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Abstract 

Recent advances in Smart City infrastructures and the Internet of Things represent a significant opportunity to improve 
people’s quality of life. Corresponding research often focuses on Cloud-centric network architectures where sensor devices 
transfer collected data to the Cloud for processing. However, the formidable traffic generated by countless IoT devices and 
the need for low-latency services raise the need to move away from centralized architectures and bring the computation 
closer to the data sources. To this end, this paper discusses SPF, a middleware solution that supports IoT application 
development, deployment, and management. SPF runs IoT services on capable devices located at the network edge and 
proposes an information-centric programming model that takes advantage of decentralized computation resources located in 
the proximity of application users and data sources. SPF also adopts Value-of-Information based methods to prioritize the 
transmission of essential information. 
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1. Introduction

Smart cities represent an emerging domain for research and 
development, centered on providing new services to 
citizens and policy makers by using Internet of Things 
(IoT) technology [1]. Worldwide, several governments at 
the state and city level have invested in smart city 
infrastructures, which include the Yokohama Smart City 
Project 
(http://www.city.yokohama.lg.jp/ondan/english/yscp) and 
the LIVE Singapore project (http://senseable.mit.edu/ 
livesingapore) in Asia, the SmartSantander 
(http://www.smartsantander.eu), the CITYKEYS 
(http://citykeys-project.eu), and the Open Cities 
(http://www.opencitiesproject.org) projects in the 
European Union, and the City Science Initiative in the USA 
(https://sap.mit.edu/article/standard/city-science-

initiative-media-lab). Each of these efforts focuses on at 
least one of the six aspects that, according to European 
Union guidelines (http://www.smart-cities.eu), 
characterize modern urban realities: environment, living, 
mobility, governance, economy, and people [1]. 

Cloud-based technologies have often been proposed for 
use in the design and implementation of smart city network 
infrastructures to facilitate processing of large volumes of 
data, obtained from sensors at the network edge [2] [3] [4]. 
From there, citizens and policy makers can access derived 
information by connecting to IT services hosted in the 
Cloud data centers. 

Despite showing early promise, Cloud-based 
architectures present significant limitations for use in smart 
cities. A key reason for this concerns growing volumes of 
data produced at the network edge, combined with a 
growing variety of applicable data sources. According to 
recent studies, worldwide volume of IoT-generated data is 
expected to exceed 500 ZB of data annually by 2019 [5]. 
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Transferring, processing, and storing this formidable 
amount of raw data using Cloud-based data centers would 
be very costly and inefficient. 

Deploying IoT devices in groups (e.g. sensing systems) 
is common practice in smart cities, so that they can take 
advantage of short-range and low-power wireless 
communications for connectivity, like IEEE 802.15.4 and 
Bluetooth LE. IoT networks are normally connected to 
smart city networking infrastructures through one or more 
“gateway” devices that build on top of rather capable 
microprocessors, e.g., ARM Cortex A, and enable the 
execution of sophisticated and computationally hungry 
services, while still remaining fairly energy efficient. 

Therefore, gateway devices represent a promising 
location for deploying information-processing tasks in IoT 
infrastructures, with continuous reconfiguration of task 
allocations according to real-time environmental 
conditions and service characteristics. Bringing disruptive 
innovations to IoT services demands new models of 
application programming, information processing, and 
information dissemination. 

This paper analyzes opportunities and challenges 
involved in the development of community-aware IoT 
services in smart city environments, capable of processing 
data derived both from user communities and the 
surrounding environment. The article then discusses SPF 
(Sieve, Process, and Forward), a new middleware solution 
to support IoT application and service development, 
deployment, and management. SPF enables application 
developers to take advantage of decentralized computation 
resources in a seamless fashion. To this end, SPF runs IoT 
services on devices at the edge of the network, proposes an 
innovative programming model, leverages information 
dissemination solutions designed for constrained network 
environments, and adopts Value-of-Information (VoI) 
based concepts to prioritize information transmission. 

