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Abstract

Standard condition number (SCN) detector is a promising detector that can work efficiently in uncertain
environments. In this paper, we consider a Cognitive Radio (CR) system with large number of antennas
(eg. Massive MIMO) and we provide an accurate and simple closed form approximation for the SCN
distribution using the generalized extreme value (GEV) distribution. The approximation framework is based
on the moment-matching method where the expressions of the moments are approximated using bi-variate
Taylor expansion and results from random matrix theory. In addition, the performance probabilities and
the decision threshold are considered. Since the number of antennas and/or the number of samples used
in the sensing process may frequently change, this paper provides simple form decision threshold and
performance probabilities offering dynamic and real-time computations. Simulation results show that the
provided approximations are tightly matched to relative empirical ones.
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1. Introduction
Cognitive Radio (CR), firstly proposed by Mitola [1], is
the technology that provides solution for the scarcity
and inefficiency in using the spectrum resource [2].
For the CR to operate efficiently and to provide the
required improvement in spectrum efficiency, it must
be able to effectively detect the presence/absence of the
Primary User (PU). Thus, Spectrum Sensing (SS) is the
key element for the presence/absence detection process
in any CR guarantee.

Several SS techniques were proposed in the last
decade [3], however, Eigenvalue Based Detector (EBD)
has been shown to overcome noise uncertainty
challenges and performs adequately even in low SNR
conditions as it does not need any prior knowledge
about the noise power or signal to noise ratio.
EBD is based on the eigenvalues of the received
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signal covariance matrix and it utilises results from
Random Matrix Theory (RMT) [4]. It detects the
presence/absence of the PU by exploiting receiver
diversity and includes the Largest Eigenvalue (LE)
detector [5–7], the Scaled Largest Eigenvalue (SLE)
detector [7–9] , and the Standard Condition Number
(SCN) detector [5, 10–17].

Let W be the sample covariance matrix and denote
by λ1 ≥ λ2 ≥ · · · ≥ λK > 0 its ordered eigenvalues; then
the SCN of W , defined as the ratio of the maximum to
minimum eigenvalues, is given by:

X =
λ1

λK
. (1)

The SCN detector compares X with a certain threshold
to decide about the existence of the PU. This threshold
was set according to Marchenco-Pastur law (MP) in
[5] which states that the largest eigenvalue (λ1) and
the smallest eigenvalue (λK ) converge asymptotically to
constants; however, this threshold is not related to any

1

EAI Endorsed Transactions 
on Cognitive Communications Research Article

EAI Endorsed Transactions on 
Cognitive Communications

 02 2017 - 05 2017 | Volume 3 | Issue 11 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<hussein.kobeissi.87@gmail.com>


H. Kobeissi et al.

error constraints. In [10], the authors have provided an
approximated relation between the threshold and the
False-Alarm Probability (Pf a) by exploiting the Tracy-
Widom distribution (TW) for the largest eigenvalue
while maintaining the MP law for the smallest one.
TW distribution is an asymptotic distribution for λ1
[18]. This work was further improved in [11, 12] by
considering the TW distribution and by using the
Curtiss formula for the distribution of the ratio of
random variables [19]. In these two cases, the threshold
could not be computed online and Lookup Tables (LUT)
should be used instead. The exact distribution of the
SCN was, also, derived in [13] for 2 antennas and in [14]
for 3 antennas, however, it is very complicated to extend
this work for CR with higher number of antennas.

On the other hand, Massive MIMO (Multiple-Input-
Multiple-Output) is viewed as one of the foundational
5G technologies [20]. Thus, CR with massive MIMO
technology (equipped with tens to hundreds of
antennas) could use any multi-antenna SS technique
to identify the unused channels while achieving a
significant increase of the performance of the SS
detector. EBD presents an efficient way for multi-
antenna SS and could be used efficiently in CR with
Massive MIMOs. However, in such practical scenario,
the number of antennas and/or the number of samples
used in the sensing process may frequently change.
Accordingly, the implementation of the decision
threshold must be dynamic and rely on real-time
computations and thus simple form of the performance
probabilities and the decision threshold are required.

In this paper, we are interested in finding a simple
approximation for the SCN detector’s performance
probabilities and decision threshold. This allows the
system, equipped with tens to hundreds of antennas,
to dynamically compute its threshold online according
to the instantaneous scenario. For this purpose,
we propose to asymptotically approximate the SCN
distribution with the Generalized Extreme Value
(GEV) distribution by matching the first three central
moments. This approximation yields a simple and yet
accurate closed form expression for the SCN detector.
Accordingly, the threshold could be simply computed.
The main contributions of this paper are summarized
as follows:

• Derivation of the asymptotic central moments of
the extreme eigenvalues.

• Derivation of an asymptotic approximated form
of the central moments of the SCN from that of
the extreme eigenvalues.

• Proposition of a simple and asymptotic closed
form approximation for the SCN distribution
using the central moments.

