
1

An Information-Centric Platform for Social- and
Location-Aware IoT Applications in Smart Cities

M. Govoni1, J. Michaelis2, A. Morelli1, N. Suri2,3, M. Tortonesi1

1 Department of Engineering, University of Ferrara, Ferrara, Italy,
{marco.govoni,alessandro.morelli,mauro.tortonesi}@unife.it
2 United States Army Research Lab (ARL), Adelphi, MD, USA, {james.r.michaelis2.civ,niranjan.suri.civ}@mail.mil
3 Florida Institute for Human and Machine Cognition, Pensacola, FL, USA, nsuri@ihmc.us

Abstract

Recent advances in Smart City infrastructures and the Internet of Things represent a significant opportunity to improve
people’s quality of life. Corresponding research often focuses on Cloud-centric network architectures where sensor devices
transfer collected data to the Cloud for processing. However, the formidable traffic generated by countless IoT devices and
the need for low-latency services raise the need to move away from centralized architectures and bring the computation
closer to the data sources. To this end, this paper discusses SPF, a middleware solution that supports IoT application
development, deployment, and management. SPF runs IoT services on capable devices located at the network edge and
proposes an information-centric programming model that takes advantage of decentralized computation resources located in
the proximity of application users and data sources. SPF also adopts Value-of-Information based methods to prioritize the
transmission of essential information.

Keywords: Internet-of-Things (IoT); Smart Cities; social- and location-aware IT services, programming model.

Received on 06 September 2016, accepted on 30 November 2016, published on 31 January 2017

Copyright © 2017 M. Govoni et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.31-8-2017.153049

1. Introduction

Smart cities represent an emerging domain for research and
development, centered on providing new services to
citizens and policy makers by using Internet of Things
(IoT) technology [1]. Worldwide, several governments at
the state and city level have invested in smart city
infrastructures, which include the Yokohama Smart City
Project
(http://www.city.yokohama.lg.jp/ondan/english/yscp) and
the LIVE Singapore project (http://senseable.mit.edu/
livesingapore) in Asia, the SmartSantander
(http://www.smartsantander.eu), the CITYKEYS
(http://citykeys-project.eu), and the Open Cities
(http://www.opencitiesproject.org) projects in the
European Union, and the City Science Initiative in the USA
(https://sap.mit.edu/article/standard/city-science-

initiative-media-lab). Each of these efforts focuses on at
least one of the six aspects that, according to European
Union guidelines (http://www.smart-cities.eu),
characterize modern urban realities: environment, living,
mobility, governance, economy, and people [1].

Cloud-based technologies have often been proposed for
use in the design and implementation of smart city network
infrastructures to facilitate processing of large volumes of
data, obtained from sensors at the network edge [2] [3] [4].
From there, citizens and policy makers can access derived
information by connecting to IT services hosted in the
Cloud data centers.

Despite showing early promise, Cloud-based
architectures present significant limitations for use in smart
cities. A key reason for this concerns growing volumes of
data produced at the network edge, combined with a
growing variety of applicable data sources. According to
recent studies, worldwide volume of IoT-generated data is
expected to exceed 500 ZB of data annually by 2019 [5].

EAI Endorsed Transactions
on Internet of Things Research Article

∗Corresponding author. Email: mauro.tortonesi@unife.it

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

M. Govoni et al.

2

Transferring, processing, and storing this formidable
amount of raw data using Cloud-based data centers would
be very costly and inefficient.

Deploying IoT devices in groups (e.g. sensing systems)
is common practice in smart cities, so that they can take
advantage of short-range and low-power wireless
communications for connectivity, like IEEE 802.15.4 and
Bluetooth LE. IoT networks are normally connected to
smart city networking infrastructures through one or more
“gateway” devices that build on top of rather capable
microprocessors, e.g., ARM Cortex A, and enable the
execution of sophisticated and computationally hungry
services, while still remaining fairly energy efficient.

Therefore, gateway devices represent a promising
location for deploying information-processing tasks in IoT
infrastructures, with continuous reconfiguration of task
allocations according to real-time environmental
conditions and service characteristics. Bringing disruptive
innovations to IoT services demands new models of
application programming, information processing, and
information dissemination.

This paper analyzes opportunities and challenges
involved in the development of community-aware IoT
services in smart city environments, capable of processing
data derived both from user communities and the
surrounding environment. The article then discusses SPF
(Sieve, Process, and Forward), a new middleware solution
to support IoT application and service development,
deployment, and management. SPF enables application
developers to take advantage of decentralized computation
resources in a seamless fashion. To this end, SPF runs IoT
services on devices at the edge of the network, proposes an
innovative programming model, leverages information
dissemination solutions designed for constrained network
environments, and adopts Value-of-Information (VoI)
based concepts to prioritize information transmission.