2. Next-generation IoT Services in Smart
Cities

In a smart city, as depicted in Fig. 1, applications, storage, 
and processing capabilities are typically concentrated in 
Cloud data centers at the core of the network. Edge 
networks that are connected through heterogeneous 
communication means to the smart city infrastructure 
include Wireless Sensor and Actuators Networks 
(WSANs), WiFi and other public networks that provide 
free Internet access to mobile citizens, smart grids for smart 
energy management that connect factories, buildings, and 
houses, smart roads with sensors and actuators to monitor 
and manage traffic, and so forth.  

In addition to leveraging environmental sensors, smart 
city services stand to benefit from the growing usage of 
personal electronic devices by citizens. For example, 
modern smartphones can provide a wealth of information 
on activities of their users, including physical location (via 
GPS) and data usage activities (e.g., histories of web 
browsing and application usage). In turn, wearable activity 

trackers like FitBit (www.fitbit.com) can provide access to 
vital signs (e.g., heartbeat, levels of aerobic activity) 
indicative of personal conditions such as stress level [6].  

When data from personal electronic devices is 
aggregated at the community level, it can potentially reveal 
both anomalies and important community trends. For 
example, activity tracker data collected across a city could 
yield valuable insights on the “walkability” of particular 
neighborhoods. When cross-referenced against third-party 
datasets (such as those hosted by the Open Data Foundation 
at www.opendatafoundation.org), or social media 
platforms, potential threats to the walkability level may be 
revealed, such as poor quality sidewalks or elevated 
robbery/assault risk in particular areas. Such information 
could provide government officials improved guidance in 
allocation of resources, as well as support IT services for 
particular groups in need, such as the disabled [7] and 
elderly [8]. 

A key challenge in management of smart city 
infrastructures involves ingestion and processing of 
potentially large and heterogeneous data collections. 
Relevant prior solutions, such as fog computing [10], 
attempt to integrate computational and storage resources at 
the network edge with those at centralized locations. 
Nonetheless, such approaches continue to face challenges 
with the heterogeneous wireless communications known to 
be present at the edge of smart city network infrastructures. 
To ensure viability of emerging smart city services, 
proposed technical solutions should take into consideration 
these communication infrastructure features, as well as 
growing heterogeneity of available data sources. 

The pervasive computing scenario enabled by IoT 
technology goes beyond the “decentralized data centers” 
vision proposed by fog computing and stands to enable the 
development of a new generation of IoT services capable 
of significantly improving quality of life within smart 
cities. In fact, large and high-density IoT installations 
create a distributed sensing and computation infrastructure 
for deploying a wide range of information-centric services 
in response to the citizens’ needs, whose deployment may 
be either planned in-advance (e.g., to support a public event 
[11]), or unplanned / impromptu (e.g., emergency services 
in case of a flash mob or interruptions in public transit). 
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Dynamically instantiated and short-lived services will 
typically perform computationally light operations on real-
time data, implementing social- and context-aware 
information processing and dissemination. Such services 
will typically execute on “gateway” units deployed in 
proximity of the users and support devices with low 
computational and memory resources (such as wearable 
and portable gadgets) by enabling computation offloading. 
At the same time, resident and/or long-time running 
services might perform more computationally intensive 
operations on data collected during long periods and from 
a number of different sources (e.g., for traffic control and 
anomaly detection), also taking advantage of Cloud-based 
resources. 

Developers will design innovative, community-focused 
IoT services around their users, with strong social 
components and results that depend greatly on the location 
of both the requesting user and the data source. The 
community- and information-centric nature of new IoT 
services will cause a departure from the one-to-one 
communication model in favor of the one-to-many model, 
which better fits social applications and other citizen-
oriented services that need to communicate with a group of 
people/devices (e.g., public safety or emergency alerts). 

