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Abstract

This paper addresses the optimal signaling scheme and capacity of an additive Gaussian mixture (GM) noise channel
using 1-bit analog-to-digital converters (ADCs). The consideration of GM noise provides a more realistic baseline for
the analysis and design of co-channel interference links and networks. Towards that goal, we first show that the capacity-
achieving input signal is π/2 circularly symmetric. By examining a necessary and sufficient Kuhn–Tucker condition
(KTC) for an input to be optimal, we demonstrate that the maximum number of optimal mass points is four. Our
proof relies on Dubin’s theorem and the fact that the KTC coefficient is positive, i.e., the power constraint is active.
By combining with the π/2 circularly symmetric property, it is then concluded the optimal input is unique, and it has
exactly four mass points forming a square centered at the origin. By further checking the first and second derivatives of
the modified KTC, it is then shown that the phase of the optimal mass point located in the first quadrant is π/4. Thus, the
capacity-achieving input signal is QPSK. This result helps us obtain the channel capacity in closed-form.
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1. Introduction

As noted in [1, 2], current information and communication
technology (ICT) sector that relies heavily on mobile
applications is responsible for 3% of the total worldwide
energy consumption, which accounts for 2% to 2.5% of
the total CO2 emission in the world. As a result, a
possible energy crunch can be a significant bottleneck for
future wireless networks. Thus, there is an urgent need
to develop proper communication paradigms for emerging
wireless applications that require high energy efficiency.
Among different approaches, ultra-low resolution analog-to-
digital-converter (ADC) such as 1-bit ADC has received
significant attention, and it is considered as an attractive
solution to reduce cost and power for high bandwidth wireless
systems or systems having multiple RF chains (please
see [3] and references therein). The use of low-resolution
ADC also significantly reduces quality requirements of key
elements in RF circuitry, such as low-noise amplifiers and
oscillators. In addition, 1-bit ADC is simply a comparator.
Therefore, automatic gain control (AGC) is not needed.
Another benefit of employing low-resolution ADCs is the
significant reduction in the amount of data being processed
and exchanged at the receiver, which is critical for high-speed
applications.

During the last decade, significant attention has been
paid to information-theoretic aspects of 1-bit ADC channels
under traditional additive white Gaussian noise (AWGN), and

several interesting results have been obtained. Specifically,
as one of the first pioneering investigations addressing
the fundamental limits of low-resolution ADC systems,
reference [4] showed that in a static AWGN environment,
BPSK is capacity-achieving. The results have also been
extended to AWGN channels under additional impairments
such as fading under different channel state information
(CSI) assumptions [5–11] as well as multi-antenna channels
[12–14]. For example, for a complex fading single-antenna
channel with perfect CSI knowledge at the transmitter and
receiver, QPSK is optimal. In the case that CSI is available
at the receiver only, it was shown in [8] that the use of
any π/2 circularly symmetric input signal with constant
amplitude achieves the channel capacity. In references [10,
11], it was demonstrated that for a general non-coherent
Rician fading channel, a rotated QPSK is optimal. Recently,
the detailed characterizations of the capacity region and
capacity-achieving schemes for a multiple-access Gaussian
channel in Rayleigh fading have also been established [15].
In addition, effective coding schemes and achievable rate
regions have been established for 1-bit ADC in multi-terminal
communications in a recent work in [16].

In current and future communication systems, especially
cellular networks, due to heterogeneous structures, co-
channel interference exists, and it is asynchronous and
intermittent with the main communication. To date, the
assumption of having noise plus interference as conditionally
Gaussian has been widely adopted, and it has served as
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a basic block for extensive developments of information-
theoretic studies for both point-to-point links and multi-
user networks. However, it has been widely recognized via
both experimental results and analytical analysis that the
asynchronism in a heterogeneous network leads to a non-
Gaussian noise plus interference [17–21]. As an example,
in a cellular network consisting of micro cells and macro
cells, noise plus co-channel interference follows a Gaussian
mixture (GM) distribution [17–20]. However, different from
Gaussian channels, information-theoretic results for non-
Gaussian links and networks are rather limited. In fact, even
for a simple non-Gaussian point-to-link, numerical methods
can still be used to identify a capacity-achieving signal and
the corresponding capacity [22, 23].

