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Abstract. Risk level mapping is important for mitigation plans and any disaster-related 

decision. However, the data in certain areas can be sparse for some reasons. The risk levels 

are not known or analyzed at some positions. In statistics, these positions are called 

unsampled locations. Geostatistics can play a role in estimating the risk at unsampled 

locations. The most common geostatistics method that can be used is kriging. Moreover, 

kriging can calculate the uncertainty of its estimation. This paper aims to investigate the 

benefit of kriging in risk level mapping. The synthetic data experiment is conducted to 

explain how kriging works in risk level mapping. Kriging method is able to estimate the 

risk level at unsampled locations and take into account uncertainties. 
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1 Introduction 

In the risk analysis in a certain area, sometimes only several locations are analyzed. In addition 

to this, many geoscience and engineering data are imprecise due to various limitations and 

uncertainties. Therefore, the risk level of the area is difficult to be assessed and may be sparse. 

While identifying risk levels in this specific area is very important. In risk assessment, the ability 

to predict the occurrence of any disruptive events is crucial and valuable. Thus, a method that 

can assess risk in unsampled locations is required. 

The nearest neighbour [1] is the simplest method to estimate the risk level at unanalyzed (in the 

next, we called unsampled) locations. However, this method cannot calculate the uncertainty of 

the estimation. At the same time, uncertainty is a frequently arising issue that needs to be 

considered. Geostatistics is a family method that can estimate data and calculate its uncertainty. 

Geostatistical methods are found to be effective in dealing with problems related to the 

estimation of spatial variables [2]. 

Geostatistics is a branch of statistics that focuses on spatial estimation of spatially correlated 

variables for earth science applications and their uncertainty [3], [4]. Some of the geostatistics 

methods are linear kriging, nonlinear kriging, co-kriging, simulation [3], and multi-point 

geostatistics [5]. Kriging is a common and widely used method to create a risk map. Although 
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its application is mainly in hydrocarbon reservoir characterization, it can be extended to other 

applications, such as groundwater exploration [6], [7], environmental cases [8], astronomy [9], 

and remote sensing [10]. In addition to these, Pokhrel et al. (2013) used kriging method to map 

liquefaction potential in an area. Chica-Olmo et al. (2014) used Indicator Kriging to assess the 

risk of groundwater nitrate pollution. The proposed method was robust and was beneficial in 

supporting health risk analysis studies. Deal & Sabatini (2020) utilized kriging to find suitable 

zones for manual drilling. The probability maps resulting from the proposed method were able 

to estimate the probability of success for future manual drilling activities. Risk maps are usually 

a useful tool resulting from the utilization of kriging method and are also found useful to identify 

high-risk level areas in some studies for various areas [13]–[18]. Thus, kriging method is used 

in this paper to create a risk map. 

This paper aims to investigate the benefit of kriging methods used in risk level mapping. The 

application of kriging is presented using synthetic data. Risk level maps are produced to identify 

areas with significant probabilities of severe disaster.  

The remainder of this paper is organized as follows. Section 2 presents the theory and methods. 

Data description used to investigate the application of kriging method is discussed in Section 3. 

Results and discussion from the estimation are presented in Section 4. The concluding remarks 

of this paper are presented in Section 5. 

2 Theory and method 

2.1 Kriging  

Kriging is one of the spatial estimation methods, apart from triangular interpolation, nearest 

neighbour, and inverse-distance. Kriging estimates an unsampled location using the neighbour 

sampled data. The estimation is based on the distance and the configuration of the neighbour 

data. Therefore, kriging requires spatial relationship information in the process. The variogram 

is the most common representation of this spatial relationship, while the other is covariance.  

The variogram is calculated by 

𝛾(�⃗� ) =
1

2𝑛(�⃗� )
∑[𝑥(�⃗� 𝑖) − 𝑥(�⃗� 𝑖 + �⃗� )]
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where �⃗�  is lag, 𝑥(�⃗� 𝑖) is data at �⃗� 𝑖 position, 𝑥(�⃗� 𝑖 + �⃗� ) is data at �⃗� 𝑖 + �⃗�  position, 𝑛(�⃗� ) is number 

of data couple, and 𝛾(�⃗� ) is variogram value. 