The dynamicity and heterogeneity of next-generation 
IoT services and the smart city environment call for an 
information-centric programming model and a 
corresponding platform that enables and simplifies the 
deployment and management of applications and 
information processing tasks in smart city environments. 
This would considerably reduce both time and cost for the 

allocation/deallocation of resources to and from specific 
services, for instance to respond to peaks in service demand 
or idle times. Additionally, it would ease the on-demand 
deployment and instantiation of new services to address 
needs that arise in certain situations (e.g., during social 
events like a concert, or a sports match).  

Information-centric platforms for IoT services could 
also provide the possibility for developers to register and 
deploy their own applications. To assist developers, such 
platforms would need to provide well-defined APIs to 
support application interactions with platform devices, as 
well as abstract out potential infrastructure complexities 
(e.g., allocation/deallocation of resources). 

In summary, new IoT infrastructures for smart city 
environments will need to focus on methods for managing 
growing volumes and variety of data, as a means of 
enabling next-generation services. To do so, support for 
selective usage of network bandwidth and computational 
resources will be of significant importance. 

3. SPF

SPF (Sieve, Process, and Forward) is a middleware 
solution for the development, deployment, and 
management of dynamic IoT applications in urban 
computing environments [11]. SPF adopts a distributed 
computation approach that aims at addressing the 
continued growth of IoT data collection by supporting 
selective filtering of data feeds (the Sieve phase), 
processing filtered information at the edge of the network 
(the Process phase), in close proximity to the data source, 

Figure 1. Typical architecture of a Smart city 
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and then disseminating obtained information to appropriate 
users (the Forward phase). 

SPF instances (as illustrated in Fig. 2) rely upon two 
components: a centralized SPF Controller and a collection 
of Programmable IoT Gateways (PIGs) deployed at the 
network edge. PIGs act as an entry point for raw data from 
IoT devices and incorporate functionality for selective data 
filtering, described in further detail below. Likewise, the 
SPF Controller employs an information-centric 
programming model to enable both the creation of IoT 
applications and their deployment on the PIGs. Service 
requests from application users are also managed by the 
SPF controller, which determines appropriate PIGs to 
forward requests to. Hence, execution of information 
processing and dissemination routines are only performed 
when and where needed. 

PIGs provide both information processing and 
dissemination functionalities, which leverage the set of 
filtering and communication functions implemented by the 
software platform, in accordance with the instructions 
received by the SPF Controller. It is possible to deploy 
PIGs directly on the gateway nodes that connect 
6LoWPAN/WSAN networks to the Internet or on 
dedicated hardware placed in the proximity of gateway 
nodes.  

Applications deployed on PIGs follow an innovative 
programming model specifically devised for extremely 
dynamic and resource-constrained environments. To 
reduce the consumption of processing resources further, 
PIGs also employ content-based filtering on the input data. 

When new data arrive at the PIG from the WSAN, they go 
through a filter component that compares the new piece of 
information with a reference, i.e., the last piece of 
information processed by the PIG. A difference threshold τ 
determines if the difference between the new data and the 
reference is significant. If so, the PIG processes the new 
data, which then becomes the new reference. SPF allows 
each application to specify a value for τ that best suits their 
own requirements. 

Following data processing, the PIG delivers obtained 
information to the requesting users. To facilitate 
information dissemination, SPF relies upon DisService, a 
P2P communications middleware defined within the Agile 
Computing Middleware (ACM) [12]. DisService manages 
information dissemination via ad hoc communication links 
to set up a P2P network and deliver messages within the 
context of “groups”. For communications, DisService 
takes advantage of multiple device-to-device (D2D) 
connection modalities (e.g., WiFi, Bluetooth) as they 
become available [13] [14], enabling D2D message 
delivery under conditions of mobile network congestion or 
transient network connectivity. Additionally, DisService 
enables the fine-tuning of delivery policies, allowing 
applications to reply with user- or group-specific 
responses. 