2. Next-generation IoT Services in Smart
Cities

In a smart city, as depicted in Fig. 1, applications, storage,
and processing capabilities are typically concentrated in
Cloud data centers at the core of the network. Edge
networks that are connected through heterogeneous
communication means to the smart city infrastructure
include Wireless Sensor and Actuators Networks
(WSANs), WiFi and other public networks that provide
free Internet access to mobile citizens, smart grids for smart
energy management that connect factories, buildings, and
houses, smart roads with sensors and actuators to monitor
and manage traffic, and so forth.

In addition to leveraging environmental sensors, smart
city services stand to benefit from the growing usage of
personal electronic devices by citizens. For example,
modern smartphones can provide a wealth of information
on activities of their users, including physical location (via
GPS) and data usage activities (e.g., histories of web
browsing and application usage). In turn, wearable activity

trackers like FitBit (www.fitbit.com) can provide access to
vital signs (e.g., heartbeat, levels of aerobic activity)
indicative of personal conditions such as stress level [6].

When data from personal electronic devices is
aggregated at the community level, it can potentially reveal
both anomalies and important community trends. For
example, activity tracker data collected across a city could
yield valuable insights on the “walkability” of particular
neighborhoods. When cross-referenced against third-party
datasets (such as those hosted by the Open Data Foundation
at www.opendatafoundation.org), or social media
platforms, potential threats to the walkability level may be
revealed, such as poor quality sidewalks or elevated
robbery/assault risk in particular areas. Such information
could provide government officials improved guidance in
allocation of resources, as well as support IT services for
particular groups in need, such as the disabled [7] and
elderly [8].

A key challenge in management of smart city
infrastructures involves ingestion and processing of
potentially large and heterogeneous data collections.
Relevant prior solutions, such as fog computing [10],
attempt to integrate computational and storage resources at
the network edge with those at centralized locations.
Nonetheless, such approaches continue to face challenges
with the heterogeneous wireless communications known to
be present at the edge of smart city network infrastructures.
To ensure viability of emerging smart city services,
proposed technical solutions should take into consideration
these communication infrastructure features, as well as
growing heterogeneity of available data sources.

The pervasive computing scenario enabled by IoT
technology goes beyond the “decentralized data centers”
vision proposed by fog computing and stands to enable the
development of a new generation of IoT services capable
of significantly improving quality of life within smart
cities. In fact, large and high-density IoT installations
create a distributed sensing and computation infrastructure
for deploying a wide range of information-centric services
in response to the citizens’ needs, whose deployment may
be either planned in-advance (e.g., to support a public event
[11]), or unplanned / impromptu (e.g., emergency services
in case of a flash mob or interruptions in public transit).

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

3

Dynamically instantiated and short-lived services will
typically perform computationally light operations on real-
time data, implementing social- and context-aware
information processing and dissemination. Such services
will typically execute on “gateway” units deployed in
proximity of the users and support devices with low
computational and memory resources (such as wearable
and portable gadgets) by enabling computation offloading.
At the same time, resident and/or long-time running
services might perform more computationally intensive
operations on data collected during long periods and from
a number of different sources (e.g., for traffic control and
anomaly detection), also taking advantage of Cloud-based
resources.

Developers will design innovative, community-focused
IoT services around their users, with strong social
components and results that depend greatly on the location
of both the requesting user and the data source. The
community- and information-centric nature of new IoT
services will cause a departure from the one-to-one
communication model in favor of the one-to-many model,
which better fits social applications and other citizen-
oriented services that need to communicate with a group of
people/devices (e.g., public safety or emergency alerts).

The dynamicity and heterogeneity of next-generation
IoT services and the smart city environment call for an
information-centric programming model and a
corresponding platform that enables and simplifies the
deployment and management of applications and
information processing tasks in smart city environments.
This would considerably reduce both time and cost for the

allocation/deallocation of resources to and from specific
services, for instance to respond to peaks in service demand
or idle times. Additionally, it would ease the on-demand
deployment and instantiation of new services to address
needs that arise in certain situations (e.g., during social
events like a concert, or a sports match).

Information-centric platforms for IoT services could
also provide the possibility for developers to register and
deploy their own applications. To assist developers, such
platforms would need to provide well-defined APIs to
support application interactions with platform devices, as
well as abstract out potential infrastructure complexities
(e.g., allocation/deallocation of resources).

In summary, new IoT infrastructures for smart city
environments will need to focus on methods for managing
growing volumes and variety of data, as a means of
enabling next-generation services. To do so, support for
selective usage of network bandwidth and computational
resources will be of significant importance.