• Derivation of a simple form for the performance
probabilities and the decision threshold for the
SCN detector.

The rest of this paper is organized as follows. Section
2 provides the system model including the hypotheses
analysis. Section 3 provides the asymptotic mean,
variance and skewness of the extreme eigenvalues
under H0 and H1 hypotheses. The asymptotic mean,
variance and skewness of the SCN are derived in section
4. Then, we propose a new asymptotic approximation
for the SCN distribution. In section 5, we derive the
form of the performance probabilities as well as the
decision threshold for the SCN detector. Theoretical
findings are validated by simulations in section 6 while
the conclusion is drawn in section 7.

Notations. Vectors and Matrices are represented,
respectively, by lower and upper case boldface.
The symbols |.| and tr(.) indicate, respectively, the
determinant and trace of a matrix while (.)T , and (.)†

are the transpose, and Hermitian symbols respectively.
In is the n × n identity matrix. Symbols ∼ stands for
"distributed as", E[.] for the expected value and ‖.‖2 for
the norm.

2. System Model
Consider a CR system equipped with K receiving
antennas aiming to detect the presence/absence of a
single PU during a sensing period corresponds to N
samples. After collectingN samples from each antenna,
the received signal matrix, Y , is given by:

Y =


y1(1) y1(2) · · · y1(N )
y2(1) y2(2) · · · y2(N )
...

...
. . .

...
yK (1) yK (2) · · · yK (N )

 , (2)

where yk(n) is the baseband sample at antenna k =
1 · · ·K and instant n = 1 · · ·N .

For this detection problem, two hypotheses exist: (i)
H0: there is no PU and the received sample is only noise;
and (ii)H1: the PU exists. The received vector, at instant
n, under both hypotheses is given by:

H0 : yk(n) = ηk(n), (3)

H1 : yk(n) = hk(n)s(n) + ηk(n), (4)

with ηk(n) is a complex circular white Gaussian noise
with zero mean and unknown variance σ2

η , hk(n) is a
the channel coefficient between the PU and antenna k at
instant n, and s(n) stands for the primary signal sample
modeled as a zero mean Gaussian random variable with
variance σ2

s . Without loss of generality, we suppose that
K ≤ N and the channel is considered constant during
the sensing time for simplicity.
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H0 hypothesis. By considering H0 hypothesis, the
received samples are complex circular white Gaussian
noise with zero mean and unknown variance σ2

η .
Consequently, the sample covariance matrix is a central
uncorrelated complex Wishart matrix denoted as W ∼
CWK (N, σ2

η IK ) where K is the size of the matrix, N is
the number of Degrees of Freedom (DoF), and σ2

η IK is
the correlation matrix.

H1 hypothesis. By considering H1 hypothesis and
following our assumptions, the sample covariance
matrix is a non-central uncorrelated complex Wishart
matrix denoted as W ∼ CWK (N, σ2

η IK ,ΩK ) where ΩK is
a rank-1 non-centrality matrix [21].

Let Σ̂K be the correlation matrix defined as:

Σ̂K = σ2
η IK + ΩK/N , (5)

and denote by σ = [σ1, σ2, · · · , σK ]T its vector of
eigenvalues. Then W , under H1, could be modeled
as a central semi-correlated complex Wishart matrix
denoted as W ∼ CWK (N, Σ̂K )[22]. Since ΩK is a rank-
1 matrix, then Σ̂K belongs to the class of spiked
population model with all but one eigenvalue of Σ̂K are
still equal to σ2

η while σ1 is given by:

σ1 = σ2
η + ω1/N , (6)

with ω1 is the only non-zero eigenvalue of ΩK .
Denote the channel power by σ2

h , then the average
signal to noise ratio (SNR), under H1, is defined by:

ρ =
σ2
s σ

2
h

σ2
η
, (7)

where σ2
s could be estimated by (‖s‖2/N ), and

the channel power σ2
h = (‖h‖2/K). The non-centrality

matrix is given by:

ΩK = Σ−1
K MM† =

1

σ2
η
‖s‖2hh†, (8)

where ΣK is the covariance matrix of Y , defined as
ΣK = E[(Y −M)(Y −M)†] = σ2

η IK , and M is the mean
of Y defined as M = E[Y ] = hsT with h = [h1h2 · · · hK ]T

and s = [s(1)s(2) · · · s(N )]T .
As a result, and by using the property that the trace

of a matrix equals the sum of its eigenvalues, then ω1
could be written as:

ω1 = tr(ΩK ) =
1

σ2
η
‖s‖2tr(hh†) = NKρ. (9)

3. Assymptotic Moments of Extreme Eigenvalues
This section considers the statistical analysis of the
extreme eigenvalues (λ1 and λK ) of the sample

covariance matrix (W ) by considering both hypotheses.
Since SCN is not affected by the noise power, let σ2

η =
1 and define the Asymptotic Condition (AC) and the
Critical Condition (CC) as follows:

AC : (K,N )→∞ with K/N → c ∈ (0, 1), (10)

CC : ρ > ρc =
1
√
KN

. (11)

These conditions are important as will be stated
through this paper.