In this work, we extend the capacity analysis and optimal
signaling design for 1-bit ADC to a general complex GM
channel. In the first step, we show that an optimal input
signal is π/2 circularly symmetric. By examining a necessary
and sufficient Kuhn–Tucker condition (KTC) for an input to
be optimal, we demonstrate that the number of mass points
in the optimal input is upper-bounded by four. Due to the
presence of multiple Gaussian components in the GM noise,
it is much more challenging to examine the KTC and the
detailed characteristics of the capacity-achieving signals. Our
proof relies on Dubin’s theorem and the fact that the KTC
coefficient is positive, i.e., the power constraint is active.
Combining with the π/2 circularly symmetric property, we
can then conclude that the optimal input is unique, and it
has exactly 4 mass points. These four mass point forms a
square centered at the origin. By checking the first and second
derivatives of the modified KTC, it is then shown that the
phase of the optimal mass point located in the first quadrant
is π/4. As a result, QPSK is the capacity achieving scheme.
The capacity can then be obtained in closed-form.

The rest of the paper is organized as follows. The
channel model is first described in Section 2. In Section
3, we formulate the channel capacity and demonstrate the
existence of the optimal input signal. The KTC and detailed
characteristics of the optimal input are established in Section
4. In Section 5, numerical results are provided to confirm the
analysis. Finally, conclusions are drawn in Section 6.

2. 1-bit ADC under GM Noise: Channel
Model and Conditional Probability Density
Functions (PDFs)

We consider a communication channel under additive
Gaussian mixture noise with the following input-output
model:

Z = X + N. (1)

In (1), X is the complex input signal, and it is subject
to the power constraint E

[
|X|2

]
≤ P. Furthermore, N is the

additive noise that follows a GM distribution. Its probability
density function (pdf) is a mixture of M complex Gaussian
distributions with mean 0 and variance σ2

k , 1 ≤ k ≤ M, which

is given as

pN(n) =

M∑
k=1

εk

2πσ2
k

exp

− |n|22σ2
k

, (2)

where εk > 0 is the mixing probability satisfying
∑M

k=1 εk = 1.
The conditional PDF of the received signal Z can be written
as,

p ( z| x) =

M∑
k=1

εk

πσk2 e
−
|z−x|2

σ2
k . (3)

Using the real and imaginary components of Z, the above PDF
can be re-written as

p ( z| x) =

M∑
k=1

εk
1

σk
√
π

e
−

(<(z−x))2

σ2
k

1
σk
√
π

e
−

(=(z−x))2

σ2
k . (4)

The complex received signal Z is then fed to two identical
1-bit ADCs, and the quantized output Y can be written as

Y = Q (Z) , (5)

where Q (·) denotes the 1-bit quantization scheme. Without
loss of generality, assume the threshold levels for each 1-bit
ADC are

[
q0, q1, q2

]
∈ R such that q0 < q1 < q2, with q0 =

−∞, q1 = 0, q2 = +∞. Thus, Y can be expressed as,

Y = <(Y) + =(y) = sign(<(z)) + jsign(=(z)), (6)

where sign(·) is the sign function, and < and = are the
real and imaginary parts of a complex number, respectively.
Equivalently, it is clear that Y belongs to the set Y ∈{
y1,1 = 1 + j, y1,2 = 1 − j, y2,1 = −1 + j, y2,2 = −1 − j

}
. For a

given pair of i and j with 1 ≤ i, j ≤ 2, the transition
probability function Wi, j(x) for a given X = x can be obtained
as

Wi, j (x) = P
(
Y = yi, j

∣∣∣ X = x
)

=

M∑
k=1

εk

qi

∫
qi−1

q j

∫
q j−1

1
σk
√
π

e
−

(<(z−x))2

σ2
k

1
σk
√
π

e
−

(=(z−x))2

σ2
k dz

=

M∑
k=1

εk

Q  √2(qi−1 −<(x)
σk

 − Q
 √2(qi −<(x))

σk


×

Q 
√

2(q j−1 − =(x))
σk

 − Q


√

2(q j − =(x))
σk

 .
Here, Q (·) is well-known tail distribution function of the
standard normal distribution given as

Q (x) =
1
√

2π

∞

∫
x

exp−
u2
2 du. (7)

Now, to further simplify Wi, j, Table 1 shows the
relationship between qi−1’th and qi’th thresholds and <(yi, j)
and =(yi, j). Let start with the transition probability W1,1 (x):

W1,1 (x) = P (Y = 1 + j | X = x) . (8)
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Table 1. Threshold limits for the real and imaginary parts in the quantization bins.