3. SPF

SPF (Sieve, Process, and Forward) is a middleware
solution for the development, deployment, and
management of dynamic IoT applications in urban
computing environments [11]. SPF adopts a distributed
computation approach that aims at addressing the
continued growth of IoT data collection by supporting
selective filtering of data feeds (the Sieve phase),
processing filtered information at the edge of the network
(the Process phase), in close proximity to the data source,

Figure 1. Typical architecture of a Smart city

An Information-Centric Platform for Social- and Location-Aware IoT Applications in Smart Cities

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

M. Govoni et al.

4

and then disseminating obtained information to appropriate
users (the Forward phase).

SPF instances (as illustrated in Fig. 2) rely upon two
components: a centralized SPF Controller and a collection
of Programmable IoT Gateways (PIGs) deployed at the
network edge. PIGs act as an entry point for raw data from
IoT devices and incorporate functionality for selective data
filtering, described in further detail below. Likewise, the
SPF Controller employs an information-centric
programming model to enable both the creation of IoT
applications and their deployment on the PIGs. Service
requests from application users are also managed by the
SPF controller, which determines appropriate PIGs to
forward requests to. Hence, execution of information
processing and dissemination routines are only performed
when and where needed.

PIGs provide both information processing and
dissemination functionalities, which leverage the set of
filtering and communication functions implemented by the
software platform, in accordance with the instructions
received by the SPF Controller. It is possible to deploy
PIGs directly on the gateway nodes that connect
6LoWPAN/WSAN networks to the Internet or on
dedicated hardware placed in the proximity of gateway
nodes.

Applications deployed on PIGs follow an innovative
programming model specifically devised for extremely
dynamic and resource-constrained environments. To
reduce the consumption of processing resources further,
PIGs also employ content-based filtering on the input data.

When new data arrive at the PIG from the WSAN, they go
through a filter component that compares the new piece of
information with a reference, i.e., the last piece of
information processed by the PIG. A difference threshold τ
determines if the difference between the new data and the
reference is significant. If so, the PIG processes the new
data, which then becomes the new reference. SPF allows
each application to specify a value for τ that best suits their
own requirements.

Following data processing, the PIG delivers obtained
information to the requesting users. To facilitate
information dissemination, SPF relies upon DisService, a
P2P communications middleware defined within the Agile
Computing Middleware (ACM) [12]. DisService manages
information dissemination via ad hoc communication links
to set up a P2P network and deliver messages within the
context of “groups”. For communications, DisService
takes advantage of multiple device-to-device (D2D)
connection modalities (e.g., WiFi, Bluetooth) as they
become available [13] [14], enabling D2D message
delivery under conditions of mobile network congestion or
transient network connectivity. Additionally, DisService
enables the fine-tuning of delivery policies, allowing
applications to reply with user- or group-specific
responses.

SPF defines three classes of stakeholders:
Administrators (or SPF Managers), Application
Developers, and Users. Administrators in SPF manage
deployed SPF platforms and handle tasks including
deployment of gateways, allocation of application

Figure 2. Adoption of SPF in a smart city scenario

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

5

resources, and configuration of the SPF Controller.
Application developers define and configure IoT
applications. In turn, SPF Users can install client versions
of these IoT applications on their mobile devices through
which they can access the instances deployed within the
SPF platform. As shown in Figure 2, application requests
will arrive at the SPF Controller (normally via 4G/WiFi
networks), while responses can reach their destinations
using the peer-to-peer (P2P) ad hoc networks composed of
nodes running SPF and DisService.

To support multiple kinds of users with different
priorities (e.g., civilians versus police and emergency
responders), SPF supports the concept of user types, which
enables the definition of applications for specific sets of
users and policies for allocation of networking bandwidth.
Such functionality could support multiple smart city
services, including emergency response and law
enforcement.

4. The SPF Programming Model

SPF defines an information-centric programming model
for applications that enables efficient use of processing and
memory resources on the PIGs where they are deployed.
Additionally, the SPF programming model allows PIGs to
dynamically adjust the number of computational resources
allocated for data processing to respond quickly to changes
in the environment. Examples may include a sudden spike
in requests for an application or the necessity to process
raw data more frequently or at a greater level of detail.

The SPF programming model defines three distinct
entities that work together on the PIG to produce responses
to user requests and disseminate them accordingly. From
the lowest to the highest level of data processing
abstraction, the entities are processing pipelines (or, more
simply, pipelines), services, and IoT applications (or just
applications).