3.1. H0 hypothesis
Let λH0

1 and λH0
K be the maximum and minimum

eigenvalue of W under H0 respectively, then:

Distribution of λH0
1 . Denote the centered and scaled

version of λH0
1 of the central uncorrelated Wishart

matrix W ∼ CWK (N, IK ) by:

λ′1 =
λH0

1 − a1(K,N )
b1(K,N )

(12)

with a1(K,N ) and b1(K,N ), the centering and scaling
coefficients respectively, are defined by:

a1(K,N ) = (
√
K +
√
N )2 (13)

b1(K,N ) = (
√
K +
√
N )(K−1/2 +N−1/2)

1
3 (14)

then, as AC is satisfied, λ′1 follows a TW distribution of
order 2 (TW2) [23].

Distribution of λH0
K . Denote the centered and scaled

version of λH0
K of the central uncorrelated Wishart

matrix W ∼ CWK (N, IK ) by:

λ′K =
λH0
K − a2(K,N )
b2(K,N )

(15)

with a2(K,N ) and b2(K,N ), the centering and scaling
coefficients respectively, are defined by:

a2(K,N ) = (
√
K −
√
N )2 (16)

b2(K,N ) = (
√
K −
√
N )(K−1/2 −N−1/2)

1
3 (17)

then, as AC is satisfied, λ′K follows a TW2[24].

Central Moments of λH0
1 and λH0

K . The mean, variance
and skewness of λ′1 and λ′K are that of the TW2.
They are given by µTW2 = −1.7710868074, σ2

TW2 =
0.8131947928 and STW2 = 0.2240842036 respectively
[25]. Accordingly, using (12), the mean, variance and
skewness of λH0

1 are, respectively, given by:

µ
λ
H0
1

= b1(K,N )µTW2 + a1(K,N ), (18)

σ2
λ
H0
1

= b2
1(K,N )σ2

TW2, (19)

S
λ
H0
1

= STW2, (20)
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and using (15), the mean, variance and skewness of λH0
K

are, respectively, given by:

µ
λ
H0
K

= b2(K,N )µTW2 + a2(K,N ), (21)

σ2
λ
H0
K

= b2
2(K,N )σ2

TW2, (22)

S
λ
H0
K

= −STW2. (23)

3.2. H1 hypothesis
Let λH1

1 and λH1
K be the maximum and minimum

eigenvalue of W under H1 respectively, then:

Distribution of λH1
1 . Denote the centered and scaled

version of λH1
1 of the central semi-correlated Wishart

matrix W ∼ CWK (N, Σ̂K ) by:

λ′′1 =
λH1

1 − a3(K,N, σ )√
b3(K,N, σ )

(24)

with a3(K,N ) and b3(K,N ), the centering and scaling
coefficients respectively, are defined by:

a3(K,N, σ ) = σ1(N +
K

σ1 − 1
) (25)

b3(K,N, σ ) = σ2
1 (N − K

(σ1 − 1)2 ) (26)

then, as AC and CC are satisfied, λ′′1 follows a standard
normal distribution (λ′′1 ∼ N (0, 1))[26].

Distribution of λH1
K . As mentioned in [27], when Σ̂K has

only one non-unit eigenvalue such that CC is satisfied,
then only one eigenvalue of W will be pulled up. In
other words, and as it could be deduced from [28,
Proof of Lemma 2], the remaining K − 1 eigenvalues
of W (λH1

2 , · · · , λH1
K ) have the same distribution as

the eigenvalues of W ∼ CWK−1(N, IK−1) under H0
hypothesis.

Denote the centered and scaled version of λH1
K

of the central semi-correlated Wishart matrix W ∼
CWK (N, Σ̂K ) by:

λ′′K =
λH1
K − a2(K − 1, N )
b2(K − 1, N )

(27)

with a2(K,N ) and b2(K,N ) are, respectively, given by
(16) and (17). Then, as the AC and CC are satisfied, λ′′K
follows a TW2.

It is worth mentioning that as CC is not satisfied
and AC is satisfied, then λH1

1 follows TW2 distribution

of λH0
1 [26]. Thus, non of the eigenvalue of W will

be pulled up and λH1
K follows TW2 distribution of

λH0
K . Accordingly, the PU signal has no effect on the

eigenvalues and could not be detected. It follows that
the same analysis under H0 hypothesis is applied for
this case.

