances and presence of 

elevators, etc.). The users must explicitly signal such data.  

3.3. MEP-Traces Application 

MEP-Traces is the application for the collection of data 

from common hardware sensors like GPS, accelerometer, 

magnetometer, gyroscope, and barometer, embedded in the 

current generation of smartphones and tablets. Data are 

collected simultaneously, at the highest possible frequency, 

and locally stored in the mobile device SD-card.  

    Figure 2 shows some snapshots of our Android 

prototype: after registration, it provides a simple menu to 

start the recording of the route, manage user’s profile, send 

collected data, and exit the application (Figure 2.a). The 

main task of MEP-Traces is to track the user with motor 

impairments while s/he is travelling, with the idea of 

mapping only accessible paths. Some information, like 

available memory, and battery level can also be checked 

(Figure 2.b). This is used to warn the user when critical 

levels are reached, and to promptly save the acquisitions 

not to miss important data for processing. Obstacles, as 

well as accessible elements, can be notified with a simple 

click among predefined obstacle types (Figure 2.c); then, 

some characteristics, like the type (temporary or 

permanent) and the criticality level (low/accessible with 

some help, medium, high/not accessible at all), can be 
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specified (Figure 2.d). Optionally, some pictures and a 

description can be included. In a similar way, also 

accessible elements are notified.  

a)      b) 

c)      d) 

(c)       (d) 

Figure 2. Some snapshots of the MEP Traces app 
(a) main menu, (b) sensor recording, (c) obstacle

type selection, (d) obstacle description and
notification. 

The application has been developed to dynamically 

recognize all the motion sensors in the device (e.g., step 

detector, orientation, proximity, rotation vector, etc.), but 

only accelerometer, gyroscope and magnetic field sensors 

are acquired by default. To retrieve the device position, the 

GPS sensor is used. The application automatically starts the 

sensor monitoring as soon as the GPS geo-location is 

obtained. For each acquisition phase, a specific folder is 

created, to store the files containing all the information of 

the sensors changes during the movement. Collected data 

need to be explicitly sent by the user to the server for 

further processing and sharing. Before sending them, we 

minimize the upload effort by compressing each 

acquisition folder. The upload operation is forced to 

happen with a connection between the device and our 

server over WiFi using the SFTP (SSH File Transfer 

Protocol), as in Figure 3. During this task, the acquisitions 

uploaded correctly to the server (after a client/server check) 

are automatically deleted from the mobile device while the 

upload proceeds. 

a) b) 

Figure 3. MEP-Traces upload interface example: (a) 
automatic selection of all the acquisitions, (b) data 

compression and connection/uploading task 

3.4. System Architecture 

The back-end of the application exploits Policloud [15], the 

cloud infrastructure of Politecnico di Milano.  

   The back-end server begins a multithreading elaboration 

as soon as each single acquisition (paths, obstacles) is 

completely uploaded and available. An articulated 

workflow precisely defines the intervention’s sequence to 

build accessible paths over the map. 

    Figure 4 shows the MVC (Model-View-Controller) 

block schema.  

Figure 4. The MVC design pattern general block 
schema. 
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   The Model represents the core element: it contains the 

whole knowledge, i.e., the logic, data, state and rules of the 

application. The View builds a visual representation of the 

Model, while the Controller operates as a link between 

them. 

   The main service on the server starts by creating a 

Controller, responsible of the workflow management and 

aiming at building an accessible path. In particular, it is 

composed of the following three main elements: 

1. An Observer element, having the goal of

discovering new elements and adding them to the

data set.

2. A Cluster element, performing the clustering of

many acquired data sets, and aiming at

representing sets of paths on the same route as a

single accessible path.

3. One or many Worker element/s, managing the

sequential/parallel multithreading process of the

main workflow, to finalize the insertion of the

reconstructed accessible path into the PostGIS

database.