Data processing is information–centric and
implemented by the coordinated efforts of two processing
layers: pipelines and services. Pipelines provide first-level
data processing procedures that execute directly on the raw
data. Services, on the other end, are defined by developers
and implement application-specific data processing over
the pipeline outputs. The information flows
unidirectionally from pipelines to services and finally to
applications, as illustrated in Fig. 3; consecutive entities
further refine the information, build responses to user
requests, and take care of their dissemination. As we will
explain more below, data processing in SPF is not an
immediate consequence of user requests, but instead
proceeds independently, in accordance with the
information-centric nature of the programming model.

Processing pipelines constitute the basic unit of data
processing in PIGs. They operate directly on raw data
coming in from the 6LoWPAN/WSAN network by
applying low-level information manipulation functions
that extract useful information into discrete units, termed
Information Objects (IO). This step can significantly
reduce the amount of noise that higher-level entities will
have to manage. For instance, an optical character
recognition (OCR) processing pipeline could take

Figure 3. Information flow in the SPF PIG

An Information-Centric Platform for Social- and Location-Aware IoT Applications in Smart Cities

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

M. Govoni et al.

6

individual images as input and produce a text document
containing text identified within images.

When active, processing pipelines continuously process
sensor data in the background and generate IOs that
services can use to respond to user requests. Each pipeline
feeds its output to one or more services installed on the PIG
following a registration mechanism described in Section 5.
SPF comes with a number of pre-defined pipelines
installed on the PIGs that applications can exploit. More
specifically, the processing pipelines currently available in
SPF implement functions that include optical character
recognition (OCR), facial recognition, car recognition,
object tracking, and song identification.

Compared to processing pipelines, services operate on
IOs produced by the pipelines, at a level abstracted from
raw data processing. Whenever a new request arrives from
the SPF Controller, a request-handling component in the
PIG registers the request with the service that provides the
required functionality. This enables the consolidation of
multiple requests for the same services, which can thus be
processed and responded to together.

Services execute as soon as a corresponding pipeline
supplies an IO. Depending on content filtering previously
applied, this could be a new IO or a reference to an old one,
built from data not significantly different from the latest
received. Upon receipt of an IO, services will go through a
listing of registered, consolidated requests and attempt to
answer them with the information contained in the IO. The
type of functionality the service provides will determine
the nature of the response generated, as well as conditions
under which responses are provided. For each request that
can be served, the service builds the corresponding
response and dispatches it to the application. In case of
aggregated requests, the service constructs only one
response for all of them.

In addition to higher level IO processing and the
construction of responses to users’ requests, services also
provide functionality to calculate the value of IOs for
particular consumers, based on both intrinsic quality
metrics and situational context. Such methods for IO value
assessment, broadly referred to as Value of Information
(VoI) calculations, as well as their applicability toward
selective content dissemination, will be discussed further
in Section 5.

Finally, IoT applications are the entities with the highest
level of abstraction. SPF defines an IoT application as a
collection of related services with the same priority and the
same target users. Applications receive responses from the
services and take care of their dissemination using
DisService. Each application subscribes to a different
DisService group and pushes responses within that group.
Clients installed on the users’ devices just need to subscribe
to the same group in order to start receiving responses to
the requests issued.

The SPF Controller can remotely (re)configure
applications to change specific dissemination-related
options. These options include the group name, the
dissemination channels used, what to do with previously
pushed responses when a new one becomes available, and

the reliability level, expressed as number of retransmission
attempts and retransmission frequency.

Fig. 3 provides a graphical representation of the
complete information flow in the PIG, which shows raw
data going into the pipeline (thick gray arrows); from there,
IOs (thin green arrows) are received by services S1, S2, and
S3, which are each part of an application (S1 and S2 belong
to application A1, and S3 belongs to application A2).
Following processing by the services, applications deliver
their responses to DisService (thin blue arrows), which
disseminates them to users over an ad hoc network (thick
blue arrows). Likewise, user requests (dashed black
arrows) arrive through the SPF Controller to the PIG,
which dispatches them to the requested services.

5. Application Development in SPF

SPF enables developers to define, develop, and deploy IoT
applications on the SPF PIGs. SPF takes care of application
deployment and installation, and provides the support for
the dissemination of generated responses to users.

For each application, developers need to supply both a
configuration file and the implementation of all the related
services and pipelines. The configuration file specifies the
services that compose the application, how to disseminate
the responses, and the processing resources required by
each service.

5.1. Application Configuration and Lifecycle

SPF automatically takes care of the application installation
and the dynamic activation/deactivation of the related
software components on the PIGs. In addition, SPF
supports the execution of many concurrent applications,
constraining their resource consumption through
permissions and priority level enforcement mechanisms.