SPF defines three classes of stakeholders: 
Administrators (or SPF Managers), Application 
Developers, and Users. Administrators in SPF manage 
deployed SPF platforms and handle tasks including 
deployment of gateways, allocation of application 

Figure 2. Adoption of SPF in a smart city scenario 
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resources, and configuration of the SPF Controller. 
Application developers define and configure IoT 
applications. In turn, SPF Users can install client versions 
of these IoT applications on their mobile devices through 
which they can access the instances deployed within the 
SPF platform. As shown in Figure 2, application requests 
will arrive at the SPF Controller (normally via 4G/WiFi 
networks), while responses can reach their destinations 
using the peer-to-peer (P2P) ad hoc networks composed of 
nodes running SPF and DisService. 

To support multiple kinds of users with different 
priorities (e.g., civilians versus police and emergency 
responders), SPF supports the concept of user types, which 
enables the definition of applications for specific sets of 
users and policies for allocation of networking bandwidth. 
Such functionality could support multiple smart city 
services, including emergency response and law 
enforcement. 

4. The SPF Programming Model

SPF defines an information-centric programming model 
for applications that enables efficient use of processing and 
memory resources on the PIGs where they are deployed. 
Additionally, the SPF programming model allows PIGs to 
dynamically adjust the number of computational resources 
allocated for data processing to respond quickly to changes 
in the environment. Examples may include a sudden spike 
in requests for an application or the necessity to process 
raw data more frequently or at a greater level of detail. 

The SPF programming model defines three distinct 
entities that work together on the PIG to produce responses 
to user requests and disseminate them accordingly. From 
the lowest to the highest level of data processing 
abstraction, the entities are processing pipelines (or, more 
simply, pipelines), services, and IoT applications (or just 
applications). 

Data processing is information–centric and 
implemented by the coordinated efforts of two processing 
layers: pipelines and services. Pipelines provide first-level 
data processing procedures that execute directly on the raw 
data. Services, on the other end, are defined by developers 
and implement application-specific data processing over 
the pipeline outputs. The information flows 
unidirectionally from pipelines to services and finally to 
applications, as illustrated in Fig. 3; consecutive entities 
further refine the information, build responses to user 
requests, and take care of their dissemination. As we will 
explain more below, data processing in SPF is not an 
immediate consequence of user requests, but instead 
proceeds independently, in accordance with the 
information-centric nature of the programming model. 

Processing pipelines constitute the basic unit of data 
processing in PIGs. They operate directly on raw data 
coming in from the 6LoWPAN/WSAN network by 
applying low-level information manipulation functions 
that extract useful information into discrete units, termed 
Information Objects (IO). This step can significantly 
reduce the amount of noise that higher-level entities will 
have to manage. For instance, an optical character 
recognition (OCR) processing pipeline could take 

Figure 3. Information flow in the SPF PIG 
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individual images as input and produce a text document 
containing text identified within images. 

When active, processing pipelines continuously process 
sensor data in the background and generate IOs that 
services can use to respond to user requests. Each pipeline 
feeds its output to one or more services installed on the PIG 
following a registration mechanism described in Section 5. 
SPF comes with a number of pre-defined pipelines 
installed on the PIGs that applications can exploit. More 
specifically, the processing pipelines currently available in 
SPF implement functions that include optical character 
recognition (OCR), facial recognition, car recognition, 
object tracking, and song identification. 

Compared to processing pipelines, services operate on 
IOs produced by the pipelines, at a level abstracted from 
raw data processing. Whenever a new request arrives from 
the SPF Controller, a request-handling component in the 
PIG registers the request with the service that provides the 
required functionality. This enables the consolidation of 
multiple requests for the same services, which can thus be 
processed and responded to together.  

Services execute as soon as a corresponding pipeline 
supplies an IO. Depending on content filtering previously 
applied, this could be a new IO or a reference to an old one, 
built from data not significantly different from the latest 
received. Upon receipt of an IO, services will go through a 
listing of registered, consolidated requests and attempt to 
answer them with the information contained in the IO. The 
type of functionality the service provides will determine 
the nature of the response generated, as well as conditions 
under which responses are provided. For each request that 
can be served, the service builds the corresponding 
response and dispatches it to the application. In case of 
aggregated requests, the service constructs only one 
response for all of them. 