Central Moments of λH1
1 and λH1

K . The mean, variance

and skewness of λH1
1 are, due to (24), given respectively

by:

µ
λ
H1
1

= a3(K,N, σ ), (28)

σ2
λ
H1
1

= b3(K,N, σ ), (29)

S
λ
H1
1

= 0, (30)

and using (27), the mean, variance and skewness of λH1
K

are respectively given by:

µ
λ
H1
K

= b2(K − 1, N )µTW2 + a2(K − 1, N ), (31)

σ2
λ
H1
K

= b2
2(K − 1, N )σ2

TW2, (32)

S
λ
H1
K

= −STW2. (33)

As a result, this section provides a simple form
for the central moments of the extreme eigenvalues.
These moments are used, in the next section, to derive
an approximation for the mean, the variance and the
skewness of the SCN under both hypotheses.

4. SCN Distribution Approximation
This section approximates the asymptotic distribution
of the SCN by the GEV distribution using moment
matching. First, we consider both detection hypotheses
and we derive an approximation of the mean, the
variance and the skewness of the SCN to be used in the
next subsection for the approximation.

4.1. Asymptotic Central Moments of the SCN
The bi-variate first order Taylor expansion of the
function X = g(λ1, λK ) = λ1/λK about any point θ =
(θλ1

, θλK ) is written as:

X= g(θ) + g ′λ1
(θ)(λ1 − θλ1

) + g ′λK (θ)(λK − θλK) +O(n−1),
(34)

with g ′λi is the partial derivative of g over λi .
Let θ = (µλ1

, µλK ) with µλ1
and µλK are the means of

λ1 and λK respectively, then it could be proved that:

E [X] = g(θ), (35)

E
[
(X − g(θ))2

]
= g ′λ1

(θ)2E
[
(λ1 − θλ1

)2
]

(36)

+ g ′λK (θ)2E
[
(λK − θλK )2

]
+ 2g ′λ1

(θ)g ′λK (θ)E
[
(λ1 − θλ1

)(λK − θλK )
]
,

E
[
(X − g(θ))3

]
=g ′λ1

(θ)3E
[
(λ1 − θλ1

)3
]

(37)

+g ′λK (θ)3E
[
(λK − θλK )3

]
+3g ′λ1

(θ)2g ′λK (θ)E
[
(λ1 − θλ1

)2(λK − θλK )
]

+3g ′λ1
(θ)g ′λK (θ)2E

[
(λ1 − θλ1

)(λK − θλK )2
]
,
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Accordingly, we give the following theorems that
formulate a simple approximation for the central
moments of the SCN.

Theorem 1. Let X be the SCN of W ∼ CWK (N, σ2
η IK ). The

mean, the variance and the skewness of X, as AC is
satisfied, can be tightly approximated using the mean,
the variance and the skewness of the λH0

1 and λH0
K as

follows:

µX =
µ
λ
H0
1

µ
λ
H0
K

(38)

σ2
X =

σ2
λ
H0
1

µ2
λ
H0
K

+
µ2
λ
H0
1

σ2
λ
H0
K

µ4
λ
H0
K

(39)

SX =
1√
σ3
X

·


√
σ3
λ
H0
1

S
λ
H0
1

µ3
λ
H0
K

−

√
σ3
λ
H0
K

µ3
λ
H0
1

S
λ
H0
K

µ6
λ
H0
K

 (40)

Proof. The result follows (35), (36) and (37) while
considering λH0

1 and λH0
K asymptotically independent

[29]. The mean, the variance and the skewness of λH0
1

and λH0
K are given in Section 3.1.

Theorem 2. Let X be the SCN of W ∼ CWK (N, Σ̂K ) where
Σ̂K has only one non-unit eigenvalue. The mean, the
variance and the skewness of X, as the AC and CC
are satisfied, can be tightly approximated using the
mean, the variance and the skewness of λH1

1 and λH1
K

as follows:

µX =
µ
λ
H1
1

µ
λ
H1
K

(41)

σ2
X =

σ2
λ
H1
1

µ2
λ
H1
K

+
µ2
λ
H1
1

σ2
λ
H1
K

µ4
λ
H1
K

(42)

SX = −

√
σ3
λ
H1
K

µ3
λ
H1
1

S
λ
H1
K√

σ3
X · µ

6
λ
H1
K

(43)

Proof. The result follows (35), (36) and (37) while
considering λH1

1 and λH1
K asymptotically independent

[30]. The mean, the variance and the skewness of λH1
1

and λH1
K are given in Section 3.2

4.2. Approximating the SCN using GEV
GEV is a flexible 3-parameter distribution used to
model the extreme events of a sequence of i.i.d random
variables [31]. These parameters are the location (δ),

the scale (β) and the shape (ξ). In the following two
propositions, we approximate the distribution of the
SCN under H0 and H1 hypotheses respectively.

Proposition 1. Let X be the SCN of W ∼ CWK (N, σ2
η IK )

with defined skewness −0.63 ≤ SX < 1.14 1. If AC
is satisfied, then the CDF and PDF of X can be
asymptotically and tightly approximated respectively
by:

F(x; δ, β, ξ) = e
−(1+( x−δβ )ξ)

−1/ξ
(44)

f (x; δ, β, ξ) =
1
β

(1 + (
x − δ
β

)ξ)
−1
ξ −1e

−(1+( x−δβ )ξ)
−1/ξ

(45)

where ξ, β and δ are defined respectively by:

ξ = −0.06393S2
X + 0.3173SX − 0.2771 (46)

β =

√
σ2
Xξ

2

g2 − g2
1

(47)

δ = µX −
(g1 − 1)β

ξ
(48)

where µX , σ2
X and SX are defined in Theorem 1 and

gi = Γ (1 − iξ).

