Design of Voice Command In Smart Wheelchair
Using Hmm Method

15t Achmad Hidayatno?, 2"¢ Sumardi?, 3" David Kristian Adi Putra3, 4" M Hilal Bayu Aji*, 5" Arum
Patmadani®
achmad.hidayatno@gmail.com?, davidkristian17 @gmail.com?

Department of Electrical Engineering, Diponegoro University Semarang, Indonesia

Abstract: A wheelchair is a tool used for people with disabilities to be able to move from one place to
another. Wheelchairs are used not only in a horizontal place but can be used in a higher place. Wheelchairs
are also not only used for people with foot disabilities but are used by hospital patients, the elderly, and
people who are at high risk of injury when walking alone. In general, a wheelchair that is often used is a
standard wheelchair that is used in hospitals with operations using human labor or assisted by others.
However, the use of a standard wheelchair is considered quite difficult because it requires enough energy to
be able to move the wheelchair if no one else is helping. Along with the times, motorized wheelchairs have
been built and operated using joysticks. The addition of a motor to the wheel helps the user so that the user
does not need to use power anymore in moving the wheelchair. In this paper, we develops the ability of a
wheelchair that can move using voice instructions. We use the Hidden Markov Model (HMM) method which
is utilized in the Pocketsphinx library. This library supports the speech recognition feature to recognize
spoken words that implemented at Raspberry Pi mini-computer with the Raspbian operating system. Based
on the test results, the average success the word of “maju” 97%, the word of “mundur” 88.5%, the word of
“kanan” 94%, the word of “kiri” 92%, the word of “stop” 98.5%, the word of “tamu” 97.5%, the word of
“tidur” 91.5%, the word of “makan” 94%, the word of “toilet” 89%.

Keywords: wheelchair, voice instructions, hmm, pocketsphinx, raspberry pi

1. Introduction

A wheelchair is a tool used for people with leg disabilities to be able to move from one place to
another [1]. Wheelchairs are used not only in horizontal Place but can be used at a higher place.
Based on Susenas 2012, people with disabilities in Indonesia amounted to 2.45% [2]. In 2012
Susenas released data that represent more than one type of disability was 39.97% [2], then to the
percentage of seeing and walking or climbing up the stairs was 10.26% [2].

In general a wheelchair that is often used is a standard wheelchair that is used in hospitals with
operations using human labor or assisted by others. However, the use of a standard wheelchair
feels quite difficult because it requires enough energy to be able to move the wheelchair if no one
else to help.

Along with the times, has been made a wheelchair that has a better ability than a standard
wheelchair. Types of wheelchairs that are sold today are numerous, ranging from manual
wheelchairs to automatic wheelchairs using motorcycles and operated with joysticks [3]. The
addition of the motor on the wheels helps the user so that the user does not need to use more
power in moving the wheelchair. To be able to move as desired, users can simply use the joystick

ICITID 2021, August 30, Yogyakarta, Indonesia

Copyright © 2021 EAI

DOI 10.4108/eai.30-8-2021.2311520

and the wheelchair can move. Wheelchairs that use joysticks for wheelchair movements do not
fulfill user needs [4].

In this design, we develop the ability of a wheelchair that can move using voice instructions.
Voice recognition is later as input that has previously been determined any word and put into a
collection of words so that the words that are spoken will later be matched with files that have
been made and the wheelchair can move according to the commands spoken.

Hidden Markov Model is a speech recognition method that is used as a method in this design.
This method is a statistical model that can be considered a simple dynamic Bayesian network [5].
Implementation of this method is utilized in the PocketSphinx library [6]. Speech recognition
features in this library is used to detect human voice [7]. To use this library, the author uses a
Raspberry Pi 3 [8] minicomputer with the Raspbian Operating System.

