EAl Endorsed Transactions

on Scalable Information Systems

Research Article EALLEU

Are Malware Detection Classifiers Adversarially
Vulnerable to Actor-Critic based Evasion Attacks?

Hemant Rathore!”, Sujay C Sharma!, Sanjay K. Sahay!, Mohit Sewak?

1Department of CS & IS, Goa Campus, BITS Pilani, India
2Security & Compliance Research, Microsoft R & D, India

Abstract

Android devices like smartphones and tablets have become immensely popular and are an integral part of
our daily lives. However, it has also attracted malware developers to design android malware which have
grown aggressively in the last few years. Research shows that machine learning, ensemble, and deep learning
models can successfully be used to detect android malware. However, the robustness of these models against
well-crafted adversarial samples is not well investigated. Therefore, we first stepped into the adversaries’
shoes and proposed the ACE attack that adds limited perturbations in malicious applications such that
they are forcefully misclassified as benign and remain undetected by different malware detection models.
The ACE agent is designed based on an actor-critic architecture that uses reinforcement learning to add
perturbations (maximum ten) while maintaining the structural and functional integrity of the adversarial
malicious applications. The proposed attack is validated against twenty-two different malware detection
models based on two feature sets and eleven different classification algorithms. The ACE attack accomplished
an average fooling rate (with maximum of ten perturbations) of 46.63% across eleven permission based
malware detection models and 95.31% across eleven intent based detection models. The attack forced a
massive number of misclassifications that led to an average accuracy drop of 18.07% and 36.62% in the
above permission and intent based malware detection models. Later we also design a defense mechanism
using the adversarial retraining strategy, which uses adversarial malware samples with correct class labels
to retrain the models. The defense mechanism improves the average accuracy by 24.88% and 76.51% for the
eleven permission and eleven intent based malware detection models. In conclusion, we found that malware
detection models based on machine learning, ensemble, and deep learning perform poorly against adversarial
samples. Thus malware detection models should be investigated for vulnerabilities and mitigated to enhance
their overall forensic knowledge and adversarial robustness.

Received on 16 March 2022; accepted on 28 May 2022; published on 31 May 2022
Keywords: Adversarial Robustness, Android, Deep Neural Network, Malware Analysis and Detection, Machine Learning

Copyright © 2022 Hemant Rathore et al., licensed to EAIL This is an open access article distributed under the terms of
the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium
so long as the original work is properly cited.

doi:10.4108/eai.31-5-2022.174087

1. Introduction

Android popularity has grown exponentially in the
last decade. There are currently more than 2.5 billion
active android users, which is more than 35% of the
world’s population [1]. The android operating system
holds 71.81% and 43.62% market share in smartphone
and tablet market segments, respectively [2]. The
wide acceptance of android is due to its openness
and extensibility with millions of applications in the

*Corresponding author. Email: hemantr@goa.bits-pilani.ac.in

2 EAI

ecosystem. However, android devices (smartphones,
tablets, etc.) hold a vast amount of personal user
data, which is very attractive for malware developers.
According to AV-TEST, there are more than twenty five-
million malware and ten million potentially unwanted
applications in the android ecosystem [3]. The principal
protection against these malware are developed by anti-
virus companies (like Bitdefender, Norton, McAfee,
Trend Micro, etc.), forensic investigators and the anti-
malware research community. The current anti-virus
systems consist of signature, and behavior based
malware detection engines [4]. However, the literature

EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

https://creativecommons.org/licenses/by/4.0/
mailto:<hemantr@goa.bits-pilani.ac.in>

Hemant Rathore et al.

suggests that these engines are struggling to cope
with the ever-increasing number and sophistication of
malware attacks in the android ecosystem [5][6].

Recently anti-malware researchers have started
examining machine learning, ensemble, and deep
learning classifiers to construct new age malware
detection engines, which will complement the existing
anti-virus engines [4][7]. The development of these
engines is a three-step process (1) Data Collection, (2)
Feature engineering (3) Detection model construction
using classification/clustering algorithms. Li et al.
used the Drebin dataset containing the malicious
applications and extracted android permissions. They
performed three-level pruning on the feature vector
using association rule mining and used a support
vector machine to construct the android malware
detection system [8]. Rathore et al. also used the
Drebin dataset and extracted permissions using static
analysis of android applications. They performed
feature reduction and used many machine learning,
ensemble, and deep learning classifiers to construct
malware detection models [9]. These next-generation
malware detection models have shown promising
results in detecting new & old malware effectively and
efficiently [6][7][10].

The popularity of machine learning, ensemble, and
deep learning classifiers has led to their adoption
in various domains like object recognition, NLP,
etc. [11] [12]. However, the literature suggests that
these classifiers might be vulnerable to adversarial
samples [13][14][15][16]. Goodfellow et al. generated
adversarial samples by intentionally adding a small
number of perturbations to fool the image classification
model [17]. Chen et al. added perturbations in images
that are imperceptible to the human eye but could
fool an image classification system in the white box
& grey box scenarios [18]. He et al. found that deep
convolutional neural networks used for biomedical
image segmentation are also vulnerable to adversarial
samples [19]. Similar adversarial samples can be
generated using various forensic investigations to fool
the malware detection models that will jeopardize the
complete android security ecosystem.

In this work, we aim to investigate the adversarial
robustness of different android malware detection
models. Firstly we constructed twenty-two different
malware detection models based on two feature sets and
eleven distinct classifiers based on machine learning,
ensemble, and deep learning. Then we stepped into
the adversaries” shoes to design ACE attack — Actor-
Critic based Evasion attack and perform forensic
investigation to study the adversarial robustness of all
the above malware detection models. The ACE attack
aims to convert malicious applications into adversarial
samples such that they are forcefully misclassified as
benign and thus remain undetected by the malware

O EA

detection engine. The perturbations are added in
malicious applications while maintaining the structural
and functional integrity of the application. The attack
is also designed to add minimum perturbations in
each malicious application and convert the maximum
number of malicious applications into adversarial
samples. The ACE attack is designed for real-world
situations (grey-box scenario) where the adversaries
have knowledge about the dataset and feature set but
no information about classification algorithm(s) and its
parameters. The ACE attack will exploit vulnerabilities
in detection models to generate adversarial samples.
Later we analyze these vulnerabilities and propose
adversarial retraining as a defense to counter the
attack. Finally, we made the following contributions
to enhance the adversarial robustness of malware
detection models.

* We proposed the ACE attack based on actor-critic
architecture for grey box scenario against twenty-
two different malware detection models. The
models are developed using two different feature
sets along with eleven classification algorithms
derived from three distinct categories.

* The proposed ACE attack achieves an average
fooling rate (with maximum of 10 perturba-
tions) of 46.63% across eleven permission based
malware detection models and 95.31% across
eleven intent based detection models. The pro-
posed attack leads to an average accuracy drop of
18.07% and 36.62% in the above permission and
intent based malware detection models.