<(yi, j) =(yi, j)
<(yi, j) =(yi, j)

Lower Threshold
limit qi−1

Upper Threshold
limit qi

Lower Threshold
limit qi−1

Upper Threshold
limit qi

y1,1 1 1 0 ∞ 0 ∞

y1,2 1 -1 0 ∞ -∞ 0
y2,1 -1 1 -∞ 0 0 ∞

y2,2 -1 -1 -∞ 0 -∞ 0

In this case, both real and imaginary parts of the output fall in
the range [0,∞). Hence, we can write

W1,1 =

M∑
k=1

εk

Q  √2(0 −<(x))
σk

 − Q
 √2(∞−<(x))

σk


×

Q  √2(0 − =(x))
σk

 − Q
 √2(∞− =(x))

σk


=

M∑
k=1

εk Q
−√2<(x)

σk

 Q
−√2=(x)

σk

 .
(9)

Following a similar procedure, we can calculate the other
transition probabilities as follows:

W1,2 =

M∑
k=1

εkQ
−√2<(x)

σk

 Q
 √2=(x)

σk

 , (10)

W2,1 =

M∑
k=1

εkQ
 √2<(x)

σk

 Q
−√2=(x)

σk

 , (11)

W2,2 =

M∑
k=1

εkQ
 √2<(x)

σk

 Q
 √2=(x)

σk

 . (12)

Therefore, Wi, j can be generally expressed as

Wi, j (x) =

M∑
k=1

εkQ

−
√

2<(x)<(yi, j)
σk

 Q

−
√

2=(x)=(yi, j)
σk

 .
(13)

3. Channel Capacity and Existence of
Capacity-Achieving Input Distribution

In this section, we shall formulate the channel capacity and
demonstrate that there always exists an input distribution that
achieves the capacity.

For a given input distribution FX , the mutual information
between the input signal X and output signal Y , denoted as
I (FX), is

I (FX) = I(X; Y) = HFX (Y) − HFX (Y | X) , (14)

where HFX (Y) and HFX (Y | X) are the output and conditional
entropies, and they can be calculated as:

HFX (Y) = −

∫
C

2∑
i=1

2∑
j=1

Wi, j
(
x∗

)
log p

(
yi, j; FX

)
dFX , (15)

and

HFX (Y |X) = −

∫
C

2∑
i=1

2∑
j=1

Wi, j
(
x∗

)
log Wi, j

(
x∗

)
dFX . (16)

Here, the log operator is of base 2, and p
(
yi, j; FX

)
is the

probability of Y = yi, j when the input follows FX , and it can
be calculated as

p
(
yi, j; FX

)
=

∫
Wi, j (x) dFX (x) . (17)

The mutual information between the input and output can
then be expressed as:

I (FX) = −

∫
C

2∑
i=1

2∑
j=1

Wi, j
(
x∗

)
log

p
(
yi, j; FX

)
Wi, j (x∗)

dFX . (18)

The channel capacity is defined as the supremum of I (FX)
over all input distributions FX that satisfy the power
constraint E

[
|X|2

]
≤ P. For convenience, let Ω be the set of

such input distributions. The channel capacity can then be
written as:

C = sup
FX∈Ω

I(FX). (19)

If there exists an input distribution that achieves C, this
distribution, denoted as F∗X , is referred to as a capacity-
achieving distribution. Under the power constraint, it is
known that Ω is convex and weakly compact with respect
to weak* topology [24]. Furthermore, the mutual information
I (FX) is concave with respect to FX . Therefore, the existence
of F∗X is equivalent to the continuity of I (FX) over FX . The
proof of the continuity of I (FX) follows closely the method
in [24] by showing the weak∗ continuity of HFX (Y) and
HFX (Y | X), due to the fact that Wi, j(x) is a continuous function
of x and bounded. For the brevity of the presentation, the
proofs are omitted here. As a result, F∗X exists.
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4. Capacity-Achieving Distribution F∗X
Given the existence of F∗X , this section examines the detailed
characteristics of F∗X . Specifically, we first show that it has
to be π/2 circularly symmetric before shedding light on the
number of mass points of F∗X and their locations. Note that
a random variable X is π/2 circularly symmetric if it has the
same distribution as Xek jπ/2 for any k ∈ R.

4.1. π/2 circular symmetry

For a given input distribution FX , let’s define a π
2 circularly

symmetric distribution Fπ/2
X as follows

Fπ/2
X =

1
4

(
FX (x) + FX

(
xe j π2

)
+ FX

(
xe jπ

)
+ FX

(
xe j 3π

2

))
.