2. Software Design
2.1. Building PocketSphinx
PocketSphinx is a lightweight version of Sphinx using the C programming language. This
library implements HMM in its application. To be able to use the PocketSphinx application, you
must first install the Raspbian operating system with the following steps:
1. cd~/
2. wget http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/5prealpha/pocketsphinx-
Sprealpha.tar.gz.
tar -zxvf pocketsphinx-5prealpha.tar.gz
cd ./pocketsphinx-5prealpha
Jconfigure
make clean all
make check
. sudo make install
On the Raspberry terminal screen then run one by one command to install PocketSphinx. Each
command must be installed successfully and if an error occurs then repeat the installation.

ONo kAW

2.2. Building SphinxBase

SphinxBase is needed to keep a log of all states and parameters that have been used by the
system in the previous process to speed up the process if the state and parameters are accessed
again. To be able to use SphinxBase you must first install the Raspbian operating system with the
following steps:
1. cd~/
2. waget http://sourceforge.net/projects/cmusphinx/files/sphinxbase/5prealpha/sphinxbase-
Sprealpha.tar.gz
tar -zxvf ./sphinxbase-5prealpha.tar.gz
cd ./sphinxbase-5prealpha
Jconfigure --enable-fixed
make clean all
make check
sudo make install

O NoGA®

http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/5prealpha/pocketsphinx-5prealpha.tar.gz
http://sourceforge.net/projects/cmusphinx/files/pocketsphinx/5prealpha/pocketsphinx-5prealpha.tar.gz
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/5prealpha/sphinxbase-5prealpha.tar.gz
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/5prealpha/sphinxbase-5prealpha.tar.gz

On the Raspberry terminal screen then run one by one the command to install SphinxBase. Each
command must be installed successfully and if an error occurs then repeat the installation.

2.3. Creating a Word File
The list of words that you want to recognize as input from the system will first be made in a file
*txt to be uploaded to http://www.speech.cs.cmu.edu/tools/Imtool-new.html to compile. The
commands to be used are ‘maju’, ‘mundur’, ‘kanan’, ‘kiri’, ‘stop’, ‘tamu’, ‘tidur’, ‘makan’, and
‘toilet’. This file is the command word data that is used to recognize the voice.

Sphinx Knowledge Base Tool -- VERSION 3

Lhis is the new versivn of the lmisol! FAQ

Chanaes sEeukl be ARTArIU (UBICSS FOU JRTIMALE, 520 DOTE BT,
Probicms? Please help by sendIng a report o the maincalner.

Niewr! Follony s o Sorass pewchireup for announcessents and seans updates.

What it does: Builds 2 consistest se¢ of Laxical and language medeling files for Sphinx (and compatible) decoders.
Nute: I vou jost need promnciatioos, nse the lexiool metead.

Ton sz Cacoale s samlimies: cvorpns ke comsmng o7 al) srmiemea: v weedd Tk the b b vezmnas The sl shiub b o o b e shemel s koo asmcbnd st Vinomay vt wel o
exhastivehy liss all possible semences: the dacoder will allow fragments bo recombine o oew sexeuces.

Tpluml 3 senienee corpus fike
C fusorsidav dirtstianapiDocu rants) SMT STAPROCRAMFK_Ermwa.

[ECRIFLE Knchil S0CE RbsE |

‘The new version of bmeecl s been rearzanized imternalby to make nse of the Lagios packags. Lhis will make lntas] sasier 1o maintain in e Fomre s will allow it o sake 2dvantagzs of angoing develosessoe in
Logas. Tlese changes chould be tranzparest 1o raqular nzecs. Pleaze zive 8 a ey, fyou have amy problams, or discover bugs, et the maineinar beom:. 1f thisgs loak good (i, 1stop getting buog repars) chis will baeoms
[Eer e —

NOTE: If you have amomated the use of this toel vom will nesd to wodate vour code. The main difference is thar the uame of e target scrigt has chagged. The old scrige will stll be available 5o sorhing will breake
mmediaely, but irs unlskely wo contie to be mainmined Alse, fils lisks are uo loeger tagged in tae himd. Flesse let me kaow if voa saloe use of tads feamre snd Tl find &

Fig. 1. Initial Display of the Sphinx Knowledge Base Tool

Figure 1 show the initial display of the Sphinx Knowledge Base Tool. This tool can be used
to get dictionary files and language models as matching words spoken. After the compilation is
complete, the dictionary file and language model can be downloaded in a format *.dic for
dictionary files and *.Im for the language model.