The first two processes run over two or more separate 

threads (depending on the CPU architecture); the third 

process is activated when there is at least one task, i.e., new 

data have been uploaded. 

   Initially, the Observer monitors the main folder where 

data are uploaded, providing an immediate response if a 

new acquisition has to be processed. The compressed 

acquisition files are passed to a Worker that begins the 

elaboration process. First, a decompression procedure is 

applied to the data, as described in Figure 5. For each 

acquisition file, the system checks every two seconds if the 

uploaded file size changes; if it changes, it waits until the 

upload is completed. Then, a corruption check is 

performed. The decompression procedure extracts all the 

files that contain relevant information of sensor data for the 

path acquired with MEP-Traces.   

Figure 5. Decompression procedure. 

   After the decompression phase, the main workflow 

(graphically depicted in Figure 6) starts. Given a path 

composed of a sequence of GPS points, the first task 

computes the geometry of each GPS point and inserts it in 

a specific table into PostGIS, together with other 

parameters such as: the device id, the email account and the 

name of the user, the timestamp of the acquisition, the UTC 

(Universal Time Coordinated), city, latitude and longitude. 

Then, GPS points are fused with motion data such as 

accelerometer, magnetometer, etc. provided by the device 

sensors to improve path reconstruction quality; motion data 

are correlated with GPS data by means of timestamps (this 

process is detailed in Section 3.5). The output geometry of 

the MEP-Fusion algorithm is a sequence of corrected 

points. The last step of the Worker implements a 

cartographic correction of the fused GPS data (explained in 

detail in Section 3.6). 

Figure 6. Worker general process task. 

   The three steps represent the pre-processing stage for the 

MEP-Clustering algorithm task (described in Section 3.7). 

Each GPS point of the cartographic correction is stored in 

the database in order to keep track of the cities already 

clustered. The clustering process of a specific city is 

repeated every time new points affecting the cluster are 

uploaded.  

   All the algorithms run on our server as a 24/7 service in 

a remote Unix Machine with 4GB of RAM, and a dual core 

CPU (4 parallel threads). The main Worker can elaborate 

in parallel 4 paths.    

3.5. Path Reconstruction 

Data collected with the MEP-Traces application are used 

by the MEP-Fusion engine to reconstruct the path followed 

by MEP-Traces users. The approach used in the 

reconstruction is based on the fusion of information 

coming from multiple sensors to overcome issues related 

to the poor quality of the mobile sensors [13]: indeed, the 

GPS and the internal Inertial Measurement Unit of the 

mobile device could single-handedly provide an absolute 

position and orientation for the device, but measurement 

noise produces inaccurate results.  

    Being the application targeted to users with disabilities, 

including those with motor impairments, methods often 

used to track pedestrian movements using mobile devices, 

which are based on step detection, are ineffective. For this 

reason, our solution is based on (and extends) the 

ROAMFREE sensor fusion library [7]. ROAMFREE, 

which stands for Robust Odometry Applying Multisensor 

Fusion to Reduce Estimation Errors, is a framework 

developed at the Artificial Intelligence and Robotics lab of 

Politecnico di Milano originally designed to fuse 

measurements coming from an arbitrary number of 

sensors, including images, in order to determinate the 
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position and orientation of a mobile robot. Details of the 

approach can be found in [1]. Since the ROAMFREE 

library is able to reconstruct the trajectory using the 

absolute reference frame of the GNSS and the orientation 

provided by the Earth magnetic field recorded by the 

magnetometer, the device during the route can be held 

freely by the user. However, a swinging device, produces 

less accurate results.  Experimental results show that 

accuracy depends on GPS accuracy, since the other sensors 

provide relative positions; instead, the approach improves 

the path reconstruction in case of missing or sparse GPS 

measurements [1].  