(20)
From (9)-(12), it is straightforward to see that W1,1 (x) =

W2,1
(
xe j π2

)
, W2,1 (x) = W2,2

(
xe j π2

)
, W2,2 (x) = W1,2

(
xe j π2

)
,

W1,2 (x) = W1,1
(
xe j π2

)
. Therefore,

2∑
i=1

2∑
1

wi, j (x) log Wi, j (x) =

2∑
i=1

2∑
1

wi, j
(
xe j π2

)
log Wi, j

(
xe j π2

)
.

(21)
It then follows that

H
F
π
2
X

(Y | X)

= −
1
4

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log Wi, j (x)

× d
(
FX (x) + FX

(
xe j π2

)
+ FX

(
xe jπ

)
+ FX

(
xe j 3π

2

))
= −

1
4


∫ 2∑

i=1

2∑
j=1

Wi, j (x) log Wi, j (x) dFX (x)


−

1
4


∫ 2∑

i=1

2∑
j=1

Wi, j
(
xe j π2

)
log Wi, j

(
xe j π2

)
dFX

(
xe j π2

)
−

1
4


∫ 2∑

i=1

2∑
j=1

Wi, j
(
xe jπ

)
log Wi, j

(
xe jπ

)
dFX

(
xe jπ

)
−

1
4


∫ 2∑

i=1

2∑
j=1

Wi, j

(
xe j 3π

2

)
log Wi, j

(
xe j 3π

2

)
dFX

(
xe j 3π

2

)
= −

1
4

4
∫ 2∑

i=1

2∑
j=1

Wi, j (x) log Wi, j (x) dFX (x)


= HFX (Y | X).

(22)
It is clear from (22) that the conditional output entropy is the
same for both FX and Fπ/2

X .

Now, we shall examine the output entropy when Fπ/2
X

is used. To this end, we can first calculate p(y2,2; F
π
2
X ) as

follows:

p(y2,2; F
π
2
X )

=
1
4

{∮
W2,2 (x) dFX (x) +

∮
W2,2 (x) dFX

(
xe j π2

)}
+

1
4

{∮
W2,2 (x) dFX

(
xe jπ

)
+

∮
W2,2 (x) dFX

(
xe j 3π

2

)}
.

(23)
With a variable transformation, the phases can be inter-
changed between dFX and Wi, j, which leads to

p(y2,2; F
π
2
X )

=
1
4

{∮
W2,2 (x) dFX (x) +

∮
W2,2

(
xe j π2

)
dFX (x)

}
+

1
4

{∮
W2,2

(
xe jπ

)
dFX (x) +

∮
W2,2

(
xe j 3π

2

)
dFX (x)

}
=

1
4

{∮ (
W2,2 (x) + W1,1 (x) + W1,2 (x) + W2,1 (x)

)
dFX (x)

}
=

1
4

{∮
dFX (x)

}
=

1
4
. (24)

In a similar manner, it can be proved that p(y1,1; F
π
2
X ) =

p(y1,2; F
π
2
X ) = p(y2,1; F

π
2
X ) = 1

4 . It means that when Fπ/2
X is

used, the output Y is uniformly distributed, and it results in
a maximum output entropy. Thus, a π/2 circularly symmetric
Fπ/2

X leads to a better input-output mutual information than
FX . As a result, F∗X is π/2 circularly symmetric. Hence the
output entropy can be calculated as

HFX (Y) = −

2∑
i=1

2∑
j=1

p(yi, j; F
π
2
X ) logp(yi, j; F

π
2
X ) = log 4. (25)

The results state that the output probability distribution
resulting from F

π
2
X is uniform, which maximizes the output

entropy. Equivalently, F
π
2
X always leads to better mutual

information than FX . As a result, it can be concluded that F∗X
belongs to a set of pi/2 circularly symmetric distributions,
denoted as Ω π

2
. Note that for any distribution FX in Ω π

2
,

the corresponding input-output mutual information can be
calculated as

I (FX) = EX [−d (x)] + log (4) . (26)

where d (x) =

− 2∑
i=1

2∑
j=1

Wi, j (x) log Wi, j (x)
.

4.2. Kuhn-Tucker Condition (KTC) and the
Number of Mass Points in F∗X
In this subsection, we shall further characterize important
properties of the optimal distribution F∗X by first establishing
a necessary and sufficient condition for an input distribution
to be optimal, which is called Kuhn-Tucker condition (KTC).
The KTC is then exploited to find the number of mass points
in F∗X .
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KTC. We first state the following lemma.

Lemma 1. For a given F0
X ∈ Ω

π
2
, the limit

lim
θ→0

I
(
(1 − θ) F0

X + θFX
)
− I(F0

X)

θ
= I(FX) − I(F0

X) (27)

exists, and it is finite for all FX ∈ Ω π
2

and θ ∈ [0, 1].