* We also designed an adversarial defense strategy
to counter the attack and improved the average
accuracy by 24.88% and 76.51% for the eleven
permission and eleven intent based malware
detection models. The defense also improves the
average AUC by 82.39% and class probabilities
by 14.29% for the eleven intent based detection
models.

The rest of this paper is organized as follows: Section
2 will discuss the proposed framework to enhance
malware detection models’ robustness. Section 3 and
Section 4 will discuss the experimental setup and
results, respectively. Finally, Section 5 will conclude the

paper.

2. Overview and Proposed Framework

This section first explains the overview of the
proposed framework to enhance adversarial robustness
in malware detection models, followed by a discussion
on threat modeling. Later in the section, we will
discuss the proposed ACE attack strategy followed by
adversarial retraining as the defense strategy.

2 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

Diatazet

(YY)} ®
@ R

s

Feature Extraction

OJOJOJIOI L
0JOJOJO,

Malicious Feature
Apps Vecter

Clazzification
Algorithms Apps

o | QW

______ i @}: After ﬁd&'emirj.il E)efe:ise- '
(010 {CIOREOIG IBIBKOLO]
|] I'I |'I L I'I |'| ' 1
1 , 1
1 = A

] Adverzerial ul ul
______ Apps ST

Malicious .
After Adversanal Attack

. 00-EE L £ OC

=R e
Leaming

Adversarial Agent

Feature Engineenng
& Data Freprocessing

Data Collection
(Malware & Benign Apps) \‘T

®

Malware Detection
Models (Baseline)

Adversarial Attack Policy Adwersanslly Robust
(Actor-Critic based Agent) \T Malware Detection Models

Figure 1. The proposed framework design for enhancing adversarial robustness of android malware detection model(s)

2.1. Overview of Proposed Framework Design

We propose the following framework design (refer to
Figure 1) to construct adversarially robust android
malware detection systems. The proposed design can be
divided into the following five sequential steps:

Data Collection. The first step is gathering of android
applications from various legitimate sources to develop
the dataset. The dataset is expected to contain a roughly
equal number of malicious and benign apps for the
development of malware detection models designed as
a classification problem.

Feature Engineering and Data Preprocessing. The second
step is static or dynamic analysis of android appli-
cations to extract various features. We have extracted
two different features, namely android permission and
intent based on static analysis of android applications.
These extracted features are then mapped to feature
vector(s) for further analysis. Later exploratory data
analysis of feature vector(s) is performed to understand
its basic characteristics.

Malware Detection Models (Baseline). The third step is to
construct various malware detection models using basic
machine learning, ensemble, and deep neural network
based classification algorithms. The performance of
these malware detection models can be compared
using accuracy, AUC score, class probabilities, etc. We
have constructed twenty-two different android malware
detection models based on two feature sets and eleven
different classification algorithms.

Adversarial Attack Policy. The fourth step is to compare
the adversarial robustness of different malware detec-
tion models constructed in Step-3. Here we stepped
into the adversaries’ shoes to propose the ACE attack
that uses the actor-critic agent based on reinforcement

2 EA

learning against different malware detection models.
The agent adds perturbations in malware applications
such that they are forcefully misclassified as benign
by detection models. The agent aims to add minimum
perturbations in each malicious application and convert
the maximum number of malicious applications into
adversarial samples.

Adversarially Robust Malware Detection Models. The fifth
step is to perform actual evasion attacks (ACE attack
in our work) using adversarial samples on different
malware detection models. The adversarial attack’s
performance can be measured using metrics like fooling
rate, accuracy, etc. The next step is to explore and
analyze the vulnerabilities exposed by the attack in the
detection models. Lastly, adversarial defense strategies
are designed to counter the attack and enhance the
overall adversarial robustness of the malware detection
models.

2.2. Threat Modeling @ Malware Detection Models

Threat modeling is a process in the field of security
where potential threats are simulated, identified, and
enumerated in a controlled environment [11][20]. It is
followed by designing a thorough mitigation strategy to
deal with the threat scenario. The ability to simulate
real-world threat scenarios and develop mitigation
strategies for the same makes threat modeling a vital
exercise for any system. Threat modeling is a general
practice applicable in many domains. However, the
exercise done as a part of the proposed experiment
will focus on the taxonomy and classification criteria
introduced and widely adopted in the field of
adversarial machine learning. The threat modeling
focuses on evaluating three different aspects of the
proposed attack strategy:

3 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Hemant Rathore et al.

Attacker's Goal. The attacker’s goal is defined based
on the type of security violations induced in the
target system and the attack’s specificity. Security
violations can disrupt the integrity, availability, and
confidentiality of the target system. We propose the
ACE attack strategy that disrupts the target system’s
integrity as malware applications are converted into
adversarial samples and are misclassified as benign,
thus remaining undetected by the malware detection
engine. The system’s availability and confidentiality
can lead to denial of service or release of confidential
information of the target system, which is currently an
open research problem. The specificity of the attack
can either be targeted or indiscriminate. The proposed
ACE attack strategy is an indiscriminate attack since
it targets a broad class of samples (all malware
applications) rather than being restricted to a specific
type of malware family.

Attacker’s Knowledge. The attacker’s knowledge is
defined based on the information available to the
attacker regarding the different components of the tar-
get system such as dataset, feature set, classification
algorithm, classifier parameters, and classifier feed-
back. The adversarial attack can be broadly classified
into one of the following three categories based on the
level of information available to the attacker about the
above components.

* Black Box Scenario assumes the attacker has no
knowledge about any component of target system.

e Gray Box Scenario assumes the attacker has
knowledge about only some selected components
of the target system.

* White Box Scenario assumes the attacker has
complete knowledge about all the components of
the target system.

The proposed ACE attack strategy requires access
to the dataset, feature set, and classifier feedback.
However, it does not need any information regarding
the classification algorithm or the parameters used to
construct malware detection models, which qualifies
the ACE attack as a gray box scenario attack.

Attacker’s Capability. The attacker’s capability is defined
in terms of the phase of the attack and data
manipulation constraints. The two popular adversarial
attacks based on the attacker’s capability are:

* Evasion Attack is designed with the goal to
force misclassifications by the classifier. It can
be achieved by performing intelligent feature
alterations in the test data to convert them into
adversarial samples.

* Poison Attack is designed to reduce the classifier
capabilities by adding poisoned training data
and indiscriminately trying to increase the
classification error.

O EA

State ’
:
. Actor
Environment]
Action I:Pﬂll[:'!.l' EESE{I:I
-
State
+ TD
Rewr ard Error
Critic

(Value Based)

Figure 2. The Actor-Critic architecture

The proposed ACE attack performs evasion attacks
on malware detection models with the goal to fool
the classifier into misclassifying malware applications
as benign by performing a small number of feature
alterations.

The proposed ACE attack based on threat modeling
can be summarized as:

The malware detection models’ robustness against
the evasion attack in gray box scenarios can be
validated by designing an integrity attack using an
Actor-Critic agent based on reinforcement learning.