Table 1. Words and Their Pronunciation

Word Pronunciation
KANAN KEYNAHN
KIRI KIHRIY
MAJTU M AE JHUW
MAKAN MEYK AHN
MUNDUR MAHNDAHR
STOP STAAP
TAMU TAE MUW
TIDUR TIHD AHR

TOILE TOYLAHT

Dictionary file contains the pronunciation of words, shown on Table 1, that have been
downloaded on the Sphinx Knowledge Base Tool. Dictionary files are used to match spoken
words so they can produce word recognition according to the spoken words. Because
PocketSphinx doesn't support Indonesian in pronunciation, then uses English pronunciation.

Lamguage model created by QuickLM on Wed Aug 21 ©1:35:43 EDT 2019
Copyright (c) 1996-201@ Carnegie Mellon University and Alexander I. Rudnicky

The model is in standard ARPA format, designed by Doug Paul while he was at MITRE.

The code that was used to produce this language model is available in Open Source.
Please wvisit http://www.speech.cs.cmu.edu/tools/ for more information

The (fixed) discount mass is B.5. The backoffs are computed using the ratio method.
This model based on a corpus of 9 sentences and 11 words

‘\datal,

ngram 1=11
ngram 2=18
ngram 3=9

\l-grams:

-8.7782 </s> -@.3818
-0.7782 <s»> -8.2218
-1.7324 KANAN -8.2218
-1.7324 KIRI -@©.2218
-1.7324 MAJU -@8.2218
-1.7324 MAKAN -8.2218
-1.7324 MUNDUR -8.2218
-1.7324 STOP -@.2218
-1.7324 TAMU -@8.2218
-1.7324 TIDUR -8.2218
-1.7324 TOILET -9.2218

\2-grams:

-1.2553 <s> KANAN ©.0000
-1.2553 <s> KIRI @.@e00
-1.2553 <s> MAJU @.@ee0
-1.2553 <s> MAKAN ©.0000
-1.2553 <s> MUNDUR @.@008
_1 9851 sen STOD O AOOQ

Fig. 2. Language Model

In Figure 2 is a language model that has been downloaded on the Sphinx Knowledge Base
Tool that is used to generate vocabulary grammar in voice recognition applications. The language
model toolkit is based on the uni-gram modeling, namely n-gram size 1, bi-gram, n-gram size 2,
and tri-gram, n-gram size 3 of the language to be recognized. The n-gram model is a probabilistic
language model for predicting the next word.

3. Testing and Results
3.1. Testing the Word of “Maju”

Table 2. Testing the Word of “Maju”

Pengujian ke-

Percobaan 5 R 2 E s R s o g ol %
1 a a a a a a a a a a 10 100
2 I3 i a a a a a a a a 8 S0
3 a a a a a a a a a a 10 100
4 a a a a a a a a a a 10 100
B a a a a a a a a a a 10 100
& a a a a a a a a a a 10 100
7 a a a a a a a a a a 10 100
£ a a a a a a a a a a 10 100
E a a b a a a a a a a S0
10 a a a a a a a f f a 8 S0
11 a a a a a a a a a a 10 100
12 a a a a a a a a a a 10 100
13 a a a a a a a a a a 10 100
14 a a a a a a a a a a 10 100
15 a a a a a a a a a a 10 100
16 a a a a a a a a a a 10 100
17 a a a a a a a a a a 10 100
18 a a a a a a a a a a 10 100
19 a a a a a a a a a a 10 100

20 B a a a a a a a a a ks S0
Fata-rata a7

Based on Table 2, from 20 experiments with each saying 10 times the word of “maju” can be
seen the average success of the system in recognizing the word of “maju” and sending the
character 'a' is 97%. The system that not recognizes the word of “maju” and displays characters
instead of 'a’ can be caused by noise, differences in the pronunciation of each person's words
because the library uses English pronunciation, and the similarity of words so the system can
recognize words other than the word of “maju” .