SPF provides developers with a dedicated Domain
Specific Language (DSL) that allows for rapid
development and configuration of IoT applications and
services. Each application ships with its own configuration
file that specifies several properties, such as name, priority
level, a list of allowed service types provided to users,
service configurations, and a set of dissemination-related
options that determine the dissemination policy for the
application. In this way, application developers can
differentiate between critical and best-effort applications,
define how the application deals with user service requests,
and define which dissemination policies are needed.

In the configuration file, application developers can
configure each of the provided services independently.
They can do this by indicating a list of
processing_pipelines to which the service will register, the
filtering_threshold that will regulate the content-based
filtering process (as described in Section 3), and other
parameters that enable the control of the service lifecycle
and are useful for VoI calculation.

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

7

Finally, the configuration file exposes the
dissemination_policy settings, related to the DisService
component. The subscription parameter indicates the group
name within which DisService will disseminate results,
retries indicates the number of retransmission attempts of
a given response, wait provides the interval (in seconds)
between two subsequent retransmissions, and
allowed_channels lists the communication mediums that
DisService can use for dissemination, e.g., WiFi,
Bluetooth, or 3G/4G.

The lifetime of services provided by applications mainly
depends on the users’ requests: applications receive them
through the SPF Controller and activate services on PIGs
accordingly, in an on-demand fashion. Additionally, if
users do not request a specific service for a certain amount
of time, the PIG deactivates that service, which will be
reactivated only upon receipt of a new user service request,
thus promoting resource saving.

Upon service activation, the PIG connects it with all the
required pipelines, activating them if needed. From that
point on, and until the service is deactivated, running
pipelines continuously analyze raw input data to obtain
higher-level IOs to feed the registered services. This phase
could also involve data reduction, compression, and
discretization, resulting in IOs smaller than their
corresponding raw data and containing only relevant
information.

Before their deactivation, the PIG disconnects services
from all the related pipelines and unregisters them. Service
lifecycle also determines the lifecycle of pipelines: the PIG
keeps pipelines active as long as they have at least one
service registered with them; when all services have
unregistered from a processing pipeline, the PIG
deactivates it.

Another fundamental aspect that naturally emerges from
the programming model of SPF is the reuse and sharing of
pipelines. In fact, applications can define services that take
as input the output of one or more pipelines. Moreover,
different services from different applications can register
themselves to the same pipelines, whose output will thus
become the input of multiple services. These
characteristics make SPF an inherently dynamic
middleware, with services and pipelines acting as
autonomous entities capable of cooperation, conservation
of resources, and sharing of processing resources through
pipeline sharing.

5.2. Dissemination

The dissemination of IOs managed by IoT applications
follows a prioritization rule that takes into account the
Value of Information (VoI) of IOs. VoI is a measure of the
estimated utility of information to consumers based on
their situational context, which represents one of the most
promising methods for information filtering and
prioritization in IoT applications. Insight on SPF’s methods
for defining VoI borrows in-part from prior work on
middleware for proactive information dissemination in

resource-constrained environments (e.g., [15]), and builds
on metrics for gauging intrinsic quality of IOs, termed
Quality of Information (QoI).

Each service has to provide its own VoI calculation
procedure, which takes into account multiple factors: some
of them are common between all services, while others are
service-specific. There are four common parameters:
Application Priority (Pa), Normalized Number of Requests
(RN), Timeliness Relevance (of Request) Decay (TRD) and
Proximity Relevance (of Request) Decay (PRD). If
available, SPF also takes into consideration the geographic
distance between a consumer and the location
corresponding to an IO (e.g., the GPS coordinates of a
sensor that generated the data from which the IO was
extracted) to compute its VoI. Besides common factors,
developers can also define service-specific (SS) factors for
VoI calculation. For example, the calculation of the VoI of
a “Song Identification” service could also involve an
accuracy parameter that represents the intrinsic quality of
the audio match. The value of such a parameter could be
provided, for instance, directly by the audio identification
pipeline.

Based on the factors discussed above, SPF defines the
following formula for VoI calculation:

VOI(o, r, t, a) = SS(o) ∗ PA(a) ∗ RN(r) ∗
 TRD(t, OT(o)) ∗ PRD(OL(r), OL(o)) (1)

where o is an Information Object, r the requestor recipient,
t the current time, a the application, and OT and OL are
operators that return the time and location of origin of
objects and requestors, respectively. The result is the tuple
<IO, VoI>, which is dispatched to the dissemination
component for forwarding.

6. An Application Example

To help further illustrate the SPF development process, we
provide here a short walkthrough on defining the
configuration of an application and the implementation of
a service to find text in an image/video feed, which in-turn
relies upon a supporting pipeline capable of OCR
processing.