2.3. ACE Attack Strategy

The improvement in computational and storage capac-
ities of modern computers has led to the increased
adoption of reinforcement learning methods in vari-
ous applications. The proposed ACE adversarial attack
implements Actor-Critic architecture agent based on
reinforcement learning to attack different android mal-
ware detection models. The actor-critic agent utilizes
the power of two different Deep Neural Networks
(DNN) to accomplish its goals [21]. The first DNN
is actor network which decides the agent’s action and
behavior based on a policy. The second DNN is critic
network that measures the quality of action taken by the
actor-network towards a predefined goal.

Figure 2 depicts the basic framework of the
proposed ACE attack strategy based on the actor-critic
architecture. The environment consists of the training
data and the anti-malware system, which provides
the current state to the actor-network. The actor-
network then computes the optimal action possible
for the given state based on its current policy and
returns it to the environment. The environment then
performs the action on the current state and obtains
the corresponding reward. The current state and the
reward associated with the action are then fed to
the critic-network. The critic-network is then used to
approximate the value function, which measures the
quality of the action taken and is used in the place of

4 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

an episode reward in updating the policy. This enables
us to perform updates to the policy after every single
action taken by the actor-network rather than waiting
until the end of the episode. The computed correction
(TD error) is also used to update the critic network.
This entire cycle of events occurs after every single
action taken during the training phase of the agent.
Initially, there is a significant fluctuation in episodic
rewards as the agent takes random actions to explore
the environment and is still learning which actions are
good and bad. The agent’s training continues till there
is a convergence in episodic rewards to a stable value.

After successfully training the adversarial attack
policy, the ACE attack agent is now ready to perform
evasion attacks on the malware detection models.
Firstly, the environment maps the feature vector to the
current state and passes it to the actor network. Here the
best action is calculated based on the optimal policy and
returned to the environment. The environment updates
the current state based on the action and then feeds it
again to the actor-network. This process continues until
the malware detection model forcefully misclassifies
the malicious sample as benign or we reach a predefined
threshold to stop. At the end of the ACE attack, all
the adversarial samples which have misclassified are
collected and labeled as adversarial samples.

2.4. Adversarial Retraining Defense Strategy

The evasion attack (similar to the proposed ACE
attack) exposes the vulnerabilities in malware detection
models and raises major challenges in its technology
adoption in real-world anti-virus systems. These
detection models assume that the training and test
data come from a similar distribution. Thus, they
can effectively classify unknown data samples from a
known distribution only. However, the evasion attack
violates this assumption by changing the distribution
of test samples. The adversarial samples are specifically
created to evade the detection models as they do not
belong to the same distribution as the training data.
Therefore, an effective defense strategy for detection
models is to make them capable of dealing with
unknown data samples from an unknown distribution
including the adversarial samples. The proposed
defense strategy known as adversarial retraining is
one such defense strategy that has proven to enhance
the robustness of models in various applications
[17][22][23][24].

The adversarial defense strategy focuses on injecting
the adversarial samples with their correct labels into
the original training dataset. Since our initial dataset
roughly contained an equal number of malicious and
benign applications, adding adversarial samples leads
to an overabundance of malware samples and class
balancing is essential to ensure the retrained models

O EA

are unbiased. The addition of adversarial data samples
with their correct labels makes the classifier more
robust and capable of detecting similar adversarial data
samples from the same/different evasion attacks in real-
world scenarios. Exposing the classifier to data points
outside the initial training dataset distribution will
enhance its generalizability and robustness. Therefore,
adversarial retraining essentially acts as a form of
regularization that has even outperformed neural
network techniques like dropout, etc. Furthermore, the
literature indicates that the defense strategy makes
classifiers more confident in their class predictions,
making it harder to fool them by introducing minor
changes to the data [13]. The enhanced robustness of
the malware detection models due to the adoption of
this defense strategy can be quantified by performance
improvements across various metrics, as discussed in
the following sections.

3. Experimental Setup

This section will first discuss the dataset, followed by
feature engineering and data preprocessing techniques.
Later we will discuss the different classifiers and
performance metrics used in the experiments.

3.1. Data Collection (Malware & Benign Apps)

Google Play is the official application distribution
platform developed by Google for users to browse
and download android applications. Other third-party
app stores like Amazon App Store, AppBrain, Aptoide,
APKPure, etc., are also involved in distributing android
apps. However, the literature suggests that these
platforms contain many malicious apps along with
benign samples [4]. Therefore for the construction
of the benign dataset, we download more than 8000
android apps from Google Play. Then we used Virus
Total to validate the benignness of each downloaded
app. A downloaded app is labeled benign if and
only if all the antiviruses from Virus Total label it
as benign. Thus, the benign dataset contains 5721
android applications, and the rest of the downloaded
applications which were malicious were discarded.

The Drebin dataset was proposed by Arp et al., and
it contains malicious android apps downloaded from
Google Play and other third-party app stores [25].
The Drebin dataset contains more than 1200 malicious
apps from Android Malware Genome Project proposed by
Zhou et al. Drebin dataset contains malicious apps from
more than 150 malware families like Plankton, Opfake,
GingerMaster, FakeDoc, etc. Literature suggests that the
Drebin dataset is widely investigated and well accepted
in the research community [4][8][9]. Therefore our final
dataset consists of the benign dataset with 5721 android
apps and the Drebin dataset (malware dataset) with
5553 malicious apps.

EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Hemant Rathore et al.

3.2. Feature Engineering and Data Preprocessing

The construction of android malware detection models
requires feature engineering by using domain knowl-
edge to extract raw features from android applications.
The extraction of raw features can be performed using
static and dynamic analysis of android apps. We used
static analysis by disassembling each android app to
extract two different features, namely permissions and
intents. The applications were disassembled using Apk-
tool which generated many original source files like
resources.arsc, classes.dex, AndroidManifest.xml etc. The
declaration of android permissions and intents should
be added in the manifest file before its usage in the
source code. We also referred to the original android
documentation to construct the master permission and
intent lists containing 195 permissions and 273 intents,
respectively. Then we scanned through the manifest
file of each android application and logged the permis-
sions/intents used by that app to generate the final fea-
ture vector. We developed two separate feature vectors,
namely permission feature set and intent feature set. We
also performed exploratory data analysis on both the
feature sets to understand their characteristics. Finally,
the two feature sets were ready to be used for the
construction of android malware detection models.

3.3. Classifiers for Malware Detection

We used a diverse set of classifiers to validate the
applicability and generalizability of the proposed
baseline models, ACE attack, and adversarial retraining
defense strategy. We have used eleven classifiers and
divided them into three categories as follows:

The basic machine learning category has four distinct
traditional machine learning classifiers. DT is a
classification technique where data is continuously split
in order to form a tree-like structure where each leaf
node corresponds to a class label (malware/benign). NB
is an implementation of the naive bayes classification
algorithm designed for data that follows multivariate
Bernoulli distributions. SVM is a technique that focuses
on mapping instances to points in space to maximise
the width of the gap between the malware and benign
classes. LR is a technique that uses a logistic function to
model a binary dependent variable.