In addition to higher level IO processing and the 
construction of responses to users’ requests, services also 
provide functionality to calculate the value of IOs for 
particular consumers, based on both intrinsic quality 
metrics and situational context. Such methods for IO value 
assessment, broadly referred to as Value of Information 
(VoI) calculations, as well as their applicability toward 
selective content dissemination, will be discussed further 
in Section 5. 

Finally, IoT applications are the entities with the highest 
level of abstraction. SPF defines an IoT application as a 
collection of related services with the same priority and the 
same target users. Applications receive responses from the 
services and take care of their dissemination using 
DisService. Each application subscribes to a different 
DisService group and pushes responses within that group. 
Clients installed on the users’ devices just need to subscribe 
to the same group in order to start receiving responses to 
the requests issued. 

The SPF Controller can remotely (re)configure 
applications to change specific dissemination-related 
options. These options include the group name, the 
dissemination channels used, what to do with previously 
pushed responses when a new one becomes available, and 

the reliability level, expressed as number of retransmission 
attempts and retransmission frequency. 

Fig. 3 provides a graphical representation of the 
complete information flow in the PIG, which shows raw 
data going into the pipeline (thick gray arrows); from there, 
IOs (thin green arrows) are received by services S1, S2, and 
S3, which are each part of an application (S1 and S2 belong 
to application A1, and S3 belongs to application A2). 
Following processing by the services, applications deliver 
their responses to DisService (thin blue arrows), which 
disseminates them to users over an ad hoc network (thick 
blue arrows). Likewise, user requests (dashed black 
arrows) arrive through the SPF Controller to the PIG, 
which dispatches them to the requested services. 

5. Application Development in SPF

SPF enables developers to define, develop, and deploy IoT 
applications on the SPF PIGs. SPF takes care of application 
deployment and installation, and provides the support for 
the dissemination of generated responses to users. 

For each application, developers need to supply both a 
configuration file and the implementation of all the related 
services and pipelines. The configuration file specifies the 
services that compose the application, how to disseminate 
the responses, and the processing resources required by 
each service. 

5.1. Application Configuration and Lifecycle 

SPF automatically takes care of the application installation 
and the dynamic activation/deactivation of the related 
software components on the PIGs. In addition, SPF 
supports the execution of many concurrent applications, 
constraining their resource consumption through 
permissions and priority level enforcement mechanisms. 

SPF provides developers with a dedicated Domain 
Specific Language (DSL) that allows for rapid 
development and configuration of IoT applications and 
services. Each application ships with its own configuration 
file that specifies several properties, such as name, priority 
level, a list of allowed service types provided to users, 
service configurations, and a set of dissemination-related 
options that determine the dissemination policy for the 
application. In this way, application developers can 
differentiate between critical and best-effort applications, 
define how the application deals with user service requests, 
and define which dissemination policies are needed. 

In the configuration file, application developers can 
configure each of the provided services independently. 
They can do this by indicating a list of 
processing_pipelines to which the service will register, the 
filtering_threshold that will regulate the content-based 
filtering process (as described in Section 3), and other 
parameters that enable the control of the service lifecycle 
and are useful for VoI calculation. 
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Finally, the configuration file exposes the 
dissemination_policy settings, related to the DisService 
component. The subscription parameter indicates the group 
name within which DisService will disseminate results, 
retries indicates the number of retransmission attempts of 
a given response, wait provides the interval (in seconds) 
between two subsequent retransmissions, and 
allowed_channels lists the communication mediums that 
DisService can use for dissemination, e.g., WiFi, 
Bluetooth, or 3G/4G. 

The lifetime of services provided by applications mainly 
depends on the users’ requests: applications receive them 
through the SPF Controller and activate services on PIGs 
accordingly, in an on-demand fashion. Additionally, if 
users do not request a specific service for a certain amount 
of time, the PIG deactivates that service, which will be 
reactivated only upon receipt of a new user service request, 
thus promoting resource saving. 