Proof. Let’s define Fθ
X as, Fθ

X = (1 − θ)F0
X + θFX . Therefore,

dFθ
X = (1 − θ)dF0

X + θdFX and

p
(
yi, j; Fθ

X

)
= (1 − θ) p

(
yi, j; F0

X

)
+ θ p

(
yi, j; FX

)
. (28)

Then the mutual information for any Fθ can be written as

I
(
Fθ

X

)
= −

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
Wi, j (x)

dFθ
X . (29)

As a result, we have

I
(
Fθ

X

)
− I

(
F0

X

)
= − (1 − θ)

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
Wi, j (x)

dF0
X

− θ

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
Wi, j (x)

dFX

+

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; F0

X

)
Wi, j (x)

dF0
X

(30)

By rearranging the terms in the above equation, it can be re-
written as,

I
(
Fθ

X

)
− I

(
F0

X

)
= −

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
p
(
yi, j; F0

X

)dF0
X

− θ

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
Wi, j (x)

dFX

+ θ

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
Wi, j (x)

dF0
X .

(31)

Now, considering the limit θ → 0, we have

lim
θ→0

I
(
Fθ

X

)
− I

(
F0

X

)
θ

= − lim
θ→0

1
θ

∫ 2∑
i=1

2∑
j=1

Wi, j (x) log
p
(
yi, j; Fθ

X

)
p
(
yi, j; F0

) dF0
X

+ IFX

(
F0

X

)
− I

(
F0

X

)
.

(32)

Since p(Yi, j;Fθ)
p(Yi, j;F0) → 1 when θ → 0, it then follows that

lim
θ→0

I
(
(1 − θ) F0

X + θFX
)
− I(F0

X)

θ
= IFX (F0

X) − I(F0
X). (33)

The limit therefore exists, and it is finite. It is because both
terms on the right-hand side of (33) are finite. �

Based on Lemma 1, we can conclude that I(FX) is weakly
differentiable. In addition, due to the concavity of I (FX), and
also the convexity and compactness of Ω π

2
, we can use the

theorem of Lagrangian multipliers. Specifically, there exists a
non-negative µ such that

C = sup
FX∈Ω π

2
E[|X|2]≤P

I(FX) = sup
FX∈Ω π

2

I(FX) − µφ(FX), (34)

where φ (FX) = ∫ |x|2dFX − P. It is not difficult to verify that
φ (FX) is also weak differentiable with weak derivative, i.e.,

φ′
F0

X
(FX) = φ(FX) − φ(F0

X). (35)

Therefore, by following the arguments as in [25], we can
conclude that F∗X ∈ Ω π

2
is optimal if and only if

I′F∗X
(FX) − µφ′F∗X

(FX)

= IFX

(
F∗X

)
− I

(
F∗X

)
− µ

(
φ (FX) − φ

(
F∗X

))
≤ 0,

(36)

where the equality is achieved when x ∈ E∗X , the set of points
of increase of F∗X . After some manipulations, the KTC can be
established as

− d (x) + log (4) ≤ C + µ(|x|2 − P), (37)

where the equality is achieved when x is a mass point of F∗X .

The number of mass points in F∗X . Given the above
KTC, in the following, we will examine further the number
of mass points in F∗X . To do so, we consider the following
two cases of the KTC coefficient µ.

case 1. µ > 0. In this case, the term µ
(
|x|2 − P

)
→ ∞ when

|x| → ∞. Furthermore, we have

0 ≤ log 4 +

 2∑
i=1

2∑
j=1

Wi, j (x) log Wi, j (x)

 ≤ log 4. (38)

As a result, the equality in (37) cannot be achieved when
|x| → ∞. That means for any point |x| ∈ E∗X , the magnitude
|x| is finite.

case 2. µ = 0. In this case, the KTC can be re-written as
follows:

d(x) ≥ log (4) −C. (39)

In the following, we will show that lim
|x|→∞

d (x) is achieved

from above, i.e.,

∃M ∈ R+
∣∣∣ ∀ |x| > M : d (x) > lim

|x|→∞
d (x) , (40)
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or equivalently, F∗X is bounded. To do so, let first consider the
case that φx , i π2 for all i ∈ R, where φx denotes the phase of
x. We then rewrite Wi, j as

Wi, j (x) =

M∑
k=1

εkQ

−
√

2 |x| cos(φx)<(yi, j)
σk


× Q

−
√

2 |x| sin(φx)=(yi, j)
σk

 .
(41)