The ensemble category has four distinct ensemble
based classifiers. RF is a forest of 100 DTs whose average
probabilistic prediction is the final prediction of the
classifier. Stacked-SVM-DT is a combination of SVM
and DT classifiers as an input to a final LR estimator
whose prediction is the final prediction of the classifier.
GB is a set of DT classifiers put through 100 stages
of boosting, which is a technique to convert a group
of weaker classifiers into a stronger one. XGB is a
specially modified GB algorithm designed for speed,
performance, and performing parallel tree boosting.

O EA

* Basic Machine Learning Classifier
— Decision Tree (DT)
— Bernoulli Naive Bayes (NB)
— Support Vector Machine (SVM)
- Logistic Regression (LR)
* Ensemble based Classifier
— Random Forest (RF)
— Stacked Classifier (Stacked-SVM-DT)
- Gradient Boost (GB)
— Extreme Gradient Boost (XGB)
* Deep Neural Network based Classifier
— Deep neural network with 1 hidden layer
(DNN 1L)
— Deep neural network with 3 hidden layers
(DNN 3L)
— Deep neural network with 5 hidden layers
(DNN 5L)

The Deep Neural Network category has three distinct
DNN classifiers of different depth. A DNN refers to
the classifiers based on a feed-forward artificial neural
network capable of distinguishing data that is not
linearly separable. We designed three DNNs, namely
DNN 1L, DNN 3L, DNN 5L with 1, 3, and 5 hidden
layers. The DNN 1L classifier has an input layer, one
hidden layer with 64 units, and an output layer. The
DNN 3L classifier has an input layer, three hidden
layers with 64, 32, 16 units, and an output layer in
the end. The DNN 5L classifier has an input layer, five
hidden layers with 128, 64, 32, 16, 8 units, and an
output layer in the end. All the DNNs are trained using
backpropagation with Adam solver and Relu activation
function.

3.4. Performance Measures

The following performance metrics are used to evaluate
the experimental results of the malware detection
models, ACE attack, and adversarial retraining defense.

e True Positive (TP) is the number of malware
applications which are correctly classified as
malware by the classification model.

* False Positive (FP) is the number of benign
applications which are falsely flagged as malware
by the classification model.

* True Negative (TN) is the number of benign
applications which are correctly classified as
benign by the classification model.

* False Negative (FN) is the number of malware
applications which are falsely flagged as benign
by the classification model.

* Accuracy is the ratio of applications correctly
classified to the total number of applications by
the classification model.

Accuracy = TP+ TN
Y= TPYTN +FP+EN

(1)

6 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

e Area Under Curve (AUC) refers to the area under
the receiver operating characteristic curve which
is a plot of the true positive rate against the false
positive rate at various threshold settings.

* Class Probabilities (CP) is a prediction array
returned by the classifier with probabilities that
a given sample belongs to malware and benign
class. This metric indicates the confidence of the
prediction.

* Fooling Rate (FR) refers to the ratio of adversarial
malware applications (M’) forcefully misclassi-
fied as benign by the classification model to the
total number of malware applications (M) during
the evasion attack.

M’ - FN

Fooli =—
ooling Rate M _FN

x 100 (2)

4. Experimental Results

This section will discuss the experimental results of
malware detection models (baseline), ACE attack on
different classifiers, and adversarial retraining defense
strategy for classifiers.

4.1. Malware Detection Models (Baseline)

The third step in the proposed architecture workflow
(refer to Figure 1) is to design android malware
detection models based on the eleven classifiers
discussed in section 3.3. Each classifier is used for both
the permission and intent feature vector extracted from
android applications. The train-test ratio of 70:30 in
the dataset is used for all the experiments in order
to prevent overfitting and to enhance the detection
model’s generalizability. Finally, the malware detection
model’s performance is determined using evaluation
metrics like accuracy, AUC, and class probabilities.
Table 1 and Fig 4a shows the accuracy of permission
feature set based malware detection models (baseline)
based on eleven classifiers. The accuracy for the
permission based classifiers ranges from the highest
94.47% (RF classifier) to the lowest 83.77% (NB
classifier). The average baseline accuracy across all
eleven permission based classifiers is 92.03%. The
models based on RF, DT, SVM, Stacked-SVM-DT,
DNN 1L, DNN 3L, and DNN 5L classifiers achieve
above average baseline accuracy, whereas the remaining
classifiers attain below average baseline accuracy.
Similarly, Table 1 and Fig 4b show the accuracy of intent
feature set based malware detection models (baseline)
based on eleven classifiers. The accuracy for the intent
based classifiers ranges from the highest 78.04% (DNN
5L classifier) to the lowest 75.26% (NB classifier). The
average baseline accuracy across all eleven intent based
classifiers turned out to be 77.19%. The models based
on RF, DT, SVM, GB, Stacked-SVM-DT, DNN 1L, DNN

O EA

Table 1. Permission and intent based malware detection models
(existing literature and proposed baseline)

Android Android
Classifier Permission Intent
Accuracy | AUC | Accuracy | AUC
Li et al. (2018) [8] 91.34% . . .
Wang et al. (2019) [26] 94% - - -
Arslan et al. (2019) [27] 91.95% - - -
Arora et al. (2020) [28] 95.44% - - -
Rathore et al. (2020) [9] 94.0% - - -
Mat et al. (2021) [29] 91.1% | 0.96 - -
Sewak et al. (2020) [30] - - 77.2% 0.81
DT 92.82% 0.93 77.30% 0.77
NB 83.77% 0.84 75.26% 0.75
SVM 93.05% 0.93 77.51% 0.77
LR 90.60% 0.91 76.38% 0.76
RF 94.47% 0.94 77.71% 0.77
Stacked-SVM-DT 94.06% 0.94 77.33% 0.77
GB 90.30% 0.90 77.21% 0.77
XGB 90.60% 0.91 76.74% 0.76
DNN 1L 94.18% 0.94 77.74% 0.77
DNN 3L 94.24% 0.94 77.92% 0.77
DNN 5L 94.27% 0.94 78.04% 0.78

3L, and DNN 5L classifiers achieve above average
baseline accuracies, whereas the remaining classifiers
attain below average baseline accuracies.

An analysis of the AUC scores of malware detection
models (baseline) reveals that they follow a trend
similar to accuracy. The average baseline AUC score
across all eleven classifiers is 0.91 and 0.76 for the
permission and intent feature sets. A look at the
class probabilities of the eleven malware detection
models (baseline) also yielded interesting results. The
average malware and benign class probability for the
permission feature set are 0.91 and 0.92, whereas same
for intent feature set are 0.69 and 0.71 only. It indicates
that permission feature set-based classifiers are more
accurate in their predictions and more confident in
predicting the class of an android application.