3.6. Path Correction 

Even though the MEP-Fusion engine operates to clean GPS 

trajectories by fusing mobile sensors data, the 

reconstructed paths can still present some intrinsic errors 

when the reconstructed path is mapped on a cartographic 

map: in many cases, paths cross buildings. Fusing each 

single point corrected by MEP-Fusion algorithm with static 

information contained into the OSM (OpenStreetMap) 

database can lead to interesting improvements for this kind 

of problem. 

   The Global Navigation Satellite System (GNSS) 

trajectory-building superposition correction developed at 

the Environmental and Civil Engineering Department at 

Politecnico di Milano [3][13], employs a real time 

triggering technique over our GPS points table. A 

dedicated trigger is activated whenever new points are 

inserted into the database, performing a simple check of the 

points coordinates’ superposition with respect to the 

coordinates of the buildings around it. If the trigger detects 

the occurrence of a superposition, the point rigidly projects 

outside the building’s area considering the closest “road 

pipe” as reference. 

Figure 7. The “bring-outside” correction. 

   Figure 7 shows the initial situation where the trigger 

detects a new measured point overlying the building. A 

number of possible candidates on the border of the building 

are identified. The corrected point is associated to the one 

that reflects the closed road pipe to which it belongs in the 

original path. Applied to the whole path, this method 

produces the results shown in Figure 8. 

a) 

b) 

Figure 8.  Cartographic correction of GNSS 
trajectories  

   All the points occurring over a building are rigidly shifted 

to its border. The original measured points can even occur 

over large portions of buildings, due to large errors in the 

surveys and there may be critical situations that can lead to 

a completely unwanted result: for example, in Figure 8 (b) 

the obtained path is discontinuous. To solve such problems, 

in case of discontinuity, it is possible to shift all the points 

to the closest sidewalk instead of to the border of the 

building.    

3.7. Paths Clustering 

As explained in Section 3.4, the Worker element performs 

all the pipeline tasks from the decompression phase of the 

acquisition, passing through the MEP-Fusion algorithm 

and the geographic correction of the GNSS trajectories. 

Each process tries to perform a path reconstruction as 

reliable as possible with respect to the original user walk. 

   When many acquisitions are stored on the database, the 

paths visualization of the same road is represented as 

overlapped trajectories, as shown in Figure 9: the 

sequences of green points represent different paths 

performed by different people. The main idea of the paths 

clustering is to generate a set of nodes, belonging to a 

connected graph, obtained from the learning of the 

trajectories points (in Figure 9 they are represented by blue 

points). As a result, a single trajectory can be extracted 

clustering different paths sampled from a single accessible 

route.  
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Figure 9. Neurons computation from trajectories. 

The MEP-Clustering engine implements the Adaptive 

Incremental Growing Neural Gas Network algorithm [2] 

with slightly modifications in order to adapt it to the 

geospatial dataset. Indeed, despites Neural Gas Network 

approach represents a very effective method to perform 

topology learning, it lacks an automatic procedure to detect 

an a priori suitable number of neurons and adaptation steps, 

requiring a human intervention.  

   The Growing Neural Gas Network approach adds new 

units over time starting from a small network; then a local 

statistical measure (obtained throughout the adaptation 

step) can be evaluated. Using the computed statistical 

measure, the network topology can be generated 

incrementally adopting the competitive Hebbian learning 

method [2]. The final dimension of the network depends on 

the local statistical behaviour of the input. 

   Topology learning process starts by placing randomly 

two units into the space that has to be learned. 

Successively, an input signal, i.e., a sample from a path, is 

generated according to its probability distribution. 

According to that signal, the two closest units can be 

identified. Each unit contains a local counter, responsible 

for the tracking of the distance between the inputs and the 

unit itself. At each step, the local counter of the closest unit 

is updated by incrementing the aging of all emanated edges. 

   Each edge in the Growing Neural Gas has an associated 

age used to remove the old ones in order to keep the 

topology dynamically updated. With this method, while the 

decision of introducing a new neuron is taken upon a fixed 

parameter, such decision is computed upon an adaptive free 

distance threshold. An excessive growth of neuron 

numbers is avoided by considering the use of a 

probabilistic criterion; in such a way, a new topology arises 

to preserve memory constraints. 