3.2. Testing the Word of “Mundur”

Table 3. Testing the Word of “Mundur”

FPengujian ke-

Percobaan 1 - 3 4 s & < s o 10 Total e
1 x b z b b b b b b =)) BO
2 b b b i b b b b b b o o0
3 b b b b b £ £ b b b B8 0
4 b b b b b b 1 b b L= 2 BO
s b b b b b b b b b i =l 20
5 b i b b b b b b b b o o0
7 b i b b b i b b b - B8 s0
E:3 b b b b b b b b b L= 10 100
El b b b b b b i b b b =l o0
10 b b b b i i b b b L= 2 BO
11 b b b b b b b b b b 10 100
1z b b b b b b b b b b 10 100
13 b b b b b b b b b - 10 100
14 b i b b b b b b b L= o 20
15 b b b b i i b b b b 8 B8O
16 b b b b b b b b b L= 10 100
17 b b d b = b b b b b 8 B0
18 b b b b b b b b < L= £ BO
19 b b b b b b b b b b 10 100

20 b b b b b i b b b i £ B8O

Fata-rata 88 5

Table 3 shows the test results of 20 experiments with each saying 10 times the word of
“mundur”. It can be seen that the average success of the system in recognizing the word of
“mundur” and sending the 'b' character is 88.5%. Systems that not recognize the word of
“mundur” and display characters instead of 'b' can be caused by noise, differences in the
pronunciation of each person's words because the library uses English pronunciation, and
similarity of words so the system can recognize words other than the word of “mundur”.

3.3. Testing the Word of “Kanan”

Table 4. Testing the Word of “Kanan”

Pengujian ke-
Percobaan & 6 Total %%

-

=
(=]

10 100
8 80
8 20
8 20
8 20
10 100
10 100
10 100
10 100
10 100
100
10 100
10 100
10 100

S Y R e

o |

-

10 100

._.
=)
m A AR N AN A AR A0 A AR A [0 R N e
A A A0 N AN O AR A0 0N R A T MM on| K
m A AR N A NA A NRA DA AR A [0 0 N W
m A AR N A NA AR A0 A AR A [0 0 0|k
0 m A 0 AN 0 A A 08 00 A /B A O AW
M MO M NN B A AN D 0N A O A QA
A AmABR R RDAB A A DD B D AD B A TR
m A AR N A NA AR A0 A AR A [0 D0 Nl
W A AR DR NABOD A BB D B AR B R AN RS

L2 T T T - T £ T T T T I I T)
=
(=]

c

Fata-rata o4

Table 4 shows the test results of 20 experiments with each saying 10 times the word of
“kanan” can be seen the average success of the system in recognizing the word of “kanan” and
sending the 'c' character is 94%. The system that not recognizes the word of “kanan” and displays
characters instead of 'c' can be caused by noise, differences in the pronunciation of each person's
words because the library uses English pronunciation, and the similarity of words so the system
can recognize words other than the word of “kanan”.

3.4. Testing the Word of “Kiri”

Table 5. Testing the Word of “Kiri”

Pengujian ke-

Percobaan 1 2 3 4 5 6 5 s o 10 Total 2%
1 d d d d d d d d d d 10 100
2 d d d d d d f 3 d d 8 30
3 f d d d d d d d d d 9]
4 d d d d d d d d d d 1 100
5 d d d f d d g d d d 8 30
] d d d d d d d g d z 8 30
7 d d d d d d d d d d 10 100
8 d d d d d d d d f d o %0
] d d d d d d d d d d 1 100

10 d d d c c d d d d d 8 30
11 d d d d d d d d d d 1 100
1z d d d d d d d d d c o o0
13 d [= d d d d d d [= d 8 30
14 d d d d d d d d d d 10 100
15 d d d d d [= d d d 8 30
16 d d d d d d d d d d 1 100
17 d d d d d d d d d d 1 100
18 d d d d d d d c d d o o0
19 d d d d d d d d d d 1 100
20 d d d d d d d d d d 1 100

Fata-rata o2

Based on the test results in Table 5, 20 experiments with each saying 10 times the word of “kiri”
can be seen the average success of the system in recognizing the word of “’kiri” and sending the 'd'
character is 92%. The system that not recognizes the word of “kiri” and displays instead of ‘d’
characters can be caused by noise, differences in the pronunciation of each person's words because
the library uses English pronunciation, and similarity of words so the system can recognize words
other than the word of “kiri”.