Table 1 also highlights recently published articles
in reputed journals/conferences on android malware
detection using permission and intent on same/
different dataset. Li et al. (2018) used android
permission and performed feature pruning to achieve
malware detection accuracy of 91.34% on the Drebin
dataset [8]. Wang et al. (2019) also used permission and
achieved 94% accuracy in android malware detection
[26]. Similarly, [27][28][9][29] used android permission
as the feature and achieved accuracies of 91.95%,
95.44%, 94.04%, and 91.1% respectively in malware
detection. We also achieved malware detection accuracy
in the range of 90% to 95% using android permission
and different classifiers. A similar pattern is also seen
for malware detection models based on android intents.
The above tables shows that the performance of our
proposed malware detection models are inline with the
existing state-of-the-art detection models.

EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Hemant Rathore et al.

@ ML Classifiers (DT, NB, SVM, LR)
1 —

@ Ensemble Classifers (RF, Stacked-5VM-DT, GB, XGB)

DNNs [DNN 1L, DNN 3L, DNN 5L

0.75 +

1]

L)

==

-4 05 +—

g

u 0.25 - -

g —o—

o i

E] 0
Maximum 1 Maximum 2 Maximum 3 Maximum 4 Maximum 5 Maximum 6 Maximum 7 Maximum 8 Maximum @ Maximum 10
Permissicn Permission Permission Permission Permission Permission Permission Permission Permission Permissicn
Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration

(a) Average fooling rate by classifier category achieved by the proposed ACE attack against permission-based malware detection models

@ ML Classifiers [DT, MB, SV, LR)
1 —

@ Ensemble Classifers (RF, Stacked-5VM-DT, GB, XGB)

DNNs (DNN 1L, DMM 3L, DNN 5L)

——r1)
075 +—
]
-]
-4
o 05 —+—
|59
v 025 -
1]
=
z 0
Maximum 1 Maximum 2 Maximum 3 Maximum 4 Maximum 5 Maximum & Maximum 7 Maximum 8 Maximum 8 Maximum 10
Intent Intent Intent Intent Intent Intent Intent Intent Intent Intent
Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration Alteration

(b) Average fooling rate by classifier category achieved by the proposed ACE attack against intent-based malware detection models

Figure 3. Fooling Rate @ Malware Detection Model(s)

4.2. ACE Attack on Malware Detection Models

The fourth step in the proposed architecture workflow
(refer to Figure 1) is to evaluate the robustness of
different classifiers by performing the ACE attack on
all malware detection models (baseline) constructed
in section 4.1. The proposed actor-critic architecture
based agent interacts with the environment and learns
how to fool the classifier into misclassifying malicious
samples as benign. It is achieved by performing a
small number of feature alterations (a maximum of
ten feature alterations is allowed) to the malicious
applications. The feature alterations enforced by the
agent are constrained such that it only adds features
and thus does not break the functionality of the
application. The agent is also optimized to minimize the
alterations in each malicious sample while converting
the maximum malware applications in the dataset into
adversarial samples. The efficacy of any evasion attack
can be determined using performance metrics such as
fooling rate, classifier accuracy, etc.

Fooling Rate by ACE Attack. We first perform the
proposed ACE attack on eleven permission based
classifiers. The ACE attack achieves the fooling rate in
the range from the highest 82.51% (DNN 1L classifier)
to the lowest 25.66% (Stacked-SVM-DT classifier).

2 EA

The average fooling rate achieved against all eleven
permission feature based classifiers is 46.63%. Later,
we grouped the permission models based on classifier
category (ref section 3.3) and averaged the fooling rates,
which leads to interesting insights as shown in Figure
3a. The average fooling rate achieved against three deep
neural network classifiers is 66.23%, four basic machine
learning classifiers is 49.04%, and four ensemble
classifiers is 29.53%. Later we perform the ACE attack
on intent based classifiers. We observed that the ACE
attack achieved the fooling rate in the range from the
highest 100.00% (SVM classifier) to the lowest 87.32%
(RF classifier). The average fooling rate achieved against
all eleven intent based classifiers is 95.31%. We did
similar grouping in intent feature set models based on
classifier category and averaged the fooling rates as
shown in Figure 3b. The average fooling rate achieved
against three deep neural network classifiers is 96.35%,
four basic machine learning classifiers is 95.77%, and
four ensemble classification methods is 94.08%. These
results indicate that neural network classifiers are the
most vulnerable against evasion attack while ensemble
classifiers are the least vulnerable. As we increase
the number of perturbations to generate adversarial
samples, the increment in fooling rate start to diminish

8 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

B Baseline Accuracy [l Accuracy Post Adverserial Attack

Accuracy Post Adversarial Retraining

100.00%
75.00%
[
B 50.00%
]
< 1500
0.00%
Stacked-SVM-DT DNN 1L DNN 3L DNN 5L
Classifier
(@) Accuracy of eleven different permission-based malware detection models (Baseline, After ACE Attack, After Adversarial Retraining)
B EBaseline Accuracy [l Accuracy Post Adverserial Attack Accuracy Post Adversarial Retraining
100.00%
g 75.00%
g
3
E: 50.00%
2
T 25.00%
m
[:s]
0.00%

Stacked-5VIM-DT

DNMN 1L DNM 5L DNMN 5L

Classifier

(b) Accuracy of eleven different intent-based malware detection models (Baseline, After ACE Attack, After Adversarial Retraining)

Figure 4. Accuracy @ Malware Detection Model(s)

and beyond 10 perturbations it become stable. Also, the
goal is to make as-few-perturbations-as-possible while
converting as-many-malicious-samples-as-possible.

Classifier Accuracy after ACE Attack. Another critical
performance metric to compare the classifier’s perfor-
mance against the proposed ACE attack is model accu-
racy. Figure 4a shows the accuracy (red bar) of eleven
permission based malware detection models after the
ACE attack. The lowest accuracy is attained by DNN 1L
classifier (59.71%) followed by SVM classifier (60.12%)
and DNN 3L classifier (65.21%). The average classifier
accuracy after the ACE attack is reduced to 75.40%
for eleven permission based malware detection mod-
els, which is a drop of 18.07% from baseline models.
Then, we perform the proposed ACE attack against
eleven intent based malware detection models. Figure
4b shows the accuracy (red bar) of eleven intent based
malware detection models after the ACE attack ranges
from the lowest 46.67% (SVM classifier) to the high-
est 53.21% (RF classifier). The average classifier accu-
racy after the ACE attack across all eleven classifiers
is 48.92%, which is a drop of 36.62% from baseline
models. These results align with the expected behavior
that there will be a significant drop in the classifier’s
accuracy after the ACE attack compared to the baseline
classifier. As expected, the classifiers against which the
ACE attack achieved the most success ended up with
the lowest classifier accuracy (post evasion attack) and
vice-versa.