Proposition 2. Let X be the SCN of W ∼ CWK (N, Σ̂K )
with defined skewness −0.63 ≤ SX < 1.14 and Σ̂K
has only one non-unit eigenvalue. If AC and CC
are satisfied, then the CDF and PDF of X can be
asymptotically and tightly approximated by (44) and
(45) respectively. The parameters ξ, β and δ are defined
respectively by (46), (47) and (48) with µX , σ2

X and SX
are defined in Theorem 2.

It is worth mentioning that the shape, the scale and
the location parameters are respectively derived using
the skewness, the variance and the mean of the GEV
distribution. The moments of the GEV distribution are
provided by [32].

5. SCN Detector Analysis
Recall that the SCN is given by:

X =
λ1

λK
. (49)

Denoting by α the decision threshold, then the
probability of false alarm (Pf a), defined as the
probability of detecting the presence of PU while it does
not exist, and the detection probability (Pd), defined as
the probability of correctly detecting the presence of

1Eq. (46) is valid only if −0.63 ≤ SX < 1.14 which is true for SCN;
however for other skewness intervals the reader may refer to [17]
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PU, are, respectively, given by:

Pf a = P (X ≥ α/H0), (50)

Pd = P (X ≥ α/H1). (51)

These probabilities depend on the decision threshold
being used. However, if the expressions of the Pf a and
Pd are previously known, then a threshold could be set
according to a required error constraint. If we denote
the CDF of X underH0 andH1 hypotheses respectively
by F0(.) and F1(.), then we can write:

Pf a = 1 − F0(α), (52)

Pd = 1 − F1(α). (53)

Consequently, for a given decision threshold (α̂)
the SCN detector algorithm could be summarized as
follows:

Algorithm 1: SCN Detector
Input: Y , α̂
Output: d

1 compute W = Y Y † ;
2 get λ1 and λK of eig(W ) ;
3 evaluate X = λ1/λK ;

4 decide d = X
H1
≷
H0

α̂ ;

Performance Probabilities. Based on Propositions 1 and
2, and using (52) and (53), the Pf a and Pd are
respectively expressed as:

Pf a = 1 − e−(1+( α−δ0
β0

)ξ0)
−1/ξ0

, (54)

Pd = 1 − e−(1+( α−δ1
β1

)ξ1)
−1/ξ1

, (55)

where δ0, β0 and ξ0 are the location, scale and shape
parameters under H0 and are computed according to
proposition 1 while δ1, β1 and ξ1 are the location,
scale and shape parameters underH1 and are computed
according to proposition 2.

Decision Threshold. The threshold could be computed
using (54) and (55) according to a required error
constraint. For example, for a target false alarm
probability (γ̂), the threshold is given by:

α̂ = δ0 +
β0

ξ0

(
− 1 +

[
− ln(1 − γ̂)

]−ξ0

)
. (56)

6. Numerical validation
In this section, we verify the analytical derivation
results through Monte-Carlo simulations. We validate
the theoretical analysis presented in sections 3, 4 and 5.

1 1.5 2 2.5 3 3.5 4 4.5 5
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Proposed (20 × 500)

Proposed (50 × 500)

Proposed (100 × 1000)

Figure 1. Empirical CDF of the SCN and its corresponding
proposed GEV approximation for different values of K and N
under H0 hypothesis.

The simulation results are obtained by generating 105

random realizations of Y . For H0 case, the inputs of
Y are complex circular white Gaussian noise with zero
mean and unknown variance σ2

η while for H1 case the
channel is considered flat.

Table 1 shows the accuracy of the analytical
approximation of the mean, the variance and the
skewness of the SCN provided by Theorems 1 and 2. It
can be easily seen that these Theorems provide a good
approximation for the statistics of the SCN, however,
it could be noticed that the skewness is not perfectly
approximated. In fact, the skewness is affected by the
slow convergence of the skewness of λK that must
converge to −STW2 (i.e. −0.2241) as AC is satisfied. For
example, for K = 50, the empirical skewness increases
from SλK = −0.1504 to SλK = −0.1819 as the number
of samples increases from N = 500 to N = 1000.
Comparing these results with SCN results in Table 1,
one can notice that the empirical and approximated
SCN skewness become closer as λK skewness converges
to that of TW2. Accordingly, Theorems 1 and 2 are
good approximations for the mean, the variance and
the skewness of the SCN under both hypotheses. It
is worth noting that one could approximate the SCN
moments using second order bi-variate Taylor series to
get a slightly higher accuracy, however, this will cost
higher complexity and it is not necessary as shown in
Table 1 and the following figures.