3.5. Testing the Word of “Stop”

Table 6. Testing the Word of “Stop”

Penguajian ke-

1 T3 3 5§ 7§ 5 1 oo
1 e e e e e e e e e = 10 100
2 e e e e e e e e e e 10 100
3 e e e e e e & e e = 10 100
4 e e e i e ¢ e e e & 8 80
5 e e e e e e e e e & 10 100
6 e e e e e e e e e = 10 100
7 e e e e e e e e e & 10 100
8 e e e e e e e e e & 10 100
9 e e e e e e & e e = 10 100
10 e e g e e e e e e e] 20
11 e e e e e e e e e e 10 100
12 e e e e e e e e e e 10 100
13 e e e e e e e e e e 10 100
14 e e e e e e e e e = 10 100
15 e e e e e e e e e e 10 100
18 e e e e e e e e e e 10 100
17 e e e e e e e e e e 10 100
18 e e e e e e e e e & 10 100
19 e e e e e e e e e & 10 100
20 e e e e e e e e e = 10 100

Fata-rata 98.5

Based on Table 6, from 20 experiments with each saying 10 times the word of “stop” can be seen
the average success of the system in recognizing the word of “stop” and sending the character 'e' is
98.5%. Systems that recognize words instead of “stop” and display characters instead of 'e' can be
caused by noise.

3.6. Testing the Word of “Tamu”

Table 7. Testing the Word of “Tamu”

Pengujian ke-

Percobaan 1 2 3 A 5 s - s g 10 Total %%
1 £ £ £ £ £ f £ f f £ 10 1040
2 £ £ £ £ £ £ £ £ £ f 10 100
3 £ £ £ £ £ £ £ £ £ f 10 100
4 £ £ £ £ £ f £ f f £ 10 100
5 £ £ £ £ £ f £ f f £ 10 100
[£ £ £ £ £ £ £ £ £ f 10 1040
7 f £ £ £ £ f £ f f f 1 100
g i f f e f f f f f e 8 80
2 g f f i f f f f f f 8 80

10 £ £ £ £ £ £ £ £ £ f 10 100
11 £ £ £ £ £ f £ f f £ 10 1040
1z £ £ £ £ £ f £ f f £ 10 1040
13 £ £ e £ £ £ £ £ £ f @ 20
14 f f f f f f f f f f 10 100
15 f f f f f f f f f f 10 100
16 f f f f f f f f f f 10 100
17 £ £ £ £ £ £ £ £ £ f 10 1040
18 f £ £ £ £ f £ f f f 1 100
12 i f f f f f f f f f 10 100
20 i f f f f f f f f f 10 100
Eata-rata a7.5

Table 7 shows the test results from 20 experiments with each saying 10 times the word of
“tamu”can be seen the average success of the system in recognizing the word of “tamu” and
sending the 'f' character is 97.5%. The system that can’t recognizes word “tamu” and displays not-
f characters can be caused by noise, differences in the pronunciation of each person's words
because the library uses English pronunciation, and the similarity of words so the system can
recognize words other than the word of “tamu”.

3.7. Testing the Word of “Tidur”

Table 8. Testing the Word of “Tidur”