The variogram calculates two sampled data (a data couple) relationships. After the calculated 

variogram is obtained, the next process is variogram modelling. Variogram modelling is a fitting 

of calculated variogram by a model from mathematical equations. The common models are 

Gaussian, Exponential, Spherical, and Nugget models [3] (Fig.1). The example of the calculated 

variogram fitting by a model is shown in Fig. 2. 



 

 

 

 

 

 

Figure 1. Variogram model: Exponential (red), Gaussian (green), Spherical (blue), and Nugget (black) 

 

Figure 2. Fitting calculated variogram with a spherical model. 

Next, the kriging estimation is calculated by 

𝑥0 = ∑𝜆𝑗𝑥𝑗

𝑁

𝑗=1

 (2) 

where 𝑥𝑗 is the neighbour sampled data, 𝜆𝑗 is the weight of each neighbour, and 𝑥0 the estimated 

value at unsampled data. 

There are several techniques in kriging estimation, such as simple, ordinary, and so on. Eq. 2 is 

the equation for ordinary kriging. Each method has its assumptions. The weight of each 

neighbour requires the variogram model. 

Based on Eq.2 and 3, the kriging is applied for only quantitative data. Qualitative data, such as 

risk level, requires transformation to be quantitative data. However, at the end of the kriging 

process, it requires inverse transformation to take back the qualitative data. 

 



 

 

 

 

 

2.2 Probability map 

The output of kriging is not only an estimated data map but also an error variance map. The 

error variance describes the uncertainty of an estimated value due to the configuration of 

neighbors’ positions. The probability of a range at each point estimation is calculated using its 

variance, 

𝑃(𝑥1 < 𝑋 < 𝑥2) = ∫
1

𝜎√2𝜋
𝑒

[−
1
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2
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𝑑𝑥

𝑥2
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 (3) 

where 𝜎 is error variance and 𝜇 is estimation mean at each point. 

The steps of risk mapping using kriging follows: 

a. Get the sampled risk level at several points in a region 

b. Transform the risk level to be quantitative data 

c. Calculate a variogram of (b) (Eq. 1) 

d. Fit the calculated variogram (c) with a most appropriate model (Fig. 1) 

e. Estimate the risk at unsampled locations using (Eq. 2) 

f. Calculate the probability (Eq. 3) 

3 Data description 

This paper uses synthetic map data of sampled risk levels (Fig.3) which is generated manually. 

The risk levels are divided into very-high, high, medium, low, and very low levels. The synthetic 

data has an increasing trend of level from east to west. 

 

 

Figure 3. Synthetic data of analyzed risk level at several points (sampled locations). 



 

 

 

 

 

4 Result and discussion 

The full risk level map of risk level is generated using kriging (Fig.4 left). From the estimated 

map, the risk level increases from east to west. However, the estimation is not entirely true. Fig. 

4 (right) shows the error variance of the estimation. The smaller values are given at the positions 

of sampled data. The further away from the sampled point, the variance value increases. For 

example, there are high variances in the northern and eastern regions caused by the distance of 

the position from the sampled points.  

 

Figure 4. Estimated distribution of risk-level (left) and its error variance (right) map. 

Because the estimation is 100% correct, it is better to analyze the probability of each risk level. 

Figure 5a shows the probability of low risk. The probability map shows that although the kriging 

shows there is a low-risk level at the middle of the map, the probability is low. It happens 

because two risk levels, which are very-low and medium levels, flank the low-risk region. On 

the other hand, a very-high level region has a high probability (Fig.5b). In contrast to the low-

level region, the very high region is not surrounded by two different levels. The high probability 

dots are the positions of sampled data. These positions have 100% probability because they are 

sampled data, not estimated. Besides the probability of certain risk levels, we can calculate the 

probability of a range. Figure 6 shows the probability of high to very high risk. 

 

Figure 5. Map of the probability of distribution of low (a) and (b) very high risk-level. 



 

 

 

 

 

 

Figure 6. Map of the probability of distribution of high to very high risk. 

Conclusion 

The risk analysis data in a region may be sparse. It means only several locations are analyzed. 

However, the kriging method shows being able to estimate the risk level at unsampled locations. 

Apart from estimation, kriging could calculate the probability of the estimated data. Therefore, 

for the risk mapping, kriging could be an option. This method can be implmented to map risk 

levels of an area prone to natural distaster. This risk map is very beneficial in providing 

information on which specific area that will have the highest consequence if a natural disaster 

really occurs.  
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