Figure 1 shows the empirical CDF of the SCN
and its corresponding GEV approximation given
by Proposition 1. The results are shown for K =
{10, 20, 50, 100} antennas and N = {500, 1000} samples
per antenna. Results show a perfect match between
the empirical results and our proposed approximation.
Also, it could be noticed that the convergence of the
skewness does not affect the approximation and thus
the skewness in Theorem 1 holds for this approximation
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Table 1. Empirical mean, variance and skewness of the SCN under H0 and H1 hypotheses and it corresponding proposed analytical
approximation using Theorems 1 and 2 respectively.

K ×N Empirical Proposed App.
mean variance skewness mean variance skewness

H0 50 × 500
3.3946 0.0117 0.2639 3.3975 0.0114 0.1652

H1 12.3363 0.4006 0.1710 12.3139 0.3906 0.0291

H0 100 × 500
6.3076 0.0386 0.2992 6.3126 0.0367 0.1740

H1 34.6345 3.2246 0.1618 34.5387 3.1154 0.0306

H0 50 × 1000
2.3386 0.0026 0.2339 2.3396 0.0026 0.1619

H1 9.6702 0.1205 0.1177 9.6612 0.1184 0.024
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Figure 2. Empirical CDF of the SCN and its corresponding
proposed GEV approximation for different values of K and N
under H1 hypothesis with ρ = −10dB.

even though the convergence of the skewness of λK is
slow.

Figure 2 shows the empirical CDF of the SCN
and its corresponding GEV approximation given
by Proposition 2. The results are shown for K =
{20, 50} antennas and N = {500, 1000} samples per
antenna and ρ = −10dB. Results show high accuracy in
approximating the empirical CDF. Also, the difference
in the skewness shown in Table 1 does not affect the
approximation.

Figure 3 shows the empirical Receiver Operating
Characteristic (ROC) of the SCN detector and its
corresponding proposed approximation. The results
are shown for K = {20, 25, 50} antennas and N = 500
samples per antenna for SNR = −18dB. Results show
that the proposed approximation matches the empirical
results with high accuracy. In addition, Fig. 3 shows
the gain in the performance as the number of antenna
increases.

Figure 4 plots the empirical Pd versus SNR (ρ) and
its corresponding proposed analytical approximation.
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Figure 3. Empirical ROC of the SCN detector and its
corresponding proposed approximation for different values of K
with N = 500 and ρ = −18dB.

Pf a is fixed to 0.001 and the threshold is calculated
using (56) for different values of K = {20, 25, 30} and
N = {300, 400, 500}. Results show the accuracy of the
approximation as a function of the SNR for different
K and N values. Figure 4(a) shows how the Pd is
improved as N increases while Figure 4(b) shows the Pd
improvement as K increases. Both Figures show a high
Pd when using large number of antennas and relatively
large number of samples.

It is worth mentioning that Figures 3 and 4
show high improvement in the system performance
by a simple increase of the number of antennas
or number of samples used in the sensing process.
Accordingly, it is very important to have a simple
form for the performance probabilities and thus for the
decision threshold so a CR system with large number
of antennas2 can dynamically adapt its threshold

2e.g. Massive MIMO, Large-scale distributed antenna systems,
Cooperation between large number of SU.
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(a) Pd versus ρ for K = 25 and N varies
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Figure 4. Empirical Pd of the SCN detector as a function of
SNR and its corresponding proposed approximation for different
values of N and K with Pf a = 0.001.

according to pre-defined error constraints and channel
conditions.

7. Conclusion
In this paper, we have considered the SCN detector
for large number of antennas in cognitive radios.
We have derived the asymptotic mean, variance and
skewness of the SCN using those of the extreme
eigenvalues of the sample covariance matrix by means
of bi-variate Taylor expansion. A simple closed form
approximation for the distribution of the SCN underH0
and H1 hypotheses are proposed. This approximation
is based on the extreme value theory distributions and
uses results from random matrix theory. Consequently,
simple forms for the false-alarm probability, detection
probability and the decision threshold are derived for
real-time computations such that a CR system with
large number of antennas can dynamically adapt its
threshold according to pre-defined error constraints

and channel conditions. In addition to their simple
forms, simulation results show high accuracy of
the proposed approximation for different number of
antennas and different number of samples on various
SNR values.

Acknowledgement. This work was funded by a program of
cooperation between the Lebanese University and the Azem
& Saada social foundation (LU-AZM) and by CentraleSupélec
(France).

References
[1] Mitola, J. (2000) Cognitive Radio: An Integrated Agent

Architecture for Software Defined Radio. Ph.D. thesis,
Royal Institute of Technology, Sweden.

[2] FCC (2002) Et docket no 02-135: spectrum policy task
force report .