2 EAI

Discussion about ACE Attack. We notice that the
proposed ACE attack performed better against the
intent based models as compared to permission based
models. We think that this is due to the combination
of many factors. Firstly, it must be noted that the
average baseline accuracy for the eleven permission
based models (92.03%) is significantly higher than the
average baseline accuracy for the eleven intent based
models (77.19%). Secondly, the average malware class
probability for the 5553 malicious android applications
is 0.91 for the permission feature set and 0.69 for
the intent feature set. These two factors make the
permission feature set classifiers much harder to fool.
They are also the primary reason for the steep increase
in the fooling rate during the initial steps of the ACE
attack for intent based models vis-a-vis permission
based models.

4.3. Adversarial Retraining Defense Strategy for
Malware Detection Models

After the ACE attack’s success, the final step of the
proposed architecture workflow (refer to Figure 1) is
to design the defense strategy for all the classifiers
(permission and intent feature set). The defense
strategy focuses on marking the adversarial samples
with their correct label as malicious since they were
originally malware applications and their functionality
is still intact. These samples are now added to the
original dataset, followed by class balancing. Now, the
twenty-two classifiers are retrained using this newly

9 EAI Endorsed Transactions on

Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Hemant Rathore et al.

Table 2. Comparison of threat modeling and adversarial robustness against different malware detection models

Number of Fooling Rate Accuracy Drop

Attack Malware or (Baseline vs. Maximum Adversarial

Schemes Scenario Detection Forced After Perturbation | Robustness

Models Misclassification Adversarial Allowed @Reattack

Attacked Rate Attack)

Chen et al. (2017) [31] White box 1 - 15.86% 50 No
Grosse et al. (2017) [32] White box 3 - 10.75% 20 No
Fang et al. (2019) [33] Grey box 1 46.56% - 80 No
Fang et al. (2020) [34] Grey box 1 19.13% - 100 Yes
Taheri et al. (Trival) (2020) [35] White box 3 - 10.93% 20% No
Taheri et al. (Distribution) (2020) [35] | White box 3 - 11.43% 20% No
Taheri et al. (kNN) (2020) [35] White box 3 - 11.61% 20% No
Taheri et al. (LR) (2020) [35] White box 3 - 11.70% 20% No
Taheri et al. (ACO) (2020) [35] White box 3 - 6.26% 20% No
Proposed (Permission) Grey box 11 46.63%* 18.07% 10 Yes
Proposed (Intent) Grey box 11 95.31%* 36.62% 10 Yes

*average across eleven distinct permission / intent based malware detection models

created dataset. The defense strategy’s performance can
be evaluated using performance measures like classifier
accuracy and class probabilities.

Figure 4a shows the accuracy (green bar) of eleven
permission feature set based adversarially retrained
classifiers. The retrained classifier accuracy ranges from
the highest 97.15% (DNN 1L classifier) to the lowest
86.44% (NB classifier). The average accuracy across
all eleven adversarially retrained classifiers is 94.16%,
which is 24.88% improvement over post ACE attack
classifiers and 2.31% improvement over the baseline
classifiers. Figure 4b shows the accuracy (green bar) of
eleven intent feature set based adversarially retrained
classifiers. The retrained classifier accuracy ranges from
the highest 87.69% (DT classifier) to the lowest 80.45%
(NB classifier). The average accuracy across all eleven
adversarially retrained classifiers is 86.35%, which is
76.51% improvement over post ACE attack classifiers
and 11.87% improvement over the baseline classifiers.
The AUC scores of the adversarially retrained classifier
followed a similar trend to that observed with retrained
classifier accuracies. The average retrained AUC score
across all eleven classifiers is 0.94 and 0.86 for
the permission and intent feature sets, respectively.
This is a 26.21% and 82.39% improvement over the
post ACE attack scores and a 2.38% and 12.54%
improvement over the respective baseline AUC scores
for the permission and intent feature sets respectively.
The malware and benign class probabilities also showed
a significant improvement across all classifiers. The
average malware and benign class probabilities of
adversarially retrained classifiers for the permission
feature set are 0.93 and 0.93, whereas same for
intent feature set are 0.79 and 0.81. The adversarially
retrained classifier shows an improvement of 1.64%
and 14.29% in class probabilities compared to the

O EA

corresponding baseline values for the permission and
the intent feature set. Finally, the ACE attack was
performed once more on the retrained models to
validate the proposed defense strategy. The results
obtained in that case were promising. In some cases, the
fooling rates were drastically reduced compared to the
initial fooling rates observable for both the permission
and intent feature set. Therefore we can conclude
that adversarial retraining enhances the adversarial
robustness of malware detection models.

4.4. Comparison with Existing Work

Adversarial robustness is an active area of research
in the domain of malware analysis and detection.
The adversarial attacks against any malware detection
models can be classified into black box/grey box/white
box scenario based on the attacker’s knowledge about
different components of the target ecosystem [11].
[31, 32, 35] have shown that evasion attack against
malware detection models is possible in the white
box scenario. However, this is seldom the case in the
real world that an attacker has complete knowledge
of the target system. We have considered a grey
box scenario (which is much similar to real-world
setting) in the proposed ACE attack. Furthermore,
we have validated our evasion attack strategy more
comprehensively by evaluating it against 22 distinct
malware detection models built using three different
categories of classification algorithms. On the other
hand, most existing literature has only tested their
adversarial attack against 1-3 detection models. The
constraints on the number of perturbations during the
evasion attack vary from 20 in [32, 35] to over 50 in
[31, 33, 34]. More perturbations can lead to successful
attacks but do not consider the costs associated with
each perturbation. Therefore, we try to limit the

10 EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

modifications to malware samples and keep them
similar to their original counterparts by only adding a
maximum of 10 perturbations. Despite a very limted
number of perturbations, the proposed ACE attack
managed to obtain a high fooling rate of 46.56% for
the permission-based models and a much higher drop
in accuracy compared to the other attacks. Adversarial
retraining is a popular defense strategy to counter the
adversarial attack and is suggested by many authors
[34, 35]. Taheri et al. compare the improvement in
accuracy of the detection models between after the
evasion attack and after adversarial retraining [35].
While this successfully justifies the effectiveness of
adversarial retraining, we go a step further and perform
a re-attack against the retrained models to validate the
adversarial robustness of malware detection models.

45. Limitations

The proposed experiment primarily focuses on pro-
viding proof of concept on the adversarial robustness
of malware detection models. However, certain lim-
itations and enhancements can further improve the
system. Firstly, techniques like prioritized experience
replay can be used during the agent’s training phase
to improve the fooling rate obtained for the permis-
sion feature set. Secondly, the proposed ACE attack is
designed for the gray box attack scenario. It requires
access to the dataset and feature set used, which may
not always be possible in a real-world scenario. The
system security should be designed assuming the white
box scenarios from the anti-malware designer perspec-
tive. Thirdly, as the classifier becomes highly complex,
the training and attack time taken by the proposed ACE
attack against the classifier increases. Finally, the pro-
posed adversarial retraining defense strategy requires
the use of adversarial samples. Therefore, the proposed
defense strategy is dependent on the success of the
evasion attack, and it would not function well when
used independently or with an unsuccessful evasion
attack.