Pengujian ke-

Percobaan - Total
1 2 3 4 5 6 7 ;] e 10
1 h 2 = 4 4 4 h = 4 g 8 80
2 -4 E E E E E E B c g 90
3 4 g = 4 h 4 h = 4 g 8 80
4 4 E E E 4 E g B E g 10 100
5 i g E E E e 2 B E a 8 80
6 4 g £ g i g g £ g g ° 90
7 24 g g d g E g B E g B 20
8 4 g & & B8 g g £ g g 1 100
9 4 g E i g g g £ e g @ 20
10 -4 c E E 4 E g B E g g 20
11 4 g E E E g g d e d 8 80
12 24 g E E & E g B E g 1w 100
13 4 £ E E E E E E E g w100
14 :4 g E E B E 2 B E g 1w 100
15 4 £ E E E E E E E g w100
18 4 g E E E g 4 g e g @ 20
17 4 g & B B8 g g £ g g 1 100
18 4 g E E E c g g e g @ 20
19 4 g & B B8 g g £ g g 1 100
20 4 £ E E E g 4 g E h 8 80
Rata-rata 915

The word of “tidur” test results in Table 8 show that from 20 experiments with each
saying 10 times the word of “tidur” can be seen the average success of the system in
recognizing the word of “tidur” and sending the 'g' character is 91.5%. The system that
can’t recognizes word “tidur” and displays characters instead of 'g' can be caused by
noise, differences in the pronunciation of each person's words because the library uses
English pronunciation, and the similarity of words so the system can recognize words
other than the word of “tidur”.

3.8. Testing the Word of “Makan”

Table 9. Testing the Word of “Makan”

Pengujian ke-

Percobaan Total 3%
1 2 3 4 3 [7 8 o 10

1 h h h h h h h h h h 10 100
2 a h h h h h h h h h o o0
3 h h h h h h h h h h 10 100
4 h h h b h h h b h h 8 30
5 h h h h h h h h h h 10 100
[h b h h h h h h h h 9 2]
7 h h h h h h h h h h 10 100
3 h h h h h h h h h h 10 100
9 h h h h h h h h h h 10 100
10 h h h h h h h h h h 10 100
11 h h h h h h h h h h 10 100
12 h h h h h h h h h h 10 100
13 h h h h h h g h h h o]
14 h h h h h =3 h h h h @ o0
15 h h h h b h c h h h 8 30
18 h h h b h h h h b h 8 30
17 h h h h h h h h h h 10 100
18 h a h h h h h h h h o]
19 h h h h h h h h h h 10 100
20 h h h h h h h h b h @ o0
Rata-rata o4

Based on the test of the word of “makan” in Table 9, from the 20 experiments with each
saying 10 times the word of “makan” can be seen the average success of the system in recognizing
words and sending the character 'h' is 94%. The system that can’t recognizes word “makan” and
displays characters instead of 'h' can be caused by noise, differences in the pronunciation of each
person's words because the library uses English pronunciation, and the similarity of words so that
the system can recognize words other than the word of “makan”.

3.9. Testing the Word of “Toilet”

Table 10. Testing the Word of “Toilet”

Fengujian ke

Percobaan = Total 24
1 =] ES s 5 7 s = 10

1 E E E E i E E E E i 10 100
= a i i i i i i i i i k=] t=1e]
3 B i i i i i i i i i =l =1o]
4 i i i i i i i i i i 10 Lo0
£ i i i i i i i i i = o oo
] i da i i i i i i i IS = 20
T i i i i i i i i i i 10 100
=] i B i i i a i i i i s 20
= i i i i i i i i i i 10 100
10 i i i i i i i i i i 10 100
11 i i B i i i i i i i @ oo
1z i i i i = i i B i i s s0
13 i i h i i i i = i i s S0
14 i i i i i i i i i i 10 Lo
15 i i i i i i i b b i s S0
15 i i B i i i i B i i = 20
17 i i i i i i i B i i k=] t=1e]
18 i i i i i i i i i = =l =1o]
19 i i i i i = i = i i s S0
20 i i i i i i B i h i = =0

Fata-rata 22

Based on Table 10, from 20 experiments with each saying 10 times the word of “toilet” can
be seen the average success of the system in recognizing the word of “toilet” and sending the
character 'i' is 89%. The system that recognizes non-the word of “toilet” and displays characters
instead of 'i' can be caused by noise, differences in the pronunciation of each person's words
because the library used uses English pronunciation, and similarity of words so the system can
recognize words other than the word of “toilet”.