More specifically, we consider as an example an
application called “lookaround”, whose purpose is to
monitor the environment to discover textual information
that could be useful to citizens (e.g., arrival of a food cart
displaying its menu on a board), by analyzing camera feeds
using OCR-based functionality. The application provides a
“find_text” service, which allows users to register a string
of text they are looking for in their surrounding
environment (e.g., thirsty citizens might be interested in
looking for the “water” string).

Fig. 4 shows an example of a configuration file that the
developers of lookaround might ship with their application
upon deployment into the SPF platform. After defining the
application priority (a numeric value defined relative to
other applications), the configuration specifies the related

An Information-Centric Platform for Social- and Location-Aware IoT Applications in Smart Cities

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

M. Govoni et al.

8

services. In the example, lookaround only defines one
service, find_text, which relies on the ocr pipeline. The
filtering_threshold is set to 0.05, which means that new
images need to differ by 5% or more to be processed.
on_demand set to false ensures that data processing
progresses in the background, when the service is active,
even if there are no user requests in the queue. If idle, the
PIG will deactivate find_text after 2 minutes and any IO
will stay valid for up to 3 minutes after generation. Finally,
the distance_decay option determines that the VoI of
responses generated by the lookaround application
decreases exponentially as the distance between the
requestor and the source of the IO gets closer to 1 km. As
for the options relative to the dissemination_policy, the
lookaround application uses WiFi for response
dissemination and requires that, in case of failed
transmission, DisService performs another single attempt
after 30s.

From an implementation standpoint, the “lookaround”
application developer has to provide two software
components: a service level component and a pipeline level
component. The SPF platform provides a common
interface for all services that enables them to receive IOs
from registered pipelines and forward responses to their
relative application for dissemination. Additionally, SPF
defines the interface with which custom services
implemented by application developers need to comply.
We call these specialized services “service strategies”.

The service strategy interface exposes three methods
that developers need to implement. The execute_service
method implements the custom operations that the service
strategy will perform on the IOs received from pipelines.
The calculate_voi method enables developers to modify or
extend the formula for calculating VoI, defined by (1); this
allows the computation of VoI values that fit better with the
application goals. Finally, the add_request method allows

each service strategy to manage the queue of application
requests; in this way, for example, a developer could decide
to aggregate similar requests before producing a result.

Fig. 5 shows a simplified implementation of the
execute_service method of the find_text service strategy.
First, the service looks for and removes any expired request
from the request queue. Next, for each request, the service
checks if the requested string is present in the IO passed in
as a parameter to the execute_service method by the OCR
pipeline. If the outcome is positive, the service proceeds
with VoI calculation (in this case, according to the formula
defined by (1)) and building the response.After the
execute_service method returns, the response is passed to
the DisService component, along with the VoI associated
to that response, for dissemination.

At the pipeline level, the “lookaround” application can
simply rely on the default OCR processing functions
provided by SPF. PIGs continuously receive raw data from
varying sources (e.g., sensors in a 6LoWPAN) and, in turn,
forward them to corresponding pipelines. Among the
default raw data processing tools available, the OCR
pipeline will only take images as input; other data formats,
such as audio, will not enter the OCR pipeline.

Each pipeline exposes a process method that takes the
raw data as a parameter and extracts an IO from those data.
First, the method performs a content-filtering task to
understand whether it is necessary to process the new raw
data. Pipelines implement an IO caching mechanism that
enables caching of the last produced IO for each raw data
source. If the new data do not pass the content-filtering
step, the cached IO is used; otherwise, the pipeline
processes the data and caches the new IO for future

application "lookaround", {
 priority: 50.0,
 allow_services: [:find_text],
 service_policies: {
 find_text: {
 processing_pipelines: [:ocr],
 filtering_threshold: 0.05,
 on_demand: false,
 uninstall_after: 2.minutes,
 expire_after: 3.minutes,
 distance_decay: {

 type: :exponential,
 max: 1.km

 }
 }

 },
 dissemination_policy: {
 subscription: "lookaround",
 retries: 1,
 wait: 30.seconds,
 allow_channels: [:WiFi]

 }
}

Figure 4. An example of SPF application
configuration.

def execute_service(io)
 @queued_requests.each do |key, requests|

 remove_if_expired(requests, expiration_time)

 if found_key_in_io(key, io)
 most_recent_request =

find_most_recent_request_time(requests)
 min_distance_to_requestor =

find_nearest_requestor(requests)
 end

 end

 unless requestors.empty?
 r_n = requestors / @max_number_of_requestors
t_rd = apply_time_decay(decay_rules, Time.now,

most_recent_request)
 p_rd = apply_distance_decay(decay_rules,

 min_distance_to_requestors)
 voi = calculate_voi(quality_of_service, app_priority,

r_n, t_rd, p_rd)
 return io, voi

 end
end

Figure 5. Example of higher-level processing of the
find_text service

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

9

reference. The source-dependent caching of the latest
processed data enables saving of significant amounts of
computational resources on the PIGs.