5. Related Work

The last decade has seen massive adoption of machine
learning and deep learning classifiers in various
domains like malware detection, object detection, spam
detection, etc. However, recently adversarial robustness
of these systems has become an active field of research
due to many vulnerabilities in the existing systems.
Taheri et al. proposed five different white-box evasion
attack strategies against three distinct android malware
detection models based on machine learning classifiers
[35]. They allowed a maximum of twenty perturbations
against permission / intent / API call based malware
detection models and achieved a drop of around 10%
during the attack. They also proposed adversarial

O EA

retraining and GAN-based defense strategies. However,
they did not explore the improvement in adversarial
robustness of the proposed defense mechanisms against
reattack on malware detection models. Grosse et al.
proposed a Jacobian matrix-based algorithm called
JSMA to perform a white box evasion attack on
android malware detection models built using Drebin
dataset [32]. An adversarial attack against Windows-
based malware detection models for grey box scenario
is proposed by Fang et al. [33]. Chen et al. in
SecureDroid performed a white box evasion attack
against android malware detection models built using
permission, intent, API call, and New-Instances. They
achieved a baseline accuracy of 96.34% and a drop of
15.86% with a maximum 50 perturbations. Kouliasridis
et al. performed static and dynamic analysis of
coronavirus contact tracing android applications. They
performed manual analysis of applications and found
many weaknesses and vulnerabilities in them which
might risk users’ security and privacy in the android
ecosystem [36]. Tsiatsikas et al. added perturbations to
achieve denial of service (DoS) in the session initiation
protocol (SIP). They also proposed a defense that
induces negligible overhead but can counter the evasion
attack [37]. Zhang et al. showed that ensemble models
might be more vulnerable to evasion attacks than single
classification models in white and grey box scenarios.
However, they did not discuss the defense strategy to
counter the evasion attack [38]. Sewak et al. proposed
DRL-based deobfuscation to counter the evasion attacks
in windows malware detection models [39]. Rathore
et al. proposed gradient based evasion attacks against
android malware detection models. They also proposed
three defense strategies to counter the evasion attack
[40]. Most of the existing literature assumes a white box
scenario for threat modeling, which is a very optimistic
assumption for adversaries in real-world applications.
Also, most of the authors have constructed only 1 to
3 unique malware detection models and performed
adversarial attacks on them. Further, threat modeling
in adversarial scenarios has a constraint to reduce
the number of perturbations to generate adversarial
samples, which authors rarely incorporate.

6. Conclusion

The machine learning, ensemble and deep learning
classifier based next-generation android malware detec-
tion models have shown promising results. However,
these classifiers are vulnerable to adversarial samples.
In this work, we stepped into the adversaries’ shoes
to propose the ACE attack policy based on actor-critic
architecture for grey-box scenario. The ACE attack
(with maximum ten perturbations) achieved an average
fooling rate of 46.63% against eleven permission based
malware detection models and 95.31% against eleven

T EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

Hemant Rathore et al.

intent based detection models. Later we proposed
adversarial retraining as the counter and achieved an
average accuracy improvement of 24.88% and 76.51%
against the attacked eleven permission and eleven
intent based detection models, respectively. Finally, we
can conclude that android malware detection models’
vulnerability and forensic analysis in adversarial sce-
narios is essential and should be performed before their
real-world deployment.

References

[1] (2021), Android - Statistics & Facts, Available:
https://www.statista.com/topics/876/android/.
Last Accessed: Aug 2021.

[2] (2021), Statcounter, Available: https://gs.
statcounter.com/os-market-share/mobile/
worldwide. Last Accessed: Aug 2021.

[3] (2021), AVTEST, Available: https://portal.av-atlas.
org/malware/statistics. Last Accessed: Aug 2021.

[4] Ye, Y., Li, T., Apjeron, D. and Ivengar, S.S. (2017)
A survey on malware detection using data mining
techniques. ACM Computing Surveys (CSUR) 50(3): 1-40.

[5] Lw, K, Xu, S., Xu, G., ZHanG, M., SuN, D. and L,
H. (2020) A review of android malware detection
approaches based on machine learning. IEEE Access 8:
124579-124607.

[6] RazgaLLaH, A., Kaoury, R., Hairg, S. and Kaanmo-
HAMMADI, K. (2021) A survey of malware detection in
android apps: Recommendations and perspectives for
future research. Computer Science Review 39: 100358.

[7] Qu, J., ZHANG, J., Luo, W., PaN, L., Nerat, S. and X1aNG,
Y. (2020) A survey of android malware detection with
deep neural models. ACM Computing Surveys (CSUR)
53(6): 1-36.

[8] L, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W. and
Ye, H. (2018) Significant permission identification
for machine-learning-based android malware detection.
IEEE Transactions on Industrial Informatics 14(7): 3216-
3225.

[9] RatHorE, H., Sanay, S.K., Rajvansui, R. and Sewak,
M. (2020) Identification of significant permissions for
efficient android malware detection. In International
Conference on Broadband Communications, Networks and
Systems (BROADNETS) (Springer): 33-52.

[10] Raruore, H., Sanay, S.K., THukrar, S. and SEwaAk,
M. (2020) Detection of malicious android applications:
Classical machine learning vs. deep neural network
integrated with clustering. In International Conference
on Broadband Communications, Networks and Systems
(BROADNETS) (Springer): 109-128.

[11] Prrroraxkis, N., Panaousis, E., Giannersos, T., ANas-
tasiapis, E. and Loukas, G. (2019) A taxonomy and
survey of attacks against machine learning. Computer
Science Review 34: 100199.

[12] Orrer, D.W.,, Mepina, J.R. and Karrra, J.K. (2020)
A survey of the usages of deep learning for natural
language processing. IEEE Transactions on Neural
Networks and Learning Systems 32(2): 604-624.

O EA

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Zuang, W.E., SuENG, Q.Z., ALuazwmi, A. and L, C. (2020)
Adversarial attacks on deep-learning models in natural
language processing: A survey. ACM Transactions on
Intelligent Systems and Technology (TIST) 11(3): 1-41.
AxkHTAR, N. and Mian, A. (2018) Threat of adversarial
attacks on deep learning in computer vision: A survey.
IEEE Access 6: 14410-14430.

APruUzZESE, G., ANDREOLINI, M., MARCHETTI, M., VEN-
TURI, A. and Corajanni, M. (2020) Deep reinforcement
adversarial learning against botnet evasion attacks. IEEE
Transactions on Network and Service Management (IEEE
TNSM) 17(4): 1975-1987.

Tong, L., Li, B., Hajajy, C., Xiao, C., ZHaNG, N.
and VoroBeycHIK, Y. (2019) Improving robustness
of {ML} classifiers against realizable evasion attacks
using conserved features. In 28th {USENIX} Security
Symposium ({USENIX}): 285-302.