[3] Yucek, T. and Arslan, H. (2009) A survey of spectrum
sensing algorithms for cognitive radio applications.
IEEE Communications Surveys Tutorials, 11(1): 116–130.
doi:10.1109/SURV.2009.090109.

[4] Couillet, R. and Debbah, M. (2011) Random Matrix The-
ory for Wireless Communications (Cambridge University
Press).

[5] Cardoso, L., Debbah, M., Bianchi, P. and Najim, J. (2008)
Cooperative spectrum sensing using random matrix
theory. In in Proc. IEEE Int. Symp. Wireless Pervasive
Comput. (ISWPC) (Greece): 334–338.

[6] Zeng, Y., Liang, Y.C. and Zhang, R. (2008) Blindly
combined energy detection for spectrum sensing in
cognitive radio. IEEE Signal Processing Letters 15: 649–
652. doi:10.1109/LSP.2008.2002711.

[7] Nadler, B., Penna, F. and Garello, R. (2011) Per-
formance of eigenvalue-based signal detectors with
known and unknown noise level. In Communications
(ICC), 2011 IEEE International Conference on: 1–5.
doi:10.1109/icc.2011.5963473.

[8] Nadler, B. (2011) On the distribution of the ratio of
the largest eigenvalue to the trace of a wishart matrix.
Journal of Multivariate Analysis 102(2): 363 – 371.
doi:http://dx.doi.org/10.1016/j.jmva.2010.10.005, URL
http://www.sciencedirect.com/science/article/

pii/S0047259X10002113.
[9] Bianchi, P., Debbah, M., Maida, M. and Najim, J.

(2011) Performance of statistical tests for single-
source detection using random matrix theory.
IEEE Trans. Inform. Theory, 57(4): 2400–2419.
doi:10.1109/TIT.2011.2111710.

[10] Zeng, Y. and Liang, Y.C. (2009) Eigenvalue-based
spectrum sensing algorithms for cognitive radio. IEEE
Trans. Commun. 57(6): 1784–1793.

[11] Penna, F., Garello, R. and Spirito, M. (2009) Coopera-
tive spectrum sensing based on the limiting eigenvalue
ratio distribution in wishart matrices. IEEE Commun.
Letters, 13(7): 507–509.

[12] Penna, F., Garello, R., Figlioli, D. and Spirito, M.

(2009) Exact non-asymptotic threshold for eigenvalue-
based spectrum sensing. In in Proc. IEEE 4th Int. Conf.
CROWNCOM (Germany): 1–5.

8
EAI Endorsed Transactions on 

Cognitive Communications
 02 2017 - 05 2017 | Volume 3 | Issue 11 | e1

http://dx.doi.org/10.1109/SURV.2009.090109
http://dx.doi.org/10.1109/LSP.2008.2002711
http://dx.doi.org/10.1109/icc.2011.5963473
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmva.2010.10.005
http://www.sciencedirect.com/science/article/pii/S0047259X10002113
http://www.sciencedirect.com/science/article/pii/S0047259X10002113
http://dx.doi.org/10.1109/TIT.2011.2111710


[13] Zhang,W., Abreu, G., Inamori, M. and Sanada, Y. (2012)
Spectrum sensing algorithms via finite random matrices.
IEEE Trans. Commun. 60(1): 164–175.

[14] Kobeissi, H., Nasser, Y., Bazzi, O., Louet, Y. and
Nafkha, A. (2014) On the performance evaluation
of eigenvalue-based spectrum sensing detector for
mimo systems. In XXXIth URSI General Assembly
and Scientific Symposium (URSI GASS),: 1–4.
doi:10.1109/URSIGASS.2014.6929235.

[15] Kobeissi, H., Nafkha, A., Nasser, Y., Bazzi, O. and
Louët, Y. (2016) Simple and accurate closed-form
approximation of the standard condition number
distribution with application in spectrum sensing. In
CROWNCOM 2016 (Springer International Publishing):
351–362. doi:10.1007/978-3-319-40352-6_29.

[16] Kobeissi, H., Nasser, Y., Nafkha, A., Bazzi, O. and
Louet, Y. (2016) On the detection probability of
the standard condition number detector in finite-
dimensional cognitive radio context. EURASIP Journal on
Wireless Communications and Networking 2016(1): 1–11.
doi:10.1186/s13638-016-0634-0, URL http://dx.doi.

org/10.1186/s13638-016-0634-0.
[17] Kobeissi, H., Nafkha, A., Nasser, Y., Louët, Y. and

Bazzi, O. (2017) Approximating the standard condition
number for cognitive radio spectrum sensing with finite
number of sensors. IET Signal Processing 11: 145–154(9).
URL http://digital-library.theiet.org/content/

journals/10.1049/iet-spr.2016.0146.
[18] Johnstone, M. (2001) On the distribution of the largest

eigenvalue in principal components analysis. Ann. Statist
29: 295–327.