Fig. 6 shows how the OCR pipeline implements
content-based filtering. First, the information_diff function
calculates the difference between the new data and the last
processed data, namely delta. Then, the pipeline compares
delta with a filtering threshold. As discussed in Section 5,
each service defines its appropriate filtering_threshold and
pipelines select the most stringent value among all
registered services. If the delta value is lower than the
chosen threshold, the pipeline will deliver the cached IO to
the registered services (through the new_information
method exposed by the service). On the other hand, if the
difference is greater than the threshold, the pipeline will
process the new input data and deliver the resulting IO to
all registered services. In our example, the OCR processing
pipeline tries to recognize the text in the input image and
deliver it to the find_text service.

7. Conclusions and Future Work

The decentralized computing and information-centric
approaches adopted by SPF seem to be effective in
enabling the development of community-oriented and
citizen-focused IoT applications and services. In building
on these efforts, several directions are presently under
consideration.

One direction concerns the usage of semantics based
methods for defining and supporting IoT applications.
Semantic Web technologies [16] focus on enabling both
integration of data and corresponding machine
interpretation through use of Ontologies (structured
representations of domain knowledge) and reasoning
engines. In prior IoT research efforts, usage of semantics in
data representation has been applied in a variety of settings
that include: dynamic service discovery [17], pervasive

computing infrastructures [18], and context-aware asset
search [19].

We are also planning to evaluate the adoption of the
ICeDiM middleware (http://endif.unife.it/dsg/research-
projects/icedim) as an alternative to DisService for
information dissemination. ICeDiM is an innovative
solution that leverages the concept of virtual dissemination
channels with tunable permeability to facilitate the delivery
of public and/or unclassified information and, at the same
time, enable the constraining of sensitive information to a
subset of authorized devices.

We also intend to extend the design of the SPF
programming model by opening the possibility of defining
processing pipelines that work in series with other
pipelines. This would enable the creation of cascades of
reusable components in SPF, thus making it possible to
increase the flexibility and granularity of processing
pipelines deployed on PIGs, further promoting the reuse of
resources.

Another interesting future objective is to define an
extended, acceleration-aware programming model for IoT
applications and services that allows their efficient
execution on high performance gateways with accelerator-
based heterogeneous hardware. More specifically, the
acceleration-aware programing model would provide
developers with abstractions and functions to write code
that can be run in parallel efficiently on a wide range of
parallel hardware platforms and whose parallelism can be
safely changed at run time (acceleration-friendly code).
This programming model could also provide functions that
enable the code to inquire at run time about the current
computational resources available on the hardware
platform and request the PIGs to increase or decrease the
execution parallelism dynamically, e.g., for performance,
cost, and/or energy saving purposes (acceleration-aware
code). This would enable SPF to take advantage of highly
innovative, computationally capable, and relatively low-
energy consuming hardware solutions based on
neuromorphic processors (such as IBM’s True North
Chip), hybrid CPU/manycore (such as Adapteva’s
Parallela board) or CPU/FPGA architectures (such as
Xilinx’s Zynq-7000 SoC), with the goal of improving the
performance of IoT applications significantly.

References

[1] R. KHATOUN, S. ZEADALLY (2016) “Smart cities:
concepts, architectures, research opportunities”.
Communications of the ACM volume 59: No. 8, pp. 46-57.

[2] Y. FU, S. JIA, J. HAO (2015) “A Scalable Cloud for Internet
of Things in Smart Cities”. Journal of future trends in
computing volume 26: No. 3, pp. 63-75.

[3] A. ALAMRI, W. S. ANSARI, M. M. HASSAN, M. S.
HOSSAIN, A. ALELAIWI, M. A. HOSSAIN (2013) “A
Survey on Sensor-Cloud: Architecture, Applications, and
Approaches”. International Journal of Distributed Sensor
Networks volume 9: No. 2, pp. 917-923.