GooprerLLow, LJ., Surens, J. and Szecepy, C. (2014)
Explaining and harnessing adversarial examples. In
International Conference on Learning Representations
(ICLR).

CueN, C., Zuao, X. and Stamm, M.C. (2019) Generative
adversarial attacks against deep-learning-based camera
model identification. IEEE Transactions on Information
Forensics and Security .

He, X., Yang, S., Li, G, Li, H., Cuang, H. and
Yu, Y. (2019) Non-local context encoder: Robust
biomedical image segmentation against adversarial
attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI-2019), 33: 8417-8424.

JosHi, C., Ariaca, J.R. and Insua, D.R. (2020) Insider
threat modeling: An adversarial risk analysis approach.
IEEE Transactions on Information Forensics and Security
16: 1131-1142.

GronNDMAN, I., Busontu, L., Lopes, G.A. and BaBuska, R.
(2012) A survey of actor-critic reinforcement learning;:
Standard and natural policy gradients. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 42(6): 1291-1307.

RatsORE, H., Sanay, S.K., Nikam, P. and Sewak, M.
(2020) Robust android malware detection system against
adversarial attacks using q-learning. Information Systems
Frontiers : 1-16.

Kuopba, M.E., Imam, T., KamMruzzaMAN, J., GONDAL,
I. and RaumaAN, A. (2019) Robust malware defense
in industrial iot applications using machine learning
with selective adversarial samples. IEEE Transactions on
Industry Applications 56(4): 4415-4424.

L, K., Yang, H.,, Ma, Y., Tan, B., Yu, B., Young,
E.E, Karri, R. et al. (2020) Adversarial perturbation
attacks on ml-based cad: A case study on cnn-based
lithographic hotspot detection. ACM Transactions on
Design Automation of Electronic Systems (TODAES) 25(5):
1-31.

Arp, D., SprerTzENBARTH, M., HuBNER, M., Gascon, H.
and Rieck, K. (2014) Drebin: Effective and explainable
detection of android malware in your pocket. In Network
and Distributed System Security Symposium (NDSS), 14:
23-26.

Wang, C., Xu, Q., Lin, X. and Ly, S. (2019) Research on
data mining of permissions mode for android malware

EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

https://www.statista.com/topics/876/android/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://portal.av-atlas.org/malware/statistics
https://portal.av-atlas.org/malware/statistics

Are Malware Detection Classifiers Adversarially Vulnerable to Actor-Critic based Evasion Attacks?

(27]

(28]

(29]

(30]

(31]

(32]

(33]

detection. Cluster Computing 22(6): 13337-13350.
Arsran, R.S., Doéru, I.A. and Bariscr, N. (2019)
Permission-based malware detection system for android
using machine learning techniques. International Journal
of Software Engineering and Knowledge Engineering
29(01): 43-61.

ARroRra, A., PEDDOJU, S.K. and Conri, M. (2020) Permpair:
Android malware detection using permission pairs. [EEE
Transactions on Information Forensics and Security 15:
1968-1982.

Mar, S.R.T., AB Razak, M.E, Kanar, M.N.M., Arir,].M.
and Firpaus, A. (2021) A bayesian probability model for
android malware detection. ICT Express .

Sewak, M., Sanay, S.K. and Rartsore, H. (2020)
Deepintent: implicitintent based android ids with e2e
deep learning architecture. In 2020 IEEE 31st Annual
International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC) (IEEE): 1-6.

Cuen, L., Hou, S. and Yg, Y. (2017) Securedroid: Enhanc-
ing security of machine learning-based detection against
adversarial android malware attacks. In Proceedings of
the 33rd Annual Computer Security Applications Confer-
ence (ACSAC): 362-372.

Grossg, K., PapernoT, N., MANOHARAN, P., Backes, M.
and McDanter, P. (2017) Adversarial examples for
malware detection. In European Symposium on Research
in Computer Security (ESORICS) (Springer): 62-79.
Fang, Z., WaNG, J., L1, B., Wu, S., Znou, Y. and Huang,
H. (2019) Evading anti-malware engines with deep

O EA

(34]

(35]

(36]

(37]

(38]

(39]

[40]

reinforcement learning. IEEE Access 7: 48867-48879.
Fang, Y., Zeng, Y., L1, B, Liu, L. and Zuang, L. (2020)
DeepDetectNet vs RLAttackNet: An adversarial method
to improve deep learning-based static malware detection
model. Plos one 15(4): e0231626.

Taneri, R., JavipaN, R., SHojarar, M., Vinop, P. and
ConT1, M. (2020) Can machine learning model with
static features be fooled: an adversarial machine learning
approach. Cluster Computing 23(4): 3233-3253.
Koutriaripis, V., KamBourakis, G., CHarzocrou, E.,
Gengiatakis, D. and Wang, H. (2021) Dissecting contact
tracing apps in the android platform. Plos one 16(5):
e0251867.

Tsiatsikas, Z., KamBourakis, G., GeENEeiaTakis, D. and
Wang, H. (2018) The devil is in the detail: Sdp-
driven malformed message attacks and mitigation in sip
ecosystems. IEEE Access 7: 2401-2417.

Zuang, E, Wang, Y, Lw, S. and Wang, H. (2020)
Decision-based evasion attacks on tree ensemble classi-
fiers. World Wide Web 23(5): 2957-2977.

Sewak, M., Sanay, S.K. and Rarnorg, H. (2021) Drldo:
A novel drl based de-obfuscation system for defence
against metamorphic malware. Defence Science Journal
71(1).

RatsORE, H., SAMAVEDHI, A., Sanay, S.K. and Sewak,
M. (2021) Robust malware detection models: Learning
from adversarial attacks and defenses. Forensic Science
International: Digital Investigation 37: 301183.

EAI Endorsed Transactions on
Scalable Information Systems
10 2022 - 01 2023 | Volume 10 | Issue 1 | €6

	1 Introduction
	2 Overview and Proposed Framework
	2.1 Overview of Proposed Framework Design
	Data Collection
	Feature Engineering and Data Preprocessing
	Malware Detection Models (Baseline)
	Adversarial Attack Policy
	Adversarially Robust Malware Detection Models

	2.2 Threat Modeling @ Malware Detection Models
	Attacker's Goal
	Attacker's Knowledge
	Attacker’s Capability

	2.3 ACE Attack Strategy
	2.4 Adversarial Retraining Defense Strategy

	3 Experimental Setup
	3.1 Data Collection (Malware & Benign Apps)
	3.2 Feature Engineering and Data Preprocessing
	3.3 Classifiers for Malware Detection
	3.4 Performance Measures

	4 Experimental Results
	4.1 Malware Detection Models (Baseline)
	4.2 ACE Attack on Malware Detection Models
	Fooling Rate by ACE Attack
	Classifier Accuracy after ACE Attack
	Discussion about ACE Attack

	4.3 Adversarial Retraining Defense Strategy for Malware Detection Models
	4.4 Comparison with Existing Work
	4.5 Limitations

	5 Related Work
	6 Conclusion