It is then straightforward to verify that lim
|x|→∞

W1,1(x) = 1,

which is equivalent to lim
|x|→∞

d (x) = 0. Moreover, it is clear

that d (x) > 0, due to the fact that Wi, j’s are bounded away
from zero (please refer to the equations (9)-(12)), and
−x log x > 0 for x > 0. In the case that φx = i π2 , without loss
of generality, we assume i = 1. It is then not difficult to show
that

lim
|x|→∞

W1,1(x) = lim
|x|→∞

W2,1(x) = 0.5, (42)

or lim
|x|→∞

d (x) = 1. It is also clear form (41), that for φx = π
2 ,

we have W1,1(x) < 0.5 and W2,1(x) < 0.5. Combining this fact
with (42), we have

∃M ∈ R+
∣∣∣ ∀ |x| > M : e−1 < W1,1 (x) ,W2,1 (x) < 0.5.

(43)
On the other hand, by calculating the derivative of −x log x
and checking the sign of the derivative, it is easy to verify that
−x log x is decreasing for x > e−1 . Thus

∃M ∈ R+
∣∣∣ ∀ |x| > M : d(x) > 1 = lim

|x|→∞
d (x) . (44)

As a result, for the case of µ = 0, the magnitude |x| is finite
for any point |x| ∈ E∗X .

Combining the results from Cases 1 and 2, it is then
clear that the optimal input distribution must have a bounded
amplitude. Given that, we have the following proposition
regarding the number of mass points in F∗X :

Proposition 1. The support set of an optimal input
distribution contains at most 4 mass points.

Proof. Let P0 ≤ P and R∗ = [p∗1,1, p∗1,2, p∗2,1, p∗2,2] be the
power and the output probabilities, respectively, under the
optimal input. Moreover, let B(l) be a Borel set of complex
numbers {x}with − ≤ <(x),=(x) ≤ l. Since F∗X has a bounded
support, supp(F∗X) ⊂ B(L), where L is a finite number. Then
defining a new convex set as follows:

L = {FX |supp(FX) ∈ B(L)}. (45)

It is clear thatL is convex and compact, and F∗X ∈ L. As such,
we have:

C = sup
FX∈L

E[|X|2]≤P

I (FX) = sup
FX∈L

I (FX) − µ
(
∫ |x|2dFX − P

)
,

(46)

where µ is a non-negative number. Let a subset U of L be
defined as:

U =
{
FX ∈ L|p (y; FX) = R∗

}
. (47)

The optimal input F∗X therefore belongs toU. It then follows
that

C = max
FX∈U

I (FX) − µ
(
∫ |x|2dFX − P

)
. (48)

It is not difficult to show that the objective function of the
above equation is a linear function of FX over the set U. It
is is because HFX (Y) is constant over this set and HFX (Y |X),
µ
(
∫ |x|2dFX − P

)
are linear functions of FX . As a result, the

solution of (48) can be found at an extreme point ofU. Hence,
F∗X is an extreme point of U. Furthermore, the set U is the
intersection of L and 3 hyperplanes defined as:

Hi, j :
∫

Wi, j (x) dFX = P∗i, j, (i, j) , (2, 2). (49)

Following Dubin’s theorem [11], the extreme points ofU are
a convex combination of at most 4 extreme points of the setL.
In addition, the extreme points ofL have only one mass point.
So the capacity can be achieved by a discrete distribution
having at most 4 mass points. �

4.3. Optimal Solution

Given the result from Proposition 1, and from the fact that
F∗X is π

2 circularly symmetric, it is clear that F∗X must have
exactly 4 mass points, each belonging to a quadrant, and they
have the same amplitude. In the following, we will show that
the power constraint is active, and the amplitude is

√
P. The

result is stated in the following lemma.

Lemma 2. The KTC coefficient µ is positive. Equivalently,
P0 = P.

Proof. Assume that µ = 0, i.e., the power constraint is
inactive with P0 < P. It implies that

sup
FX ,E

[
|X|2

]
≤P

I (FX) = sup
FX

I (FX) . (50)

Let first examine the LHS of (50). We have:

sup
FX

E[|X|2]≤P

I (FX) ≤ 2 − inf
FX

E[|X|2]≤P

HFX (Y |X) . (51)

Furthermore,

HFX (Y |X) =

−∑
y∈Y

p (y | x) log p (y | x)

 dFX (52)