[4] Huawei Technologies Co., ltd. (2013) “Huawei Smart City
Solution”, white paper, available online at:

def process(raw_data, cam_id, source)
 delta = pipeline.information_diff(raw_data,

last_raw_data)
 if delta < processing_threshold

 registered_services.each do |svc|
 svc.new_information(last_processed_data,

source, pipeline.name)
 end
 else

 last_processed_data = pipeline.process(raw_data)
 interested_services.each do |svc|

 svc.new_information(last_processed_data,
 source, pipeline.name)

 end
 end
end

Figure 6. Content-based filtering on raw data

An Information-Centric Platform for Social- and Location-Aware IoT Applications in Smart Cities

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

M. Govoni et al.

10

http://enterprise.huawei.com/ilink/cnenterprise/download/
HW_315743

[5] CISCO (2016) “Cisco Global Cloud Index: Forecast and
Methodology, 2014–2019 White Paper”, available online at:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/Cloud_Index_White_
Paper.pdf

[6] P. BIGGS, J. GARRITY, C. LASALLE, A. POLOMSKA,
R. PEPPER (2016) “Harnessing the Internet of Things for
Global Development”. In 8th annual Conference on
Information and Communication Technologies for
Development (ICT4D), Ann Arbor, Michigan, USA.

[7] A. ABDELGAWAD, K. YELAMARTHI, A. KHATTAB
(2016) "IoT-Based Health Monitoring System for Active
and Assisted Living". In International Conference on Smart
Objects and Technologies for Social Good
(GOODTECHS), Venice, Italy, 29-30 November.

[8] A. MELIS, S. MIRRI, C. PRANDI, M. PRANDINI, P.
SALOMONI, F. CALLEGATI (2016) “A Microservice
Architecture Use Case for Persons with Disabilities”. In
International Conference on Smart Objects and
Technologies for Social Good (GOODTECHS), Venice,
Italy, 29-30 November.

[9] A. B. ZASLAVSKY, C. PERERA, D.
GEORGAKOPOULOS (2012) “Sensing as a Service and
Big Data”. In Proceedings of the International Conference
on Advances in Cloud Computing (ACC), Montréal,
Canada, July 2012.

[10] A. V. DASTJERDI, R. BUYYA (2016) "Fog Computing:
Helping the Internet of Things Realize Its Potential".
Computer volume 49: No. 8, pp. 112-116.

[11] M. TORTONESI, J. MICHAELIS, A. MORELLI, N. SURI,
M. A. BAKER (2016) "SPF: An SDN-based middleware
solution to mitigate the IoT information explosion”. In IEEE
Symposium on computers and communication (ISCC 2016)
pp. 435-442.

[12] G. BENINCASA, A. MORELLI, C. STEFANELLI, N.
SURI, M. TORTONESI (2014) “Agile communication
middleware for next-generation mobile heterogeneous
networks”. IEEE Software, volume 31: No. 2, pp. 54-61.

[13] A. ORSINO, G. ARANITI, L. MILITANO, J. ALONSO-
ZARATE, A. MOLINARO, A. IERA (2016) “Energy
efficient IoT data collection in Smart Cities exploiting D2D
communications”. Sensors volume 16: No. 6.

[14] A. MORELLI, C. STEFANELLI, N. SURI, M.
TORTONESI (2013) “Mobility pattern prediction to
support opportunistic networking in Smart Cities”. In 6th

International ICST Conference on mobile wireless
middleware (MOBILWARE 2013), Bologna, Italy,
November 2013.

[15] N. SURI, G. BENINCASA, R. LENZI, M. TORTONESI,
C. STEFANELLI, L. SADLER (2015) "Exploring value-of-
information-based approaches to support effective
communications in tactical networks". IEEE
Communications Magazine, volume 53: No. 10: 39-45.

[16] P. BARNAGHI, W. WANG, C. HENSON, K. TAYLOR
(2012) "Semantics for the Internet of Things: Early Progress
and Back to the Future". International Journal on Semantic
Web and Information Systems (IJSWIS) volume 8: No. 1,
pp. 1-21.

[17] S. CHUN, S. SEO, B. OH, K. LEE (2015) "Semantic
Description, Discovery and Integration for the Internet of
Things". In 2015 IEEE International Conference on
Semantic Computing (ICSC), Rome, Italy, pp. 272-275.

[18] J. KILJANDER, A. D’ELIA, F. MORANDI, P.
HYTTINEN, J. TAKALO-MATTILA, A. YLISAUKKO-

OJA, J. SOININEN, T. S. CINOTTI (2014) "Semantic
Interoperability Architecture for Pervasive Computing and
internet of things". IEEE access volume 2: pp. 856-873.

[19] C. PERERA, A. ZASLAVSKY, P. CHRISTEN, M.
COMPTON, D. GEORGAKOPOULOS (2013) "Context-
aware Sensor Search, Selection and Ranking Model for
Internet of Things Middleware". In IEEE 14th International
Conference on Mobile Data Management, Milan, 3-6 June,
314-322.

EAI Endorsed Transactions on
Internet of Things

10 2016 - 01 2017 | Volume 3 | Issue 9 | e2