3.10. Overall Testing Tool

Testing the entire tool is done by testing the system recognize the spoken word and send the
character assosiate with the recognized word to the microcontroller to command the movement of
the wheelchair. Tests carried out by a person sitting on a wheelchair say 5 times the word of
“toilet”. The results of overall testing of the tool can be shown in Table 10.

Table 11. Overall Testing Tool

Testing The spoken word SuF ceed. |
Fail

1 toilet succeed

2 toilet succeed

3 toilet succeed

4 toilet succeed

5 toilet succeed

Based on the results of the overall testing of the tools in Table 10, it can be seen that from 5
tests of uttering the word of “toilet”, the system can recognize the spoken word and successfully
send word recognition results to the microcontroller. Microcontroller which has received data in
the form of characters will instruct the actuator to drive the Direct Current (DC) motor . Thus the
wheelchair can move according to the trajectory to the toilet with the speed that has been adjusted.

IV. Conclusion

The results of the word of “maju” testing show the average success of the system in
recognizing the word of “maju” and sending the 'a' character is 97%. The average success of the
system in recognizing the word of “mundur” and sending the 'b' character is 88.5%. The average
percentage of success of the system in recognizing the word of “kanan” and sending the 'c'
character is 94%. In the word of “kiri” test, the average system success in recognizing the word of
“kiri”’and sending the 'd' character is 92%. The average success of the system test results in
recognizing the word of “stop” and sending the 'e' character is 98.5%. In the word of “tamu”
testing, the average success of the system in recognizing the word of “tamu” and sending 'f'
characters is 97.5%. The word of “tidur” test results show that the average success of the system in
recognizing the word of “tidur” and sending the 'g' character is 91.5%. The average success of the
system in recognizing the word of “makan” and sending the 'h' character is 94%. The average

percentage of success of the system in recognizing the word of “toilet” and sending the character 'i'
is 89%. In overall testing the tool, 5 times the test uttered the word of “toilet”, the system can
recognize the word of “toilet” and successfully send word recognition results to the
microcontroller. Microcontroller which has received data in the form of characters will instruct the
actuator to drive the DC motor. Thus the wheelchair can move according to the trajectory to the
toilet with the speed that has been adjusted.

References

[1].
o)
[4].
[5].
[6].
[7].

[8].

I. M. L. Batan, “Pengembangan Kursi Roda Sebagai Upaya Peningkatan Ruang Gerak
Penderita Cacat Kaki”, Jurnal Teknik Industri, Vol. 8, No. 2, Desember 2006: 97-105.

Kemenkes. 2014. “Infodatin Penyandang Disabilitas Pada Anak”. Jakarta: Kemenkes.

Liem, Yuliana Kathina Hatta, Pujiono, dan Tasrippan, “Rancang Bangun Kursi Roda Elektrik
Menggunakan Perintah Suara Berbasis Aplikasi Android”, JURNAL TEKNIK
POMITS,Vol. 1, No. 1, 2012, 1-6.

A. K. Ridia, A. Hidayat, Derisma, ‘“Penerapan Metode Fuzzy Logic Pada Kursi Roda
Elektrik Dengan Kendali Suara”, PROSIDING SEMNASTEK 2017, Pp. 1-8, 2017.

M. E. B. Prasetyo, “Teori Dasar Hidden Markov Model”, Makalah 112092 Probabilitas dan
Statistik-Sem. 1, 2010/2011.

Pocketsphinx, Carnegie Mellon University. [Online]. Available:
http://cmusphinx.sourceforge.net/wiki/tutorialPocketSphinx [Accessed: 22-Agustus-2019].

M. W. Alauddin, W. Kurniawan, B. D. Setiawan, “Rancang Bangun Alat Pendeteksi Suara
Panggilan Manusia Berbahasa Indonesia Untuk Tunarungu Menggunakan Library
PocketSphinx Berbasis Embedded system”, Repositori Jurnal Mahasiswa PTIIK UB,
Volume 8, Pages 16, 2016.

Raspberry Pi, “Raspberry Pi,” Raspberry Pi Foundation. [Online]. Available:
https://www.raspberrypi.org [Accessed: 22-Agus