Upon service activation, the PIG connects it with all the 
required pipelines, activating them if needed. From that 
point on, and until the service is deactivated, running 
pipelines continuously analyze raw input data to obtain 
higher-level IOs to feed the registered services. This phase 
could also involve data reduction, compression, and 
discretization, resulting in IOs smaller than their 
corresponding raw data and containing only relevant 
information. 

Before their deactivation, the PIG disconnects services 
from all the related pipelines and unregisters them. Service 
lifecycle also determines the lifecycle of pipelines: the PIG 
keeps pipelines active as long as they have at least one 
service registered with them; when all services have 
unregistered from a processing pipeline, the PIG 
deactivates it. 

Another fundamental aspect that naturally emerges from 
the programming model of SPF is the reuse and sharing of 
pipelines. In fact, applications can define services that take 
as input the output of one or more pipelines. Moreover, 
different services from different applications can register 
themselves to the same pipelines, whose output will thus 
become the input of multiple services. These 
characteristics make SPF an inherently dynamic 
middleware, with services and pipelines acting as 
autonomous entities capable of cooperation, conservation 
of resources, and sharing of processing resources through 
pipeline sharing. 

5.2. Dissemination 

The dissemination of IOs managed by IoT applications 
follows a prioritization rule that takes into account the 
Value of Information (VoI) of IOs. VoI is a measure of the 
estimated utility of information to consumers based on 
their situational context, which represents one of the most 
promising methods for information filtering and 
prioritization in IoT applications. Insight on SPF’s methods 
for defining VoI borrows in-part from prior work on 
middleware for proactive information dissemination in 

resource-constrained environments (e.g., [15]), and builds 
on metrics for gauging intrinsic quality of IOs, termed 
Quality of Information (QoI). 

Each service has to provide its own VoI calculation 
procedure, which takes into account multiple factors: some 
of them are common between all services, while others are 
service-specific. There are four common parameters: 
Application Priority (Pa), Normalized Number of Requests 
(RN), Timeliness Relevance (of Request) Decay (TRD) and 
Proximity Relevance (of Request) Decay (PRD). If 
available, SPF also takes into consideration the geographic 
distance between a consumer and the location 
corresponding to an IO (e.g., the GPS coordinates of a 
sensor that generated the data from which the IO was 
extracted) to compute its VoI. Besides common factors, 
developers can also define service-specific (SS) factors for 
VoI calculation. For example, the calculation of the VoI of 
a “Song Identification” service could also involve an 
accuracy parameter that represents the intrinsic quality of 
the audio match. The value of such a parameter could be 
provided, for instance, directly by the audio identification 
pipeline. 

Based on the factors discussed above, SPF defines the 
following formula for VoI calculation: 

VOI(o, r, t, a) = SS(o) ∗  PA(a) ∗  RN(r) ∗
 TRD(t, OT(o))  ∗  PRD(OL(r), OL(o)) (1) 

where o is an Information Object, r the requestor recipient, 
t the current time, a the application, and OT and OL are 
operators that return the time and location of origin of 
objects and requestors, respectively. The result is the tuple 
<IO, VoI>, which is dispatched to the dissemination 
component for forwarding. 

6. An Application Example

To help further illustrate the SPF development process, we 
provide here a short walkthrough on defining the 
configuration of an application and the implementation of 
a service to find text in an image/video feed, which in-turn 
relies upon a supporting pipeline capable of OCR 
processing. 

More specifically, we consider as an example an 
application called “lookaround”, whose purpose is to 
monitor the environment to discover textual information 
that could be useful to citizens (e.g., arrival of a food cart 
displaying its menu on a board), by analyzing camera feeds 
using OCR-based functionality. The application provides a 
“find_text” service, which allows users to register a string 
of text they are looking for in their surrounding 
environment (e.g., thirsty citizens might be interested in 
looking for the “water” string). 