   Be better understand the whole process, let us consider a 

simple case where a new input point has to be processed to 

generate (or update) a previous neuron. Three different 

cases (see Figure 10) perfectly relates to the three possible 

situations of new neurons creation: 

1. The input point is far enough from n1: a new

neuron joins the graph; the sample’s position and

a sample node join locally to the new neuron

sample’s list. Considering the new sample the 

threshold of the new node is updated. 

2. The input point is close enough to n1 but far

enough from n2: a new neuron joins the graph at

the sample’s position and a new link connects

node n1 with the newly created node. The sample

point gets into the new neuron sample’s list and

the threshold of the node n1 is updated.

3. The input point is close to both n1 and n2: then,

 move n1 and its neighboring neurons

toward the input point;

 increase the age of n1’s emanating edges;

 link n1 and n2 with a new edge whose age

is equal to 0;

 remove old edges from the graph if they

exist;

 update the threshold of both n1 and n2

accordingly.

    When the number of neurons increases above a 

maximum nodes threshold, a merging process tries to 

reduce the dimension of the graph by fusing some elements 

together. The merging process starts by creating a new 

empty graph. Two randomly picked nodes get out from the 

node list of the old graph and join to the new graph. These 

two nodes correspond to the initialization vector supplied 

as input of the Adaptive Incremental Growing Neural Gas 

Network algorithm to accomplish the final goal. 

Figure 10.  Green square points correspond to the 
three possible cases representing the creation of a 
new neuron or the assignment to an existing one of 

the input point. The black square points are the 
samples assigned to a neuron node (the blue one). 

4. Experimental results

The experimental activity done in Cernobbio (Como, Italy) 

consisted in two days of acquisition, with MEP-Traces 

installed on different Android smartphones and tablets 

(used devices are listed in Table 1). All the collected GPS 

data are graphically shown in Figure 11.  
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Figure 11. GPS data collected in Cernobbio (Como, 
Italy) with MEP Traces. 

To evaluate the quality of the data acquired from mobile 

devices, the collected GPS data have been compared with 

the data of a high-cost geodetic device – in our case a Leica 

GPS 1200 receiver. Figure 12 shows the acquisitions for 

the same path of the geodetic device (in black) and the low 

cost GNSS receiver of a Google Nexus 6P GPS sensor (in 

purple); it can be noticed how it is affected by a lot of noise. 

To provide a better estimation of the correct path, we have 

fused our GPS data with the motion sensors data. 

Figure 12.  Details of two different acquisitions with 
a geodetic device – Leica GPS 1200 receiver (black 

route) and a low cost GNSS receiver - Nexus 6P 
(purple route). 

Figure 13 shows the application of the cartographic 

correction of GNSS trajectories on the data collected in 

Cernobbio. In blue and yellow lines represent, respectively, 

roads and building borders downloaded from the OSM 

database. It is possible to notice how data points over 

buildings have been successfully shifted at their borders. 

   Figure 14 (a) visualizes the result of the MEP-Clustering 

algorithm described in Section 3.6. The yellow points 

indicate the neurons generated by the algorithm. The union 

of the neurons forms a single trajectory. The more a 

centroid is colored in yellow, the more the neuron owns 

points grouped in its cluster. Figure 14 (b) shows the 

neurons over the map of Cernobbio.  

   The 3D representation of the neurons in Figure 15 shows 

a Gaussian representation of the clustering result where the 

mean and variance of the data points at each single neuron 

is computed and plotted. 

a) 

b) 

Figure 13. Cartographic correction of GNSS 
trajectories. From left to right (a) raw dataset of 
Cernobbio, (b) cartographic GNSS correction. 

a) 

b) 

Figure 14. a) MEP-Clustering algorithm result and b) 
cluster visualization in Cernobbio 
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Figure 15. Gaussian 3D visualization of neurons 
using MEP-Clustering algorithm.  