≥

∫ [
Hb

(
min
y∈Y

p (y | x)
)]

dFX

≥

∫ [
min
y∈Y

p (y | x)
]

dFX , (53)
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where Hb(p) = −plog p − (1 − p)log (1 − p), and (53)
follows from the fact that Hb (p) ≥ p for 0 ≤ p ≤ 1

2 . In
addition, due to monotonicity of Q (·), we have min

y∈Y
p (y | x) ≥∑M

k=1 Q
(
|x|

√
0.5σk

)2
. Thus,

HFX (Y |X) ≥
∫ ∫ ∫

Q
(
|x|

√
0.5σk

)2

dFX (x1) . (54)

Moreover, because Q
(√

u
)2

is a convex function of u ≥ 0, by
applying Jensen’s inequality to (54), we obtain

HFX (Y |X) ≥ Q
 √

P
√

0.5σ

2

. (55)

Then combining (51) and (55), we have

sup
FX

E[|X|2]≤P

I
(
FX1 FX2

)
≤ 2 − Q

 √
P

√
0.5σ

2

. (56)

Now, consider the RHS of (50). As we do not have any power
constraint, let us consider the following distribution of X

Fk
X (x) =

1
4

4∑
l=1

δ
(
x − (k + jk) e jlπ/2

)
. (57)

By using this input, it can be verified that lim
k→∞

I
(
Fk

X

)
= 2. It

is then obvious that by using FX in the form of (57) with a
sufficiently large k, I (FX) can be made arbitrarily close to 2.
Therefore, the equality in (50) is not achievable. �

Following the result of Lemma 2, it is clear that the
optimal support set E∗X consists of 4 mass points, each
point is in one quadrant having the amplitude

√
P. Let x∗ =√

P exp ( jφ∗) be the optimal mass point in the first quadrant,
with 0 ≤ φ∗ ≤ π/2. While it has been shown earlier that φ∗

exists, it is also unique. It is because if there exists another
solution φ

′

corresponding to another optimal distribution F′X ,
from the concavity of the mutual information over the input
distribution, we then have

I(αF∗X + (1 − α)F′X) ≥ αI(F∗X) + (1 − α)I(F′X), (58)

for 0 < α < 1. As a result, the distribution αF∗X + (1 − α)F′X is
also optimal. However, this distribution has eight mass points,
which is not possible.

Given the uniqueness of φ∗, we will address its solution
explicitly. In particular, from the KTC, we have:

−

 2∑
i=1

2∑
j=1

Wi, j
(√

P exp ( jφ∗)
)

logWi, j
(√

P exp ( jφ∗)
)

= log (4) −C. (59)

For convenience, and with a slight abuse of notation, let
Wi, j (φ) = Wi, j

(√
P exp ( jφ)

)
. The optimal φ∗ is therefore a

solution of

φ∗ = argmin min
0≤φ≤ π2

S (φ), (60)

where

S (φ) = −

 2∑
i=1

2∑
j=1

Wi, j (φ) logWi, j (φ)

 . (61)

From the first order necessary condition (FONC), we then
have:

dS (φ)
dφ |φ=φ∗

= 0. (62)

The derivative in (62) can be calculated as:

dS (φ)
dφ

=
d

dφ

− 2∑
i=1

2∑
j=1

Wi, j (φ) logWi, j (φ)

 (63)

= −

2∑
i=1

2∑
j=1

Wi, j
′ (φ)

(
1

ln (2)
+ log

(
Wi, j (φ )

))
(64)

where W′i, j(φ) =
dWi, j(φ)

dφ . Now, let Ak = −
√

2P
σk

. We can first
write W′1,1(φ) as:

W′1,1(φ) =
d

dφ

 M∑
k=1

EkQ (Akcosφ) Q (Aksinφ)

 (65)

=

M∑
k=1

Ek
d

dφ
(Q (Akcosφ) Q (Aksinφ))

=
1

log 2


M∑

k=1

εk


Ak cos(φ)e−

a2sin2(φ)
2 er f c

(
Ak cos(φ)
√

2

)
2
√

2π




(66)

×

1 + log


M∑

k=1

εk

er f c
(

Ak cos(φ)
√

2

)
er f c

(
Ak sin(φ)
√

2

)
4




(67)

−
1

log 2


M∑

k=1

εk


Ak sin(φ)e−

a2cos2(φ)
2 er f c

(
Ak sin(φ)
√

2

)
2
√

2π




(68)

×

1 + log


M∑

k=1

εk

er f c
(

Ak cos(φ)
√

2

)
er f c

(
Ak sin(φ)
√

2

)
4


 .