Fig. 4 shows an example of a configuration file that the 
developers of lookaround might ship with their application 
upon deployment into the SPF platform. After defining the 
application priority (a numeric value defined relative to 
other applications), the configuration specifies the related 
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services. In the example, lookaround only defines one 
service, find_text, which relies on the ocr pipeline. The 
filtering_threshold is set to 0.05, which means that new 
images need to differ by 5% or more to be processed. 
on_demand set to false ensures that data processing 
progresses in the background, when the service is active, 
even if there are no user requests in the queue. If idle, the 
PIG will deactivate find_text after 2 minutes and any IO 
will stay valid for up to 3 minutes after generation. Finally, 
the distance_decay option determines that the VoI of 
responses generated by the lookaround application 
decreases exponentially as the distance between the 
requestor and the source of the IO gets closer to 1 km. As 
for the options relative to the dissemination_policy, the 
lookaround application uses WiFi for response 
dissemination and requires that, in case of failed 
transmission, DisService performs another single attempt 
after 30s. 

From an implementation standpoint, the “lookaround” 
application developer has to provide two software 
components: a service level component and a pipeline level 
component. The SPF platform provides a common 
interface for all services that enables them to receive IOs 
from registered pipelines and forward responses to their 
relative application for dissemination. Additionally, SPF 
defines the interface with which custom services 
implemented by application developers need to comply. 
We call these specialized services “service strategies”. 

The service strategy interface exposes three methods 
that developers need to implement. The execute_service 
method implements the custom operations that the service 
strategy will perform on the IOs received from pipelines. 
The calculate_voi method enables developers to modify or 
extend the formula for calculating VoI, defined by (1); this 
allows the computation of VoI values that fit better with the 
application goals. Finally, the add_request method allows 

each service strategy to manage the queue of application 
requests; in this way, for example, a developer could decide 
to aggregate similar requests before producing a result. 

Fig. 5 shows a simplified implementation of the 
execute_service method of the find_text service strategy. 
First, the service looks for and removes any expired request 
from the request queue. Next, for each request, the service 
checks if the requested string is present in the IO passed in 
as a parameter to the execute_service method by the OCR 
pipeline. If the outcome is positive, the service proceeds 
with VoI calculation (in this case, according to the formula 
defined by (1)) and building the response.After the 
execute_service method returns, the response is passed to 
the DisService component, along with the VoI associated 
to that response, for dissemination. 

At the pipeline level, the “lookaround” application can 
simply rely on the default OCR processing functions 
provided by SPF. PIGs continuously receive raw data from 
varying sources (e.g., sensors in a 6LoWPAN) and, in turn, 
forward them to corresponding pipelines. Among the 
default raw data processing tools available, the OCR 
pipeline will only take images as input; other data formats, 
such as audio, will not enter the OCR pipeline. 

Each pipeline exposes a process method that takes the 
raw data as a parameter and extracts an IO from those data. 
First, the method performs a content-filtering task to 
understand whether it is necessary to process the new raw 
data. Pipelines implement an IO caching mechanism that 
enables caching of the last produced IO for each raw data 
source. If the new data do not pass the content-filtering 
step, the cached IO is used; otherwise, the pipeline 
processes the data and caches the new IO for future 

application "lookaround", { 
 priority: 50.0, 
 allow_services: [ :find_text ], 
 service_policies: { 
 find_text: { 
 processing_pipelines: [ :ocr], 
 filtering_threshold: 0.05, 
 on_demand: false, 
 uninstall_after: 2.minutes, 
 expire_after: 3.minutes, 
 distance_decay: { 

 type: :exponential, 
 max: 1.km  

 } 
 } 

 }, 
 dissemination_policy: { 
 subscription: "lookaround", 
 retries: 1, 
 wait: 30.seconds, 
 allow_channels: [:WiFi]  

 } 
} 

Figure 4. An example of SPF application 
configuration. 