[19] Curtiss, J.H. (1941) On the distribution of the quotient
of two chance variables. Ann. Math. Statist. 12(4): 409–
421. doi:10.1214/aoms/1177731679, URL http://dx.

doi.org/10.1214/aoms/1177731679.
[20] Larsson, E.G., Edfors, O., Tufvesson, F. and Marzetta,

T.L. (2014) Massive mimo for next generation wireless
systems. IEEE Communications Magazine 52(2): 186–195.
doi:10.1109/MCOM.2014.6736761.

[21] Wei, L. and Tirkkonen, O. (2009) Cooperative spectrum
sensing of ofdm signals using largest eigenvalue
distributions. In IEEE 20th International Symposium
on Personal, Indoor and Mobile Radio Communications,:

2295–2299. doi:10.1109/PIMRC.2009.5449798.
[22] Tan, W.Y. and Gupta, R.P. (1983) On approximating

the non-central wishart distribution with wishart
distribution. Commun. Stat. Theory Method 12(22): 2589–
2600.

[23] Johansson, K. (2000) Shape fluctuations and random
matrices. Comm. Math. Phys. 209(2): 437–476.

[24] Feldheim, O.N. and Sodin, S. (2010) A universality result
for the smallest eigenvalues of certain sample covariance
matrices. Geometric and Functional Analysis 20(1): 88–
123. doi:10.1007/s00039-010-0055-x, URL http://dx.

doi.org/10.1007/s00039-010-0055-x.
[25] Bornemann, F. (2009) On the numerical evaluation

of distributions in random matrix theory: A review
with an invitation to experimental mathematics. Markov
Processes Relat. Fields 16: 803–866.

[26] Baik, J., Ben Arous, G. and Péché, S. (2005) Phase
transition of the largest eigenvalue for nonnull complex
sample covariance matrices. Ann. Probab. 33(5): 1643–
1697. doi:10.1214/009117905000000233.

[27] Baik, J. and Silverstein, J.W. (2006) Eigenvalues of large
sample covariance matrices of spiked population mod-
els. Journal of Multivariate Analysis 97(6): 1382–1408.
doi:http://dx.doi.org/10.1016/j.jmva.2005.08.003.

[28] Kritchman, S. and Nadler, B. (2008) Determining the
number of components in a factor model from limited
noisy data. Chemometrics and Intelligent Laboratory
Systems 94: 19–32.

[29] Bornemann, F. (2009) Asymptotic independence of
the extreme eigenvalues of gaussian unitary ensemble.
Journal of Mathematical Physics 51.

[30] Hachem, Walid; Hardy, A. and Najim, J. (2015) A survey
on the eigenvalues local behavior of large complex
correlated wishart matrices. ARXIV To be published in
the "Proceedings of the Journées MAS 2014".

[31] Kotz, S. and Nadarajah, S. (2000) Extreme Value
Distributions: Theory and Applications (Imperial College
Press).

[32] Muraleedharan, G., Soares, C.G. and Lucas, C.

(2011) Characteristic and Moment Generating Functions
of Generalised Extreme Value Distribution (GEV) (Nova
Science), chap. 14, 269–276.

9
EAI Endorsed Transactions on 

Cognitive Communications
 02 2017 - 05 2017 | Volume 3 | Issue 11 | e1

Asymptotic Approximation of the Standard Condition Number Detector for Large Multi-Antenna Cognitive Radio Systems

http://dx.doi.org/10.1109/URSIGASS.2014.6929235
http://dx.doi.org/10.1007/978-3-319-40352-6_29
http://dx.doi.org/10.1186/s13638-016-0634-0
http://dx.doi.org/10.1186/s13638-016-0634-0
http://dx.doi.org/10.1186/s13638-016-0634-0
http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0146
http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0146
http://dx.doi.org/10.1214/aoms/1177731679
http://dx.doi.org/10.1214/aoms/1177731679
http://dx.doi.org/10.1214/aoms/1177731679
http://dx.doi.org/10.1109/MCOM.2014.6736761
http://dx.doi.org/10.1109/PIMRC.2009.5449798
http://dx.doi.org/10.1007/s00039-010-0055-x
http://dx.doi.org/10.1007/s00039-010-0055-x
http://dx.doi.org/10.1007/s00039-010-0055-x
http://dx.doi.org/10.1214/009117905000000233
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmva.2005.08.003

	1 Introduction
	Notations

	2 System Model
	H0 hypothesis
	H1 hypothesis


	3 Assymptotic Moments of Extreme Eigenvalues
	3.1 H0 hypothesis
	Distribution of 1H0
	Distribution of KH0
	Central Moments of 1H0 and KH0

	3.2 H1 hypothesis
	Distribution of 1H1
	Distribution of KH1
	Central Moments of 1H1 and KH1


	4 SCN Distribution Approximation
	4.1 Asymptotic Central Moments of the SCN
	4.2 Approximating the SCN using GEV

	5 SCN Detector Analysis
	Performance Probabilities
	Decision Threshold


	6 Numerical validation
	7 Conclusion