(69)
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Furthermore,

W′2,1φ =
1

log 2


M∑

k=1

εk

−
Ak cos(φ)e−

a2sin2(φ)
2 er f c

(
Ak cos(φ)
√

2

)
2
√

2π




×

1 + log


M∑

k=1

−εk

er f c
(

Ak cos(φ)
√

2
− 2

)
er f c

(
Ak sin(φ)
√

2

)
4




+
1

log 2


M∑

k=1

εk


Ak sin(φ)e−

a2cos2(φ)
2 er f c

(
Ak sin(φ)
√

2

)
2
√

2π




×

1 + log


M∑

k=1

−εk

er f c
(

Ak cos(φ)
√

2
− 2

)
er f c

(
Ak sin(φ)
√

2

)
4


 .

(70)
W′2,1(φ) and W′2,2(φ) can also be calculated in a similar
manner. It is then not difficult to see that all W′i, j(φ) = 0

when φ = π/4. Therefore, dS (φ)
dφ = 0. It can also be verified

that d2S (φ)
d2φ

= 0 when φ = π/4. Thus, φ = π/4 is a solution of
(60). As a result, QPSK is a capacity-achieving scheme. The
channel capacity can then be calculated in closed-form as:

C = log

4 M∑
k=1

εk

(
1 − Q

(
|x|
σk

))2


+ 2

 M∑
k=1

εkQ
(
|x|
σk

) log


M∑

k=1
εk

(
Q

(
|x|
σk

)
− Q

(
|x|
σk

)2
)

M∑
k=1

εk
(
1 − Q

(
|x|
σk

))


+

 M∑
k=1

εkQ
(
|x|
σk

)2
 log


M∑

k=1
εkQ

(
|x|
σk

)2 M∑
k=1

εk
(
1 − Q

(
|x|
σk

))2

{
M∑

k=1
εk

(
Q

(
|x|
σk

)
− Q

(
|x|
σk

)2
)}2

 .
(71)

5. Numerical Results
In this section, numerical results are provided to demonstrate
the optimality of QPSK signaling scheme. While the above
analysis applies to any GM channel, for simplicity, we will
only consider a 2-term GM channel and a 3-term GM channel
with the following parameters: 1) 2-term GM with ε1 = 0.2,
ε2 = 0.8, σ2

1 = 0.6643, and σ2
2 = 1.3286); and 2) 3-term GM

with ε1 = 0.2, ε2 = 0.3, ε3 = 0.5, σ2
1 = 0.5296, σ2

2 = 0.5296,
and σ2

3 = 1.0591.
Let first examine the KTC. Figs. 1 and 2 show the KTC

over the complex plane for the 2-term and 3-term GM
channels, respectively, when the signal-to-noise ratio (SNR)
is set at 1dB. It is clear in both cases that the KTC is zero at
four points that constitute the QPSK signal.

To demonstrate the information-theoretical superiority of
QPSK, Fig. 3 shows the information rates achieved by
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Figure 1. KTC at SNR=1dB for the 2-term GM channel.
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Figure 2. KTC at SNR=1dB for the 3-term GM channel.

different input signaling schemes obtained by Monte Carlo
simulations. These include QPSK, 8-PSK, 16-QAM, as well
as a Gaussian input. The channel capacity calculated using
(71) is also provided. It is clear from Fig. 3 that the
information rate achieved by QPSK is same with the channel
capacity, and it is significantly higher than those achieved by
other input signals over a wide range of SNRs.

Similar results can also be obtained for the 3-term GM
channel, which are shown in Fig. 4.

6. Conclusion

In this work, we have explicitly addressed the capacity-
achieving signaling scheme and the capacity of an additive
Gaussian mixture (GM) noise channel employing 1-bit
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Figure 3. Information rates achieved by various signaling
schemes and the channel capacity of the 2-term GM
channel.

0 2 4 6 8 10 12 14

SNR (dB)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
fo

rm
a
ti
o

n
 R

a
te

 (
b
it
/s

/H
z
)

Channel Capacity C

QPSK

8-PSK

16-QAM

Gaussian Input

Figure 4. Information rates achieved by various signaling
schemes and the channel capacity of the 3-term GM
channel.

analog-to-digital converters (ADCs). Towards this end, it was
first shown that an optimal input is π/2 circularly symmetric.
Then by establishing and examining the KTC on the capacity-
achieving input, we demonstrated that this input is unique,
and it consists of exactly four mass points. It was then
demonstrated that the phase of the optimal mass point in the
first quadrant is π/4. Thus, QPSK is the capacity-achieving
signal. Numerical results were also provided to confirm the
optimality of QPSK signal.
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