def execute_service( io) 
 @queued_requests.each do |key, requests| 

 remove_if_expired(requests, expiration_time) 

 if found_key_in_io(key, io) 
 most_recent_request = 

find_most_recent_request_time(requests) 
 min_distance_to_requestor =   

find_nearest_requestor(requests) 
 end 

 end 

 unless requestors.empty? 
 r_n = requestors / @max_number_of_requestors 
t_rd = apply_time_decay(decay_rules, Time.now, 

most_recent_request) 
 p_rd = apply_distance_decay(decay_rules, 

 min_distance_to_requestors) 
 voi = calculate_voi(quality_of_service, app_priority, 

r_n, t_rd, p_rd) 
 return io, voi 

  end 
end 

Figure 5. Example of higher-level processing of the 
find_text service 
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reference. The source-dependent caching of the latest 
processed data enables saving of significant amounts of 
computational resources on the PIGs. 

Fig. 6 shows how the OCR pipeline implements 
content-based filtering. First, the information_diff function 
calculates the difference between the new data and the last 
processed data, namely delta. Then, the pipeline compares 
delta with a filtering threshold. As discussed in Section 5, 
each service defines its appropriate filtering_threshold and 
pipelines select the most stringent value among all 
registered services. If the delta value is lower than the 
chosen threshold, the pipeline will deliver the cached IO to 
the registered services (through the new_information 
method exposed by the service). On the other hand, if the 
difference is greater than the threshold, the pipeline will 
process the new input data and deliver the resulting IO to 
all registered services. In our example, the OCR processing 
pipeline tries to recognize the text in the input image and 
deliver it to the find_text service. 

7. Conclusions and Future Work

The decentralized computing and information-centric 
approaches adopted by SPF seem to be effective in 
enabling the development of community-oriented and 
citizen-focused IoT applications and services. In building 
on these efforts, several directions are presently under 
consideration. 

One direction concerns the usage of semantics based 
methods for defining and supporting IoT applications. 
Semantic Web technologies [16] focus on enabling both 
integration of data and corresponding machine 
interpretation through use of Ontologies (structured 
representations of domain knowledge) and reasoning 
engines. In prior IoT research efforts, usage of semantics in 
data representation has been applied in a variety of settings 
that include: dynamic service discovery [17], pervasive 

computing infrastructures [18], and context-aware asset 
search [19]. 

We are also planning to evaluate the adoption of the 
ICeDiM middleware (http://endif.unife.it/dsg/research-
projects/icedim) as an alternative to DisService for 
information dissemination. ICeDiM is an innovative 
solution that leverages the concept of virtual dissemination 
channels with tunable permeability to facilitate the delivery 
of public and/or unclassified information and, at the same 
time, enable the constraining of sensitive information to a 
subset of authorized devices. 

We also intend to extend the design of the SPF 
programming model by opening the possibility of defining 
processing pipelines that work in series with other 
pipelines. This would enable the creation of cascades of 
reusable components in SPF, thus making it possible to 
increase the flexibility and granularity of processing 
pipelines deployed on PIGs, further promoting the reuse of 
resources. 

Another interesting future objective is to define an 
extended, acceleration-aware programming model for IoT 
applications and services that allows their efficient 
execution on high performance gateways with accelerator-
based heterogeneous hardware. More specifically, the 
acceleration-aware programing model would provide 
developers with abstractions and functions to write code 
that can be run in parallel efficiently on a wide range of 
parallel hardware platforms and whose parallelism can be 
safely changed at run time (acceleration-friendly code). 
This programming model could also provide functions that 
enable the code to inquire at run time about the current 
computational resources available on the hardware 
platform and request the PIGs to increase or decrease the 
execution parallelism dynamically, e.g., for performance, 
cost, and/or energy saving purposes (acceleration-aware 
code). This would enable SPF to take advantage of highly 
innovative, computationally capable, and relatively low-
energy consuming hardware solutions based on 
neuromorphic processors (such as IBM’s True North 
Chip), hybrid CPU/manycore (such as Adapteva’s 
Parallela board) or CPU/FPGA architectures (such as 
Xilinx’s Zynq-7000 SoC), with the goal of improving the 
performance of IoT applications significantly. 
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