The average battery consumption of MEP-Traces has also 

been computed for each device. The application is designed 

to run in background trying to use the minimal Android 

system resources, allowing the user to do any other task 

(e.g., calls, receiving SMS and emails, using the internet, 

etc.). Table 1 shows the total acquisition time and the total 

length of the walked path (expressed in meters). 

Table 1. Average battery consumption for each 
device in using MEP-Traces during the experiments 
in Cernobbio (Como, Italy) with total acquisition time 

and the total length (in meters). 

Android device 
Acquisition 

time 

Walk 

[m] 

Average 

1h battery  

consumption 

 Samsung GT-

I9505 
1h 13' 54'' 3792 

3% 

Motorola 

XT1092 
2h 07' 54'' 6312 

16% 

Huawei MT7-

TL10 
4h 43' 42'' 14314 

7% 

Nexus 5 42' 31'' 1862 3% 

Motorola 

XT1092 
2h 10' 47'' 6730 

5% 

Nexus 7 2013 20' 55'' 971 5% 

Nexus 7 2013 1h 33' 20'' 1070 24% 

Nexus 7 2012 06' 08'' 152 2% 

Samsung GT-

I9070 
2h 22' 45'' 3796 

15% 

Nexus 5 1h 16' 06'' 4074 5% 

16h 38' 02'' 43073 

A total acquisition time of 16h 38' 02'' was done, reaching 

about 43 Km as the total length of the walked path. The 

battery consumption of MEP-Traces has also been 

computed considering one hour of acquisition: the battery 

consumption of the application is about 5-6% in one hour 

varying among the different devices. For some devices 

(omitted from our computation) we have used power 

banks; in such cases the battery consumption was 0%. 

   All the acquisitions were taken with the application 

running in background. In order to consider a common user 

in a daily device usage, mobile data connection was 

enabled. Most of the used devices were personal devices, 

therefore the consumption could have been affected also by 

other applications running on them. Several factors may 

affect the results of the battery consumption and for 

personal devices it is difficult to have homogeneous 

conditions. Indeed, results may depend also from the 

Android OS version installed on the device, the Linux 

Kernel version and its optimization, the hardware device 

composition like CPU and RAM, the read/write SD-card 

speed, etc. However, since the applications are thought to 

be used by any user with any Android device, these data 

can be considered as approximations of possible 

behaviours. 

5. Conclusions and Future Work

In this paper we have described the results of data 

acquisitions done in Cernobbio (Como, Italy) for the MEP 

(Maps for Easy Path) project. The tools developed for the 

project have been illustrated and in particular the app MEP-

Traces has been described in more detail: it retrieves raw 

GNSS data from low cost GPS sensor installed on 

commercial mobile devices, together with other sensor data 

like accelerometer, magnetometer etc. Then the entire path 

is reconstructed. Each reconstructed path is associated with 

the user’s profile (e.g., wheelchair type, requirements like 

“no-step”, etc.), to build accessible paths for different 

users’ types. Consistency and reliability of the collected 

data can be increased if more users trace the same routes. 

At this aim, we are improving the path reconstruction using 

clustering techniques on a set of paths. The visualization of 

the collected data with the cartographic correction of the 

GNSS and the MEP-Clustering algorithm applied on our 

collected dataset have also been discussed. 

Experiments have shown that the MEP-Traces 

application performance running in background on 

different devices is good, with a battery consumption of 

about 5-6% for an hour of acquisition.  

   Future works of the project include the MEP-Fusion 

optimization on our main real time computing service and 

a heatmap visualization of the paths clustering fusing also 

reported obstacles. This last step aims to compute in real 

time the visualization of the accessibility level, by 

colouring from red to green the clustered neurons 

belonging to a path when a user notifies an obstacle during 

his/her traveling in the city. 
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